

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

INTRODUCTION	
	
This	document	provides	several	benchmarks	that	were	conducted	by	Julia	Computing.	
	
	
BENCHMARK	AGAINST	PYTHON	1:	CIRCUITSCAPE	
		
Circuitscape	is	a	tool	that	borrows	algorithms	from	electronic	circuit	theory	to	measure	
connectivity	in	heterogeneous	landscapes.	Its	most	common	applications	include	modelling	
movement	and	gene	flow	of	plants	and	animals,	as	well	as	identifying	areas	important	for	
connectivity	conservation.	Circuit	theory	complements	commonly-used	connectivity	models	
because	of	its	connections	to	random	walk	theory	and	its	ability	to	simultaneously	evaluate	
contributions	of	multiple	dispersal	pathways.	Landscapes	are	represented	as	conductive	
surfaces,	with	low	resistances	assigned	to	landscape	features	types	that	are	most	permeable	to	
movement	or	best	promote	gene	flow,	and	high	resistances	assigned	to	movement	barriers."	
		
“Circuitscape	v4.0	is	a	Python	package	implemented	primarily	using	NumPy,	SciPy	and	PyAMG.	
However,	this	version	faced	significant	limitations	in	terms	of	speed	and	scalability.	Circuitscape	
v5.0	has	been	reimplemented	in	the	Julia	language	for	speed,	efficiency	and	scalability.	
According	to	our	benchmarks	it	is	between	4x	-	8x	faster	than	v4.0	(benchmark	chart	attached)	
	
		
			

BENCHMARKING JULIA AGAINST PYTHON

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

SIZE PYTHON JULIA JULIA-	CHOLMOD
1m 537.810477 106.395484 89.60318678

6m 4711.366189 1217.9016 543.0623558

12m 9486.912186 2337.54783 1124.275759

24m 20902.11244 4831.22026 	

48m 10149.4611 	

		
Hardware	Used:	
	-	Name:	Intel(R)	Xeon(R)	Silver	4114	CPU	
	-	Clock	Speed:	2.20GHz	
	-	Number	of	cores:	20	
	-	RAM:	384	GB		
	
BENCHMARK	AGAINST	PYTHON	2:	RECOMMENDER	SYSTEM	
		
The	package	RecSys.jl	is	a	package	for	recommender	systems	in	Julia,	it	can	currently	work	with	
explicit	ratings	data.	For	preparing	the	input	create	an	object	of	ALSWRtype.	This	takes	two	
input	parameters,	firstly	input	file	location,	and	second	optional	input	is	the	variable	par	which	
specifies	the	type	of	parallelism.	The	parallelism	is	about	how	the	data	is	shared/distributed	
across	the	processing	units.	When	par=ParShemm	the	data	is	present	at	one	location	and	is	
shared	across	the	processing	units,	when	par=ParChunk	the	data	is	distributed	across	the	
processing	units	as	chunks.	For	this	report	only	sequential	timings	were	captured,	i.e.,	with	
nprocs=1.	
		
Parallelism	is	made	possible	in	Julia	mainly	2	ways,	a).	Multiprocessing	and	b).	Multithreading.	
The	multithreading	development	is	ongoing.	However,	the	multiprocessing	based	parallel	
processing	in	Julia	is	mature	and	mainly	based	around	Tasks	which	are	concurrent	function	
calls.	The	implementation	details	are	not	covered	here,	the	following	graph	summarises	the	
performance	of	parallel	ALS	implementation	in	Julia	and	Spark:	
	

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

	
	
BENCHMARK	AGAINST	PYTHON	3:	CALCULATING	PI	DIGITS	
		
Using	the	Borwein’s	algorithm	with	quadratic	convergence	to	the	approximation	of	pi,	(using	a	
discriminant	of	the	Ramanujan-Sato	Series),	we	try	to	approximate	pi	to	roughly	10	million	
digits.	This	algorithm	uses	simple	calculations	and	iteratively	approximates	the	value	of	pi.	
		
This	is	to	see	how	the	languages	compare	in	terms	of	calculations	that	may	not	be	too	heavy,	
but	large	in	number.	This	mimics	how	calculations	would	happen	behind	the	scenes	when	a	
machine	learning	model	is	fit.	
		
The	programs	are	run	single	threaded.	
		
	

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

PYTHON	
		
import	time,	timeit	
def	pi_calc(n	=	10**7):	
													a0	=	2**0.5	
													b0	=	0	
													p0	=	2	+	2**0.5	
													for	i	in	xrange(n):	
													a1	=	(a0	+	a0**-0.5)/2.0	
													b1	=	((1	+	b0)*(a0**0.5))/(a0	+	b0)	
													p1	=	((1	+	a1)*p0*b1)/(1	+	b1)	
													a0	=	a1	
													b0	=	b1	
													p0	=	p1		
print(timeit.timeit(pi_calc,	number	=	1))	
		
JULIA	
		
function	pi_calc(n)	
													a0	=	2^0.5	
													b0	=	0	
													p0	=	2	+	2^0.5	
													for	i	in	1:n	
													a1	=	(a0	+	a0^-0.5)/2.0	
													b1	=	((1	+	b0)*(a0^0.5))/(a0	+	b0)	
													p1	=	((1	+	a1)*p0*b1)/(1	+	b1)	
													a0	=	a1	
													b0	=	b1	
													p0	=	p1	
													end	
end	
		
@time	pi_calc(10^7)	
	
	

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

		
RESULTS:	
		

LANGUAGE		 TIME	(SECONDS)	

PYTHON	 4.27	

JULIA	 0.82	

		
			
BENCHMARK	AGAINST	PYTHON	4:	MANDELBROT	SET	
		
The	Mandelbrot	Set	is	a	mathematical	object	known	as	a	fractal	which	converges	upon	itself	
indefinitely.	It	is	often	used	to	benchmark	programming	languages	for	their	performance	as	it	
involves	non-trivial	operations	with	the	complex	number	space	and	high	precision	calculations.	
The	Mandelbrot	Set	makes	the	following	mapping:	
		
z	=	z^2	+	c	
		
We	will	make	use	of	the	numpy	library	in	python	(C	bindings)	to	demonstrate	a	typical	scenario	
when	non	trivial	workflow	is	taken	into	consideration.	Numba,	which	provides	JIT	compilation	
can	provide	further	speedup,	but	cannot	be	used	in	all	kinds	of	cases.	
		
PYTHON	
		
import	numpy	as	np	
		
def	mandelbrot(c,maxiter):	
													z	=	c	
													for	n	in	xrange(maxiter):	
													if	abs(z)	>	2:	
												 return	n	
													z	=	z*z	+	c	
													return	0	

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

		
def	mandelbrot_set(xmin	=	-0.74877,	
													xmax	=	-0.74872,	
													ymin	=	0.06505,	
													ymax	=	0.06510,	
													width	=	1000,	
													height	=	1000,	
													maxiter	=	2048):	
													r1	=	np.linspace(xmin,	xmax,	width)	
													r2	=	np.linspace(ymin,	ymax,	height)	
													n3	=	np.empty((width,height))	
		
													start	=	time.time()	
													for	i	in	range(width):	
													for	j	in	range(height):	
												 n3[i,j]	=	mandelbrot(r1[i]	+	1j*r2[j],maxiter)	
													print(time.time()	-	start)	
		
													return	(r1,r2,n3)	
		
print(timeit.timeit(mandelbrot_set,	number	=	1))	
			
JULIA	
		
function	mandelbrot(c,maxiter)	
															z	=	c	
															for	n	in	1:maxiter	
																													if	abs(z)	>	2	
																																																								 return	n	
																													end	
																													z	=	z*z	+	c	
															end	
															return	0	
end	
		

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

function	mandelbrot_set(xmin	=	-0.74877,	
															xmax	=	-0.74872,	
															ymin	=	0.06505,	
															ymax	=	0.06510,	
															width	=	1000,	
															height	=	1000,	
															maxiter	=	2048)	
															r1	=	linspace(xmin,	xmax,	width)	
															r2	=	linspace(ymin,	ymax,	height)	
															n3	=	zeros(Float32,	width,height)	
															for	i	in	1:width	
																													for	j	in	1:height	
																																																								 n3[i,j]	=	mandelbrot(r1[i]	+	r2[j]im,	maxiter)	
																													end	
															end	
															return	(r1,r2,n3)	
end	
		
@time	mandelbrot_set()	
	
RESULTS:	
	

LANGUAGE		 TIME	(SECONDS)	

PYTHON	 212	

JULIA	 3.72	

	
		
		
		
	
	
	
	

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

BENCHMARK	AGAINST	PYTHON	5:	COIN	TOSS	
		
The	coin	toss	problem	is	one	of	the	classics	of	testing	the	performance	of	a	highly	parallelizable	
problem	set.	Here	we	simulate	tossing	a	coin	1	billion	times	to	highlight	how	multithreading	
behaves	in	Python	and	how	it	behaves	in	Julia.	Special	focus	must	be	presented	as	both	the	
single	threaded	as	well	as	the	multi	threaded	versions	of	the	code	are	presented	along	with	run	
times.	Also,	note	the	changes	between	the	two,	vis	a	vis	the	ability	to	multi	thread	on	the	fly.	
		
Both	Python	and	Julia	were	run	with	4	workers	to	maintain	parity.	
		
PYTHON	-	SINGLE	THREADED	
		
def	coin_toss(n	=	10**9):	
													res	=	[0]*n	
													for	i	in	range(n):	
													res[i]	=	randint(0,1)	
														
													return	res	
print(timeit.timeit(coin_toss,	number	=	1))	
		
JULIA	-	SINGLE	THREADED	
		
function	coin_toss(n::Int64,	i::Int64	=	1)	
															a	=	Array{Int8}(n)	
															for	i	in	1:n	
																												 a[i]	=	Int8(rand(0:1))	
															end	
															a	
end	
	
	
	
	
	
	

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

RESULTS:	
	

LANGUAGE		 TIME	(SECONDS)	

PYTHON	 1804	

JULIA	 28.8	

	
PYTHON	-	MULTITHREADED	
		
from	random	import	randint	
import	time	
		
def	toss(start):	
															global	res	
															global	part	
															print(start)	
															for	i	in	range(start,	part	+	start):	
																													res[i]	=	randint(0,1)		
		
def	coin_toss(part,	nthreads,	n	=	10**9):	
															pool	=	ThreadPool(nthreads)	
															results	=	pool.map(toss,	range(0,	n,	part))	
															return	results	
		
if	__name__	==	'__main__':	
															n	=	10**9	
															nthreads	=	4	
															res	=	[0]*n	
															part	=	int(n/nthreads)	
															start	=	time.time()	
															coin_toss(part	=	part,	nthreads	=	nthreads)	
															print(time.time()	-	start)	
		
		

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

JULIA	-	MULTITHREADED	
		
@everywhere	function	coin_toss(n::Int64,	i::Int64	=	1)	
															a	=	SharedArray{Int8}(n)	
															@parallel	for	i	in	1:n	
																												 a[i]	=	Int8(rand(0:1))	
															end	
															a	
end	
		
@time	coin_toss(10^9)	
		
RESULTS:	
	

LANGUAGE		 TIME	(SECONDS)	

PYTHON	 920	

JULIA	 2.44	

	
			

BENCHMARK	AGAINST	PYTHON	6:	MATRIX	MULTIPLICATION	
		
The	objective	is	to	compare	Python's	and	Julia's	ability	to	parallelize	a	simple	procedure	like	
matrix	multiplication.	We	will	be	using	the	straightforward	ijk	algorithm	to	perform	matrix	
multiplication.	The	time	and	code	shows	how	fast	and	easy	it	is	to	parallelize	procedures	in	
Julia.	Essentially	the	procedure	performs	C=A∗B	
The	ijk	algorithm	is	an	iterative	one,	each	entry	in	C	is	calculated	as	Cik=j=1naij*bjk	
	

	
	
	
	
	

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

MULTIPLICATION	ON	SINGLE	CORE	

JULIA	

function	ijk(A::Array{Float64},	B::Array{Float64},	C::Array{Float64})	

								@inbounds	for	i=1:size(A)[1]	

												for	k=1:size(B)[2]	

																for	j=1:size(A)[2]	

																				C[i,k]+=	A[i,j]*B[j,k]	

																end	

												end	

								end	

								C	

				end	

	

	function	perform_ijk(n::Int64)	

				A	=	randn((n,n))	

				B	=	randn((n,n))	

				C	=	zeros((n,n))	

				tic()	

				ijk(A,B,C)	

				toc()	

	end	

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

PYTHON	

import	numpy	as	np	

from	time	import	time	as	t	

def	ijk(A,B,C):	

				for	i	in	range(A.shape[0]):	

								for	k	in	range(B.shape[1]):	

												for	j	in	range(A.shape[1]):	

																C[i,k]	+=	A[i,j]*B[j,k]	

				return	C	

if	__name__	==	"__main__":	

				A	=	np.random.normal(size=(1000,1000))	

				B	=	np.random.normal(size=(1000,1000))	

				C	=	np.zeros((1000,1000))	

				start	=	t()	

				C	=	ijk(A,B,C)	

				print("elapsed	time:	{0}	seconds".format(t()-start))	
	

RESULTS	
	

LANGUAGE		 TIME	(SECONDS)	

PYTHON	 800	

JULIA	 1.38	

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

	
	
MULTIPLICATION	ON	MULTIPLE	(4)	CORES	

JULIA	

addprocs(4)	#adding	4	processes	

#the	following	defines	function	on	all	processes	

@everywhere	function	matmul_multicore(n,w,A,B,C)	

				range	=	1+(w-2)	*	div(n,4)	:	(w-1)	*	div(n,4)	

				@inbounds	for	i=range	

								for	k=1:size(B)[2]	

												for	j=1:size(A)[2]	

																C[i,k]+=	A[i,j]*B[j,k]	

												end	

								end	

				end	

end	

	

function	perform_ijk_multicore(n::Int64)	

				A	=	SharedArray{Float64}(randn(n,n));	

				B	=	SharedArray{Float64}(randn(n,n));	

				C	=	SharedArray{Float64}((n,n));	

				tic()	

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

				@sync	begin	

				for	w	in	workers()	

								@async	remotecall_wait(matmul_multicore,	w,	n,	w,	A,	B,	C)	

				end	

end	

toc()	

end	
	

PYTHON	

import	multiprocessingimport	numpy	as	np	

from	time	import	time	as	t	

def	lineMult(start):	

				global	A,	B,	C,	part	

				n	=	len(A)	

				for	i	in	range(start,	start+part):	

								for	k	in	range(n):	

												for	j	in	range(n):	

																C[i,j]	+=	A[i,k]	*	B[k,j]	

	

def	ikjMatrixProduct(A,	B,	threadNumber):	

				n	=	len(A)	

				pool	=	multiprocessing.Pool(threadNumber)	

BOSTON | NY | LONDON | BANGALORE	

Julia Computing, Inc.
45	Prospect	St.,	Cambridge,	MA	02139	

Email:	info@juliacomputing.com			
Web:	www.juliacomputing.com

				pool.map(lineMult,	range(0,n,	part))	

				return	C	

if	__name__	==	"__main__":	

				A	=	np.random.normal(size=(1000,1000))	

				B	=	np.random.normal(size=(1000,1000))	

				C	=	np.zeros((1000,1000))	

				n,	m,	p	=	len(A),	len(A[0]),	len(B[0])	
	

				threadNumber	=	4	

				part	=	int(len(A)	/	threadNumber)	

				start	=	t()	

				C	=	ikjMatrixProduct(A,	B,	threadNumber)	

				print("elapsed	time:		{0}	seconds".format(t()-start)	

	

RESULTS		

LANGUAGE		 TIME	(SECONDS)	

PYTHON	 436	

JULIA	 2.27	

