
Introduction

Overview

JuliaInXL is an extension of Microsoft® Excel® that brings the power of the
Julia language and ecosystem to a familiar spreadsheet work environment.

This guide details the installation procedure and usage of the JuliaInXL package
for JuliaPro.

Installation

Prerequisites

To install JuliaInXL, the system must meet the following prerequisites

• An appropriate version of Microsoft Windows®:
• Windows 7 SP1, Windows 8, Windows 8.1, Windows 10
• Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2,

Windows Server 2016
• JuliaPro v1.0.3.1 (Or higher)
• .NET 4.0 (Bundled with the JuliaInXL installer when executed with

Administrator privileges)
• Microsoft Excel 2010, 2013, or 2016

Installing JuliaInXL for JuliaPro

JuliaInXL can be installed only on a Windows machine if Microsoft Excel is
installed. Installation of JuliaInXL should be performed with the same set of
user privileges as were used when the corresponding version of JuliaPro was
installed. Open your JuliaPro IDE and execute following command to begin
JuliaInXL installation:

Pkg.add(“JuliaInXL”)

Above command will download JuliaInXL installer and initiate the installer, you
will be presented with the JuliaInXL Software License Agreement. After reading
through the terms mentioned in the agreement, click “I Agree” if you accept the
terms of the license and proceed with the installation.

Upon completion of the installer, press close to exit the installer. Once you close
the installer, you can come back to your JuliaPro IDE to use JuliaInXL.

1



Figure 1:

2



Figure 2:

3



Uninstalling JuliaInXL

Please use “Add/Remove programs” Windows utility to uninstall JuliaInXL.

Trademark Usage

Microsoft®, Windows®, and Excel® are registered trademarks of Microsoft
Corporation.

Other names may be trademarks of their respective owners.

Using JuliaInXL for JuliaPro

Julia Office Ribbon Tab

If JuliaInXL was selected as a component to install with your JuliaPro installation,
then in most cases a Julia process should launch automatically when starting
your Excel session.

Figure 3:

A Julia tab will also be present in the Office Ribbon that contains a number of
buttons and text boxes for controlling the connection between Julia and Excel,
as well as loading functionality into the current Julia process.

In the current version of JuliaInXL, if your Excel installation has loaded the
“Analysis Toolpak - VBA” add-in, then the Julia process does not launch au-
tomatically on startup. In this scenario, you must launch the julia.exe process
manually using the “Launch Local Julia” button as shown below.

4



Figure 4:

Figure 5:

5



The “Launch Local Julia” button will launch a new child Julia process, as well
as start a JuliaInXL server process that listens on the currently defined TCP
endpoint.

When this button is pressed, any current child Julia process is shutdown before
launching a new Julia process.

If an execution of jlcall has resulted in a #JuliaNotConnected error, then
either the “Launch Local Julia” button or the “Reconnect” button (described
below) can be used to re-establish a connection to a JuliaInXL server process.
The “Launch Local Julia” button launches a new julia.exe process, while the
“Reconnect” button attempts to connect to a JuliaInXL server in an existing
julia.exe process.

Adjacent to the “Launch Local Julia” button is a “Julia File Path” text box
for entering the path to a file that can be loaded into the Julia process via the
include command.

Figure 6:

Below the “Julia File Path”, is a “Select Julia File” button, which launches a
file chooser dialog box that allows for browsing to a Julia file that can be loaded
into the current Julia process.

Selecting a file using this dialog box only populates the “Julia File Path” text
box with the path to the file selected.

With a file selected via the “Select Julia File” button or manually entered into
the “Julia File Path” text box, the selected file can be loaded into the Julia
process using the “Include Julia File” button.

In the screenshot below, we have included the “sim.jl” file from the “test”

6



Figure 7:

Figure 8:

7



Figure 9:

Figure 10:

8



directory of the JuliaInXL package installation. The simulate function defined
in sim.jl is now available for use from the current Julia process and is callable
from Excel via jlcall as described in a later section.

Figure 11:

Adjacent to the “Julia File Path” text box is the “JuliaInXL TCP Endpoint”
textbox. This textbox displays the currently configured TCP endpoint to use
when Excel connects to a JuliaInXL server.

By default, the endpoint value displayed in this textbox is associated with
the value stored in the “JuliaInXL_Default_Endpoint” entry of the JuliaPro
Windows registry key.

For a “Current User” installation of JuliaPro, this registry key is located at
“HKEY_CURRENT_USER\Software\JuliaProfessional\0.5.0.4\”.

For an “All Users” installation of JuliaPro, this registry key is located at
“HKEY_LOCAL_MACHINE\Software\JuliaProfessional\0.5.0.4\”.

For a “Shared Drive” installation of JuliaPro, no Windows registry keys are
written on installation, but JuliaInXL will also look to see if an environment
variable JULIAINXL_DEFAULT_ENDPOINT has been set.

As shown below, for “Shared Drive” installations, you should both set a value
for JULIAINXL_DEFAULT_ENDPOINT, and also ensure that the path to the
julia.exe executable included in your JuliaPro installation is included in a Path
environment variable for either your system or your current user account.

For connections made to Julia processes executing on the local machine, the
hostname included in the provided TCP endpoint should always be “localhost”.
On the Julia side, the IP address 127.0.0.1 is used when creating the connection

9



Figure 12:

endpoint from which the JuliaInXL server can accept connections. Connections
endpoints entered into the “JuliaInXL TCP Endpoint” on the Excel side should
use the DNS name associated with an IP address, while on the Julia side the IP
address should be used directly.

If you wish to configure your JuliaInXL session to connect to a particular
JuliaInXL server, possibly on a different machine, then the value of the current
endpoint can be changed either manually in the “JuliaInXL TCP Endpoint” text
box, through the Windows Registry or via an environment variable.

Using the Windows Registry or an Environment variable allows for the possibility
of connecting to a remote JuliaInXL server session as part of an automated
workflow that launches Excel and makes use of Julia.

Note that with the current version of JuliaInXL, if the Excel installation has
loaded the “Analysis Toolpak - VBA” Add-In, then JuliaInXL cannot be used
in the automated workflow described above.

Also note that regardless of the endpoint value (e.g. tcp://hostname:) provided
within the Windows Registry, in a JULIAINXL_DEFAULT_ENDPOINT envi-
ronment variable, entered manually in the “JuliaInXL TCP Endpoint” text box,
if a user presses the “Launch Local Julia” button, then the endpoint value in the
“JuliaInXL TCP Endpoint” text box will be updated to point to “tcp://localhost:”
before launching a new Julia process to create a JuliaInXL server.

Below the “JuliaInXL TCP Endpoint” textbox is the “Reconnect” button. This
button resets the TCP client endpoint on the Excel side of the connection, and
then attempts to reconnect to the existing JuliaInXL server.

10



Figure 13:

11



Figure 14:

If an execution of jlcall has resulted in a #JuliaNotConnected error, then
either the “Launch Local Julia” button or the “Reconnect” button (described
below) can be used to re-establish a connection to a JuliaInXL server process.
The “Launch Local Julia” button launches a new julia.exe process, while the
“Reconnect” button attempts to connect to a JuliaInXL server in an existing
julia.exe process.

The “Terminate” button disconnects the TCP client endpoint on the Excel side
of the connection.

Calling Julia Functions from Excel using jlcall

Once the server is started, julia functions can be called from Excel using the
jlcall worksheet function. The first argument to jlcall is a string, which is
the name of the registered Julia function to be called. Subsequent arguments to
the jlcall function are passed as parameters to the Julia function being called.
These can be constant literals, or cell references. Arrays can be passed via cell
ranges.

If the Julia function returns an array (1d or 2d), then use jlcall as an Excel
Array function by selecting a range before entering the function, and pressing
Shift+Ctrl+Enter to finish. Functions exposed to Excel should take floats or
strings, or their arrays as arguments. In general, it is a good idea to keep the
function arguments as loosely typed as possible. Therefore functions should
return integers, floats, or strings; or their arrays. However, arrays of dimensions
greater than two are not supported. Note that Excel stores all numbers as 64

12

https://support.microsoft.com/en-us/kb/78113


Figure 15:

bit IEEE floats. Therefore, be aware of the possibility of truncation if returning
large, or high precision, numbers. Dates are passed in from excel as floating point
numbers in its internal encoding (fractional days since 1/1/1900 or 1/1/1904).
Thus, they are recieved in Julia functions as floats. They can be converted to
Julia DateTime values using the xldate function.

Below we show the initial entry of jlcall being called within a cell.

And the completion of that statement calling the simulate function from our
example.

As well as the corresponding result:

By copying the contents of the cell in which jlcall was executed into multiple
cells, the original jlcall operation can be repeated within multiple cells.

Resolving #JuliaNotConnected! error messages

If an execution of jlcall has resulted in a #JuliaNotConnected! error, then
either the “Launch Local Julia” button or the “Reconnect” button (described
below) can be used to re-establish a connection to a JuliaInXL server process.
The “Launch Local Julia” button launches a new julia.exe process, while the
“Reconnect” button attempts to connect to a JuliaInXL server in an existing
julia.exe process.

13

https://support.microsoft.com/en-us/kb/78113


Figure 16:

Figure 17:

14



Figure 18:

Figure 19:

15



Figure 20:

Resolving #JuliaEmptyCell! error messages

The jlcall function does not currently accept arguments whose inputs are cells
or cell ranges that contain empty cells. To resolve a #JuliaEmptyCell! error,
the input cells or cell ranges must be modified such that they contain a value of
some type.

Defining global variables via jlsetvar

If you wish to assign a value to a variable within the current Julia process, a
global variable can be created through the use of the jlsetvar function in
Excel.

jlsetvar accepts two arguments, where the first argument is a text string for
the name of the variable to be created and the second argument is a numeric
value, a string value, or a cell reference or cell range whose contents are numbers
or strings.

Executing a Julia expression via jleval

If you wish to define a Julia expression to be evaluated in the Julia process hosting
the JuliaInXL server, the jleval function accepts a single string argument whose
contents must be able to be evaluated by the julia function:

parse_and_eval(arg) = eval(parse(arg::String))

16



Connecting to a separate JuliaInXL server

As mentioned previously, one can connect a single Excel session to different Julia
sessions by changing the port number within the Julia Office Ribbon tab.

Below is an example of changing the port number of the current Julia session
from the default 9999 port to 9998.

Figure 21:

And then connecting that same Excel session to a separate Julia session where a
different connection object has been associated with the new port number.

17



Figure 22:

18


	Introduction
	Overview
	Installation
	Prerequisites
	Installing JuliaInXL for JuliaPro

	Uninstalling JuliaInXL
	Trademark Usage

	Using JuliaInXL for JuliaPro
	Julia Office Ribbon Tab
	Calling Julia Functions from Excel using jlcall
	Resolving #JuliaNotConnected! error messages
	Resolving #JuliaEmptyCell! error messages

	Defining global variables via jlsetvar
	Executing a Julia expression via jleval
	Connecting to a separate JuliaInXL server


