ssJulia

computing

Miletus.jl

February 9, 2017

Contents

Contents
| Introduction
1 Introduction
1.1 OVerview . . . o e e e e e e e e e e e e e e e e
1.2 Installation
Il Tutorial
2 Tutorial
2.1 Motivatingexample. e e e
2.2 Building Contracts with Primitive and Derived Types
Contract primitives e e e e e e e e e
Primative Observables
Derived Observables
2.3 Constructing Observablesand Contracts
2.4 Built-inDerived Contracts e
2.5 DayCounts i i i e e e e e e e e e
2.6 ProCesses . . . v v v i i i e e e e e e e e e e e e e e e e
2.7 TermStructures L e e e e e e e e e
3 Models
3.1 Implemented Models and Valuationmethods
3.2 Functions available for operatingonaModel
3.3 Implied Volatlity calculations
Ill Examples
4 Extended Examples

41 SpreadOptions e e e e e e
42 CouponBearingBonds e
43 AsianOptionpricing e e e e e

10
10
11
11
12
14
15
16
16

17
17
19
20

21

Part |

Introduction

Chapter 1

Introduction

1.1 Overview

Miletus is a financial contract definition, modeling language, and valuation framework written in Julia. The implemen-
tation of the contract definition language is based on papers by Peyton Jones and Eber [PJ&E2000],[PJ&E2003].

As originally conceived in the referenced papers, complex financial contracts can often be deconstructed into combina-
tions of a few simple primitive components and operations. When viewed through the lens of functional programming,
this basic set of primitive objects and operations form a set of "combinators” that can be used in the construction of
more complex financial constructs.

Miletus provides both basic the primitives for the construction of financial contract payoffs as well as a decoupled
set of valuation model routines that can be applied to various combinations of contract primitives. In Miletus, these
"combinators” are implemented through the use of Julia's user-defined types, generic programming, and multiple dispatch
capabilities.

Unlike some existing implementations of financial contract modeling environments (created in languages such as
Haskell or OCaml) that rely heavily on pure functional programming for the contract definition language, but may
then switch to a second language (e.g. C++, Java, APL) for implementation of valuation processes, Miletus leverages
Julia’s strong type system and multiple dispatch capabilities to both express these contract primitive constructs and
provide for generation of efficient valuation code. As seen in other parts of the Julia ecosystem, Miletus solves the
two language problem with regards to defining and modeling financial contracts.

Miletus provides functionality for teams across an organization, both front office and back office, to use a common
language for structuring, valuing and managing complex financial instruments. Whether a sales team needs to struc-
ture new products, an operations team deploying infrastructure for batch processing, a risk management team must
determine exposure of a firm's portfolio, or regulators are evaluating capital requirements for solvency, Miletus allows
for everyone to use the same language effectively and efficiently.

1.2 Installation
Installation of Miletus can be performed by obtaining an installer from Julia Computing as part of your JuliaFin purchase.
Once installed, to load the Miletus package in your current Julia session, use the following command:

using Miletus

At this point you can use any of the primitive Miletus types for defining new contracts, constructing and manipulating
either your own contracts or a set of pre-existing option contracts included with Miletus, as well as executing valuation
operations against any combination of built-in and user-defined primitives that comprise your contract.

http://research.microsoft.com/en-us/um/people/simonpj/Papers/financial-contracts/contracts-icfp.htm
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.7885

Part Il

Tutorial

Chapter 2

Tutorial

2.1 Motivating example

In the example code below we show, without detailed explanation, how to construct and value a European call option
on a single stock using combinations of the basic primitive types. Each of the primitive types and operations utilized
will be explained in more detail in subsequent sections.

using Miletus

using Base.Dates

using Miletus.TermStructure
using Miletus.DayCounts
using BusinessDays

import Miletus: When, Give, Receive, Pay, Buy, Both, At, Either, Zero
import Miletus: YieldModel, maturitydate

Acquire the rights to a contract with 100 units
‘x = Receive(100)

Amount —
100

Acquire the rights to a contract with 100 units as an obligation
|x = Pay(100)
Givel-

Amount
L 100

Acquire the rights to a contract with 100 USD as an obligation
| x = Pay(100USD)
Givel-

Amount
L100UsD

8 CHAPTER 2. TUTORIAL

Construct an object containing the core properties of our stock model including the start price, yield curve and carry
curve

‘s = SingleStock()

‘ SingleStock

The functional definition for buying a stock at a given price
| x = Both(s, Pay(100USD))

Both|-
SingleStock -
Give
LAmount
L100USD

Calling the Buy method defined as in the previous operation
‘ x = Buy(s, 100USD)

Both|-
SingleStock -
Give
L_Amount
L100UsD

Defining the acquisition of rights to a contract on a given date
‘ x = When(At(Date("2016-12-25")), Receive(100USD))

when |-
{==}
|-Dateobs |
L 2016-12-25 L
Amount
L100UsD

Constructing a zero coupon bond with a function having the same components as in the previous operation
‘ z = ZCB(Date("2016-12-25"), 100USD)

when |-
{==}]
|-Dateobs |
L 2016-12-25 L
Amount
L100UsD

One of the most basic of option structures, acquisition of either a stock or an empty contract having no rights and no
obligations

©Julia Computing Inc.

2.1. MOTIVATING EXAMPLE 9

‘x = Either(SingleStock(), Zero())

Either |-
SingleStock -
Zero

Combining all of the above concepts into the definition of a European call option
‘ x = When(At(Date("2016-12-25")), Either(Buy(SingleStock(), 100USD), Zero()))

when |-
{==}|
|-DateObs |
L2eo16-12-25 -
Either
|-Both
| }-singlestock
| Leive
| LAmount
| L100USD
I—ZGY‘O

Calling the functional form of a European Call option defined using the same components as in the previous operation
‘ eucall = EuropeanCall(Date("2016-12-25"), SingleStock(), 100USD)

when |-
{==}
|-Date0bs |
L2016-12-25L-
Either
|-Both
| }-singlestock
| Leive
| L-Amount
| L100UsD
L zero

Construction of a Geometric Brownian Motion Model used for describing the price dynamics of a stock
\ gbmm = GeomBMModel(Date("2016-01-01"), 100.0USD, 0.1, 0.05, .15)

Miletus.GeomBMModel{Miletus.CoreModel{Miletus.Currency.CurrencyQuantity{Miletus.Currency.Currencyunit{:USD
},Float64},Miletus.TermStructure.ConstantYieldCurve,Miletus.TermStructure.ConstantYieldCurve}}(
Miletus.CoreModel{Miletus.Currency.CurrencyQuantity{Miletus.Currency.CurrencyuUnit{:USD},Float64},
Miletus.TermStructure.ConstantYieldCurve,Miletus.TermStructure.ConstantYieldCurve}(100.0USD,Miletus.
TermStructure.ConstantYieldCurve(Miletus.DayCounts.Actual365(),0.1, :Continuous,-1,2016-01-01),Miletus
.TermStructure.ConstantYieldCurve(Miletus.DayCounts.Actual365(),0.05, :Continuous,-1,2016-01-01))
,0.15)

Valuation of our European call option whose underlying stock model uses a Geometric Brownian Motion Model for its
price dynamics

‘ value(gbmm, eucall)

‘8.09128105313761USD

©Julia Computing Inc.

10 CHAPTER 2. TUTORIAL

2.2 Building Contracts with Primitive and Derived Types

Most of the types defined in Miletus are built upon a small set abstract types (Contract, Observable{T}, Process{T},
TermStruct, DayCount, AbstractModel), and each of the primitive combinators described in the original PJ&E papers
are implemented as a typealias of a set of Julia types having one of these abstract types as a super type.

Contract primitives

The set of Contract primitives includes the following types:

e Zero()
- A’null” contract
e Amount(o::Observable)
- Receive an amount of the observable object o
e Scale(s::0Observable, c::Contract)
- Scale the contractc by s
e Both(c1::Contract, c2::Contract)

- Acquire both contracts c1 and c2

- This type corresponds to the and combinator in the PJ&E papers.
e Either(c1::Contract, c2::Contract)

- Acquire either contract c1 or c2

- This type corresponds to the or combinator in the PJ&E papers.
e Gilve(c::Contract)

- Take the opposite side of contract ¢

- Acquires the rights to contract c as an obligation
e Cond(p::Observable{Bool}, c1::Contract, c2::Contract)
- If expression p is true at the point of acquisition, then acquire contract c1, otherwise acquire contract c2
e When(p::0Observable{Bool}, c::Contract)
- Acquire the contract c at the point when observable quantity p becomes true.
e Anytime(p::Observable{Bool}, c::Contract)
- May acquire the contract c at any point when observable quantity p is true.
e Until(p::0Observable{Rool}, c::Contract)

- A contract that acts like contract c until p is true, at which point the object is abandoned, and hence
becomes worthless.

©Julia Computing Inc.

2.2. BUILDING CONTRACTS WITH PRIMITIVE AND DERIVED TYPES 11

Primative Observables

Like Contract, Observable{T} is defined as an abstract type. Specific instances of an Observable type are objects,
possibly time-varying, and possibly unknown at contracting time, for which a direct measurement can be made. Ex-
ample observable quantities include date, price, temperature, population or other objects that can be objectively
measured.

Built-in primitive Observable types include the following:

e DateObs() <: Observable{Date}

- Asingleton type representing the "free” date observable

e AcquisitionDateObs() <: Observable{Date}

- The acquisition date of the contract

e ConstObs{T} <: Observable{T}

- A constant observable quantity

- ConstObs(x) - Constructor function for a constant observable of value x

Derived Observables

Built-in derived observable types include the following:

e AtObs(t::Date) <: Observable{Bool}

- AtObs(t::Date) = LiftObs(==,DateObs(),ConstObs(t))
- An observable that is true when the date is t

- This type of observable is used as part of the construction of the derived contract primitives ZCB, WhenAt,
Forward, and European

e BeforeObs(t::Date) <: Observable{Bool}

- BeforeObs(t::Date) = LiftObs(<=,DateObs(),ConstObs(t))
- An observable that is true when the date is before or equal to t

- This type of observable is useds as part of the construction of the derived contract primitives Anytime-
Before and American

Each of these derived Observable types makes use of a LiftObs operation.

LiftObs is defined as an immutab'le type whose type constructor applies a function to one or more existing Observ-
able quantities to produce a new Observable.

©Julia Computing Inc.

12 CHAPTER 2. TUTORIAL

2.3 Constructing Observables and Contracts

To provide an example of how one goes about using the above primitive and derived Observable types, let’s return to
one of the operations from the opening "Motivting Example” section. We will break apart each piece of the constructed
zero coupon bond, to point out the specific Contract and Observable components utilized.

Defining the acquisition of rights to a contract on a given date
‘ x = When(At(Date("2016-12-25")), Receive(100USD))

when |-
==}
|-Dateobs |
L 2016-12-25L-
Amount
L100UsD

Constructing a zero coupon bond with a function having the same components as in the previous operation
‘ z = ZCB(Date("2016-12-25"), 100USD)

when |-
==}
}-Dateobs |
L 2016-12-25L-
Amount
L100UsD

The most basic primitives in the above zero coupon bond construction are the Amount primitive Contract type used
for representing the value of 100, the Currencyunit and CurrencyQuantity types used when representing USD, and
the DateObs primitive Observab'le type used for representing the a Date.

The expression Receive (100USD) creates a Contract object that provides acquisition rights to 100USD.

The expression At(Date("2016-12-25")) creates a new LiftObs observable object that is true when the current
date in the valuation model is "2016-12-25". The implementation of the At observable type constructor includes the
following operations:

typealias AtObs LiftObs{typeof(==),Tuple{DateObs,ConstObs{Date}},Bool}
AtObs(t::Date) = LiftObs(==,DateObs(),ConstObs(t))

typealias At AtObs

WARNING: Method definition (::Type{Miletus.LiftObs{Base.#==, Tuple{Miletus.DateObs, Miletus.ConstObs{Base.
Dates.Date}}, Bool}})(Base.Dates.Date) in module Miletus at /Users/aviks/.julia/ve.5/Miletus/src/
observables.jl:65 overwritten in module ex-lift at none:2.

The arguments to LiftObs in the definition of AtObs include:

e The == function that will be applied to two observable values on date quantities

e A DateObs object that acts as a reference observable quantity for the "Current Date” when valuing a model

©Julia Computing Inc.

2.3. CONSTRUCTING OBSERVABLES AND CONTRACTS 13

e Aninput date t which becomes a constant observable quantity ConstObs(t) to which the reference observable
is compared when valuing a contract.

The commands below show both the hierarchy of observables and the type of the result returned by a call to At.

\ At(Date("2016-12-25"))

DateObs L-
2016-12-25

| typeof (At (Date("2016-12-25")))

‘ Miletus.LiftObs{Base.#==,Tuple{Miletus.DateObs,Miletus.ConstObs{Date}},Bool}

With use of the When primitive Contract, the combination of our defined Receive(100USD) Contract object with
the above At(Date('"2016-12-25")) Observable object constructs new a zero coupon bond Contract that defines
a payment of 100USD to the holder on December 25th, 2016.

The concept of optionality provides a contract acquirer with a choice on whether to exercise particular rights embedded
in that contract. The most basic Contract primitives representing optionality in Miletus are the Either and Cond
primitives described previously.

Adjusting the zero coupon bond example above to incorporate the Either, Both and AtObs Contract and Observable
primitives allow for implementing a European Call option as repeated below.

‘x = When(At(Date("2016-12-25")), Either(Both(SingleStock(), Pay(100USD)), Zero()))

when |-
{==}|
|-DateObs |
L2e16-12-25 -
Either
|-Both
| }-singlestock
| Leive
| LAmount
| L100USD
|—Zero

The above operations are defined as the typealias EuropeanCall
‘ eucall = EuropeanCall(Date("2016-12-25"), SingleStock(), 100USD)

when |-
{==}|
-DateObs |
L2016-12-25-
Either
}-Both
| -singlestock
| Leive
| L-Amount
| L100uUsD
L zero

©Julia Computing Inc.

14 CHAPTER 2. TUTORIAL

By combining various Contract and Observable primitives, contract payoffs of arbitrary complexity can be con-
structed easily.

The next section lists a number of built-in derived contracts that combine the above primitives in the defintion of
various types of options instruments.

2.4 Built-in Derived Contracts

By combining these contract primitives, a set of typealias quantities are defined that allow for more compact syntax
when creating various derived contracts. Using these type aliases, a set of constructors for these derived contracts
are defined as shown below:

e Receive(x::Union{Real,CurrencyQuantity}) = Amount(ConstObs(x))
- Receive an amount of a particular real valued object or currency
e Pay(x::Union{Real,CurrencyQuantity}) = Give(Receive(x))
- Pay an amount of a particular real valued object or currency
e Buy(c::Contract, x::Union{Real,CurrencyQuantity}) = Both(c, Pay(x))
- Purchase a contract c for an amount of a particular real valued object or currency
e Sell(c::Contract, x::Union{Real,CurrencyQuantity}) = Both(Give(c), Receive(x))
- Sell a contract ¢ for an amount of a particular real valued object or currency
e ZCB(date::Date, x::Union{Real,CurrencyQuantity}) = When(AtObs(date), Receive(x))

- A"Zero Coupon Bond” that provides for obtaining a particular amount of a real valued object or currency
on a particular maturity date

e WhenAt(date::Date, c::Contract) = When(AtObs(date), c)
- Activate the contract c on the particular maturity date

e Forward(date::Date, c::Contract, strike::Union{Real,CurrencyQuantity}) = WhenAt(date, Buy(c,
strike))

- Purchase a contract c for a particular amount of a real valued object or currency (strike) on a particular
maturity date

e Option(c::Contract) = Either(c, Zero())
- Activate either contract c or nothing

e European(date::Date, c::Contract) = WhenAt(date, Option(c))
- On a particular maturity date acquire either contract c or nothing

e EuropeanCall(date::Date, c::Contract, strike::Union{Real,CurrencyQuantity}) = European(date,
Buy(c, strike))

- A European call contract, with maturity date, on underlying contract c at price strike

©Julia Computing Inc.

2.5. DAYCOUNTS 15

e EuropeanPut(date::Date, c::Contract, strike::Union{Real,CurrencyQuantity}) = European(date,
Sell(c, strike))

- A European put contract, with maturity date, on underlying contract c at price strike
e AnytimeBefore(date::Date, c::Contract) = Anytime(BeforeObs(date), c)

- Activate the contract c anytime before a particular maturity date
e American(date::Date, c::Contract) = AnytimeBefore(date, Option(c))

- Either activate the contract c or nothing anytime before a particular maturity date

e AmericanCall(date::Date, c::Contract, strike::Union{Real,CurrencyQuantity}) = American(date,
Buy(c, strike))

- An American call contract, with maturity date, on underlying contract c at price strike

e AmericanPut(date::Date, c::Contract, strike::Union{Real,CurrencyQuantity}) = American(date,
Sell(c, strike))

- An American put contract, with maturity date, on underlying contract c at price strike

e AsianFixedStrikeCall(dt::Date, c::Contract, period::Period, strike) = European(dt, Buy(Movin-
gAveragePrice(c, period), strike))

- An Asian option contract where the strike price is constant and whose pay off is based on the moving
average price of the underlying over the life of the contract.

e AsianFloatingStrikeCall(dt::Date, c::Contract, period::Period, strike) = European(dt, Both(c,
Give(MovingAveragePrice(c, period))))

- An Asian option contract where the strike price and payoff are based on the moving average price of the
underlying over the life of the contract.

2.5 DayCounts

Miletus provides implementations of a number of separate calendar implementations that take into consideration day
count conventions from different countries and financial organizations worldwide. Each day count type is an instance
of an abstract DayCount type.

Specific DayCount instances present in Miletus include:
e Actual360 - Uses a coupon factor equal to the number of days between two dates in a Julian calendar divided
by 360.

e Actual365 - Uses a coupon factor equal to the number of days between two dates in a Julian calendar divided
by 365.

e BondThirty360 / USAThirty360 - Uses a coupon factor equal to the number of days between two dates as-
suming 30 days in any month and 360 days in a year. Used for the pricing of US Corporate Bonds and many US
agency bond issues.

e EuroBondThirty360 / EuroThirty360 - Uses a coupon factor equal to the number of days between two dates
assuming 30 days in any month and 360 dates in a year.

©Julia Computing Inc.

https://en.wikipedia.org/wiki/Day_count_convention#Actual.2F360
https://en.wikipedia.org/wiki/Day_count_convention#Actual.2F365_Fixed
https://en.wikipedia.org/wiki/Day_count_convention#30.2F360_US
https://en.wikipedia.org/wiki/Day_count_convention#30E.2F360

16 CHAPTER 2. TUTORIAL

ItalianThirty360

o ISMAActualActual

o |ISDAActualActual

o AFBActualActual
For each DayCount type, the yearfraction function provides the fractional position within the associated year for a
provided input date.

Modifying a particular date in the course of a calculation often needs to take into account the above DayCount con-
vention, as well as a relevant holiday calendar. The ad just function takes into account holidays through functionality
used from the HolidayCalendar included BusinessDays package.

2.6 Processes

In the context of the contract definition language implemented by Miletus, a Process, p(t), is a mapping from time to
a random variable of a particular type. Both Contract objects and Observab'le objects can be modeled as a Process.
Like Contract and Observable, a Process is defined in Miletus as an abstract type, where subtypes of Process are
implemented as immutable types.

The following Process types are available for operating on Contract and Observab'le objects

e DateProcess() - maps an Observable date to the given date.
e ConstProcess(val::T) - maps an Observable value to a constant value (val: :T) for all times.

e CondProcess(cond: :Process{Bool}, a::Process{T}, b::Process{T}) - based on first Process boolean
value, maps to one of two distinct Process values.

2.7 Term Structures

Term Structures provide a framework for representing how interest rates for a given set of modeling assumptions
change through time.

e TermStruct - An abstract type that is a super type to all Term Structures implmented in Miletus

o YieldTermStructure - An abstract type that encompasses various interest rate term structure models

o VolatilityTermStructure - An abstract type that encompasses various volatility term structure models

e ConstantYieldCurve - A concrete type encompassing a constant interest rate model

e ConstantVolatilityCurve - A concrete type encompassing a constant volatility model

e compound_factor - Multiplicative factor using the frequency and method by accumulated interest is included
in principle for the purporses of interest rate calculations

e discount_factor - Inverse of the above compound_factor
e implied_rate - Determination of the current interest rate implied from the compounding factor

o forward_rate - Arate of interest as implied by the current zero rate of a given YieldTermStructure for periods of
time in the future.

e zero_rate - The implied spot interest rate for a given YieldTermStructure and time horizon

e par_rate - A coupon rate for which a bond price equals its nominal value

©Julia Computing Inc.

https://en.wikipedia.org/wiki/Day_count_convention#Actual.2FActual_ICMA
https://en.wikipedia.org/wiki/Day_count_convention#Actual.2FActual_ISDA
https://en.wikipedia.org/wiki/Day_count_convention#Actual.2FActual_AFB

Chapter 3

Models

A valuation model encompasses both the analytical mathematical description of the dynamics involved in how an
observable quantity changes through time, as well as a numerical method used for discretizing and solving those
analytical equations.

There are a wide variety of different analytical models for describing the value dynamics of interest rates, stocks, bonds,
credit instruments (e.g. mortgages, credit cards, other loans) and other securities. With regards to numerical methods,
most techniques fall into one of four distinct categories; Analytical Methods (closed-form equations), Lattice Methods
(e.g. trees), Monte Carlo Methods, and Partial Differential Equation solvers (e.g. finite difference, finite element).

The Contract and Observable primitives described previously are used for setting up payoffs that act as boundary
conditions and final conditions on the use of a model to value an instrument.

3.1 Implemented Models and Valuation methods

e Core Model (objective assumptions underlying the model. everything except volatility. objective parameters
that can be observed in the market)

e Core Forward Model
o Yield Curves and Dates

e Geometric Brownian Motion

- GeomBMModel(startdate, startprice, interestrate, carryrate, volatility)
* A model for a SingleStockR, following a geometric Brownian motion that includes the following
fields:

- startdate
- startprice: initial price at startdate
- interestrate: risk free rate of return.
- carryrate: the carry rate, i.e. the net return for holding the asset:
- for stocks this is typically positive (i.e. dividends)
- for commodities this is typically negative (i.e. cost-of-carry)

* volatility:

- The interestrate, carryrate and volatility are all specified on a continously compounded,
Actual/365 basis.

- The price is assumed to follow the PDE:

17

18 CHAPTER 3. MODELS

dS; = (k — 02/2)S,dt + 0SdW; * where W, is a Wiener process, and k = interestrate -
carryrate.

* Associated valuation routines make use of analytical methods for solving the Black-Scholes equation,
or when determining implied volatitilies based on the Black-Scholes equation.

e Binomial Geometric Random Walk

- BinomialGeomRWModel(startdate, enddate, nsteps, S,, At, iR, logu, logd, p, q)

* A model for a Binomial Geometric Random Walk (aka Binomial tree)

* The valuation routines for binomial trees are initialized using the payoff condition of the associated
contract at expiry(enddate) and subsequently work backward in time through the tree to determine
the value of the contract at the initial time (startdate).

* Includes the following fields (or the log of those values)

- startdate : start date of process
- enddate : end date of process
- nsteps : number of steps in the tree
- S, : inital value
- At : the time-difference between steps, typically days(startdate - enddate) / (365xnsteps)
- iR : discount rate, exp(-Atxinterestrate)
- u: scale factor for up
d : scale factor for down
- p : up probability
q : down probability, 1-p

Plot of the underlying stock price dynamics on the binomial tree.
11]1(../media/binomial_tree1.png)
* Cox-Ross-Rubenstein Model
* Makes use of a risk-neutral valuation principle wherein the expected return from the traded security

is the risk-free interest rate, and all future cash flows can be valued by discounting their
respective cashflows at that risk-free interest rate.

* Imposes the condition that d = 1/u
* U = expoA(xt)

* d = expoA(-xt)

* p = (exp(raxt)-d)/(u-d)

* q = (u-exp(raxt))/(u-d)

Plot of the underlying stock price dynamics on the binomial tree for the Cox-Ross-Rubenstein Model.
11]1(../media/binomial_tree2.png)
* Jarrow-Rudd Model

* U = exp((ro-»~2/2)Axt + oAxt)

* d = exp((ra-»~2/2)Axt - oAxt)

*p=qg=0.5
* NOTE: not risk-neutral

©Julia Computing Inc.

3.2. FUNCTIONS AVAILABLE FOR OPERATING ON A MODEL 19

* Jarrow-Rudd Risk Neutral

* U = exp((ra-~2/2)A%xt + gAxt)
* d = exp((rg-+2/2)Axt - gAxt)
* p = (exp(raxt)-d)/(u-d)
* q = (u-exp(raxt))/(u-d)

* Tian
* U = 1/2%xexp(raxt)*xvx(v+1+sqrt(vA2+2v-3)), where v = expoA(~2xt)
* d = 1/2xexp(raxt)xvx(v+1-sqrt(vA2+2v-3)), where v = expoA(~2xt)
* p = (exp(raxt)-d)/(u-d)
* q = (u-exp(raxt))/(u-d)

e Monte Carlo Model

- montecarlo(m::GeomBMModel, dates, n)

* Accepts a Geometrical Brownian Motion model of the underlying asset dynamics.
* Samples n Monte Carlo paths of the model m, at time dates.
* Returns a MonteCarloModel

- MonteCarloModel(core, dates, paths)

* A MonteCarloModel is a type that represents the result of a simulation of a series of asset prices
and includes the following fields:

core: a reference CoreModel
* dates: an AbstractVector{Date}

paths: a matrix of the scenario paths: the rows are the scenarios, and the columns are the values
at each date in dates.

- MonteCarloScenario(core, dates, path)

* A MonteCarloScenario is a single simulation scenario of a MonteCarloModel and includes the
following fields:

*

core: a reference CoreModel
* dates: an AbstractVector{Date}

* paths: an AbstractVector of the values at each date in dates.

3.2 Functions available for operating on a Model

e value()

e valueAt()

o forwardprice()

e yearfraction()

e yearfractionto()
e numeraire()

e startdate()

e ivol()

©Julia Computing Inc.

20 CHAPTER 3. MODELS

3.3 Implied Volatlity calculations

e Splinelnterpolation

- This is used to model interpolation between any two discrete points on a discrete convex curve. This
implements double quadratic interpolation.

* “x“: An Array of the discrete values on the x axis

* “y“: An Array of the discrete values on the y axis

* ‘weilghts™: An Array of tuples of the weights of every quadratic curve modelled between two
discrete points on the curve

o SplineVolatilityModel

- ivol(m::SplineInterpolation, c::European)
* Compute the implied Black-Scholes volatility of an option ¢ under the SplineVolatilityModel m.
- fit(SplineVolatilityModel, mcore::CoreModel, contracts, prices)

* FitaSplineVolatilityModel using from a collection of contracts (contracts) and their respective
prices (prices), under the assumptions of mcore.

- fit_ivol(SplineVolatilityModel, mcore::CoreModel, contracts, ivols)

* FitaSplineVolatilityModel using from a collection of contracts (contracts) and their respective
implied volatilities (1vols), under the assumptions of mcore.

¢ GeomBMModel

- ivol(m::CoreModel, c::Contract, price)

* Compute the Black-Scholes implied volatility of contract ¢ at price, under the assumptions of
model m (ignoring the volatility value of m).

- fitvol(GeomBMModel, m::CoreModel, c::Contract, price)

* Fit a GeomBMModel using the implied volatility of c at price, using the parametersof the CoreModel
m.

¢ SABRModel

- ivol(m: :SABRModel, c::European)
* Compute the implied Black-Scholes volatility of an option ¢ under the SABR model m.
- fit_ivol(SABRModel, mcore::CoreModel, contracts, ivols)

* Fit a SABRModel using from a collection of contracts (contracts) and their respective implied
volatilities (Lvols), under the assumptions of mcore.

- sabr_alpha(F, t, oATM, B, v, p) - Not currently exported

* Compute the a parameter (initial volatility) for the SABR model from the Black-Scholes at-the-
money volatility. * F: Forward price * t: time to maturity * gATM: Black-Scholes at-the-money
volatility * B, v, p: parameters from SABR model.

©Julia Computing Inc.

Part Il

Examples

21

Chapter 4

Extended Examples

4.1 Spread Options

Below we define a set of various spread options that show how one can combine vanilla options into more complex
payoffs.

using Miletus, Gadfly, Colors

import Miletus: Both, Give, Contract, WhenAt, value
import Base.strip

First define parameters for use in various contract and model definitions.

expirydate = Date("2016-12-25")

startdate = Date("2016-12-1")

interestrate = 0.05

carryrate = 0.1

volatility = 0.15

K, = 98.0USD

K, = 100.0USD

Ks = 102.0USD

L =11 # Layers in the binomial lattice / Number of time steps

Next we define a range of prices to use for plotting payoff curves.

price = K,-1USD:0.1USD:K;+1USD

Then we construct example analytical, binomial, and Monte Carlo test models that will be used when valuing the
various vanilla and spread options at the defined start date.

gbmm = GeomBMModel(startdate, K,, interestrate, carryrate, volatility)
crr = CRRModel(startdate, expirydate, L, K,, interestrate, carryrate, volatility)
mcm = Miletus.montecarlo(gbmm, startdate:expirydate, 10_000)

Next let’s define a function for calculating the payoff curve of each spread at expiry over a range of asset prices. This
function assumes that the provided date is the expiry date of all components within the contract c.

23

24 CHAPTER 4. EXTENDED EXAMPLES

Vanilla Call Payoff Curve at Expiry

3

2
o
-
[is]
.

i

gy 58 b 0d 11 102 103

Stock Price

Figure 4.1:

function payoff_curve(c, d::Date, prices)
payoff = [value(GeomBMModel(d, x, 0.0, 0.0, 0.0), c) for x in prices]
p = [x.val for x in payoff]
r = [x.val for x in prices]
return r, p
end

Next we will create a set of vanilla call and put options at separate strikes that will be used for construction of the
different spread options. The included plots show the payoff of the option at the middle strike, K,.

Vanilla Call Option

call, = EuropeanCall(expirydate, SingleStock(), K,)

call, = EuropeanCall(expirydate, SingleStock(), K.)

call, = EuropeanCall(expirydate, SingleStock(), K;)

s,,cp, = payoff_curve(call,, expirydate, price)

s,,Cp, = payoff_curve(call,, expirydate, price)

s3;,cps = payoff_curve(call,, expirydate, price)

plot(x = s,, ¥y = cp., Geom.line,
Theme(default_color=colorant"blue", line_width = 1.0mm),
Guide.title("vanilla Call Payoff Curve at Expiry"),
Guide.xlabel("Stock Price"), Guide.ylabel("Payoff"))

‘value(gbmm, call,)

©Julia Computing Inc.

4.1. SPREAD OPTIONS

1.3688351717682052USD

‘value(crr, call,)

‘1.4034866337776404USD

‘value(mcm, call,)

‘1.3849767880288002USD

Vanilla Put Option

put, = EuropeanPut(expirydate, SingleStock(), K,)

put, = EuropeanPut(expirydate, SingleStock(), K.)

put, = EuropeanPut(expirydate, SingleStock(), K;)

S.,pp+ = payoff_curve(put,, expirydate, price)

S,,pp. = payoff_curve(put,, expirydate, price)

Si,pps = payoff_curve(put;, expirydate, price)

plot(x = s,, ¥y = pp2, Geom.line,
Theme(default_color=colorant"blue", line_width = 1.0mm),
Guide.title("vanilla Put Payoff Curve at Expiry"),
Guide.xlabel("Stock Price"), Guide.ylabel("Payoff"))

‘value(gbmm, put,)

‘1.6959851162778619USD

‘value(crr, put,)

‘1.7306365782873316USD

‘value(mcm, put,)

‘1.6588648682783513USD

Now we will start to combine these vanilla calls and puts into various spread options.

©Julia Computing Inc.

26 CHAPTER 4. EXTENDED EXAMPLES

Vanilla Put Payoff Curve at Expiry

3
2
k=)
=
i)
O
i
gy 44 g9 (0 1M 102 103
Stock Price
Figure 4.2:
Butterfly Call Spread

Buy two calls at the high and low strikes

Sell two calls at the middle strike

function butterfly_call(expiry::Date, K., K,, Kj)
@assert K, < Ky < Ky
c, = EuropeanCall(expiry, SingleStock(), K,)
c, = EuropeanCall(expiry, SingleStockR(), K)
c; = EuropeanCall(expiry, SingleStockR(), K;)
Both(Both(c,,c;), Give(Both(c,,c,)))

end

bfly, = butterfly_call(expirydate, K,, K., Kj)

s,p_bfly, = payoff_curve(bfly,, expirydate, price)

blk = colorant"black"

red = colorant'"red"

grn = colorant'green"

blu = colorant"blue"

plot(layer(x=s ,y=p_bfly,,Geom.line,Theme(default_color=blk,line_width=1.5mm)),
layer(x=s,,y= cps ,Geom.line,Theme(default_color=red,line_width=1.0mm)),
layer(x=s;,y= cps ,Geom.line,Theme(default_color=grn,line_width=1.0mm)),
layer(x=s,,y=-2cp, ,Geom.line,Theme(default_color=blu,line_width=1.0mm)),
Guide.manual_color_key("",["Butterfly call", "call,", "call,", "-2call,"],
["black", "red", "green", "blue"]),
Guide.title("Butterfly Call Payoff Curve at Expiry"),

©Julia Computing Inc.

4.1. SPREAD OPTIONS

27

Butterdly Call Payoff Curve at Expiry

5
% m Butterfty Call
= m call

] -

0 m call,

5 m -2call
10
97 98 94 o0 10 102 10¢
Stock Price
Figure 4.3:

‘ Guide.xlabel("Stock Price"), Guide.ylabel("Payoff"))

‘ value(gbmm, bfly,)

‘0.40245573232657295USD

‘ value(crr, bfly,)

‘0.3760697909383438USD

‘ value(mecm, bfly,)

‘0.40403357435376725USD

Butterfly Put Spread

Buy two puts at the high and low strikes

Sell two puts at the middle strike

function butterfly_put(expiry::Date, K,, K., K;)
@assert K, < K, < Ky
p. = EuropeanPut(expiry, SingleStock(), K,)

©Julia Computing Inc.

28 CHAPTER 4. EXTENDED EXAMPLES

Butterfly Put Payoff Curve at Expiry

E
ot

m Butterfly Put
m put,

m put

W -Zpul

Payoff

£n

'
o

gy 58 e o0 1M 102 103

Stock Price

Figure 4.4:

p. = EuropeanPut(expiry, SingleStock(), K,)
ps = EuropeanPut(expiry, SingleStock(), K;)
Both(Both(p4,p3), Give(Both(p.,p.)))

end

bfly, = butterfly_put(expirydate, K,, K., Kj)

s,p_bfly, = payoff_curve(bfly,, expirydate, price)

blk = colorant"black"

red = colorant'red"

grn = colorant'green"

blu = colorant"blue"

plot(layer(x=s ,y=p_bfly.,Geom.line,Theme(default_color=blk,line_width=1.5mm)),
layer(x=s,,y= pp+ ,Geom.line,Theme(default_color=red,line_width=1.0mm)),
layer(x=s;,y= pps ,Geom.line,Theme(default_color=grn,line_width=1.0mm)),
layer(x=s,,y=-2pp. ,Geom.line,Theme(default_color=blu,line_width=1.0mm)),
Guide.manual_color_key("",["Butterfly Put", "put,", "put,", "-2put,"],
["black", "red", "green", "blue"]),
Guide.title("Butterfly Put Payoff Curve at Expiry"),
Guide.xlabel("Stock Price"), Guide.ylabel("Payoff"))

‘value(gbmm, bfly,)

‘0.40245573232657295USD

©Julia Computing Inc.

4.1. SPREAD OPTIONS

‘value(crr, bfly.)

‘0.37606379033834303USD

‘value(mcm, bfly,)

‘0.40403857435377524USD

Bear Call Spread

Buy a call at the high strike

Sell a call at the low strike

function bear_call(expiry::Date, K,, K;)
@assert Ky != K,
c, = EuropeanCall(expiry, SingleStock(), K,)
c, = EuropeanCall(expiry, SingleStock(), K,)
Both(Give(c,), cz)

end

bear, = bear_call(expirydate, K,, K;)

s,p_bear, = payoff_curve(bear,, expirydate, price)

blk = colorant"black"

red = colorant"red"

blu = colorant"blue"

plot(layer(x=s, y=p_bear,,Geom.line,Theme(default_color=blk,line_width=1.5mm)),
layer(x=s,,y=-Cp4 ,Geom.line,Theme(default_color=red, line_width=1.0mm)),
layer(x=s,,y= cp, ,Geom.line,Theme(default_color=blu,line_width=1.0mm)),
Guide.manual_color_key("",["Bear Call", "-call,", "call,"l],
["black", "red", "blue"l),
Guide.title("Bear Call Payoff Curve at Expiry"),
Guide.xlabel("Stock Price"), Guide.ylabel("Payoff"))

‘value(gbmm, bear,)

‘—1.1196804045372653USD

‘value(crr, bear,)

‘—1.1071634323407784USD

‘value(mcm, bear,)

‘-1.1366268756637308USD

©Julia Computing Inc.

30 CHAPTER 4. EXTENDED EXAMPLES
Bear Call Payoff Curve at Expiry
3
P
’
E, 1 m Bear Call
i} m -call
o m call
3
97 98 g9 00 10 102 103
Stock Price
Figure 4.5:
Bear Put Spread

@assert K, != K,

Both(p,, Give(pz))
end

blk = colorant"black"
red = colorant'red"
blu = colorant"blue"

layer(x=s4, Y= pp4
layer(x=s, y=-pp2

‘value(gbmm, bear,)

Buy a put at the low strike
Sell a put at the high strike
function bear_put(expiry:

:Date, K., K,)

p. = EuropeanPut(expiry, SingleStock(), K,)
p. = EuropeanPut(expiry, SingleStock(), K,)

bear, = bear_put(expirydate, K,, K;)
r,p_bear, = payoff_curve(bear,, expirydate, price)

plot(layer(x=s, y=p_bear,,Geom.line,Theme(default_color=blk,line_width=1.5mm)),

,Geom.line, Theme(default_color=red,line_width=1.0mm)),
,Geom.line,Theme(default_color=blu,line_width=1.0mm)),

Guide.manual_color_key("",["Bear Put", "call,", "-call,"l],
["black", "red", "blue"l),

Guide.title("Bear Put Payoff Curve at Expiry"),
Guide.xlabel("Stock Price"), Guide.ylabel("Payoff"))

©Julia Computing Inc.

4.1. SPREAD OPTIONS

Bear Put Payoff Curve at Expiry

1
o
g 1 m Baar Put
m mCall
L m -call

P

3

97 38 94 00 101 102 103
Stock Price
Figure 4.6:

‘—0.873755048343603USD

‘value(crr, bear,)

‘—0.886272022140092USD

‘ value(mcm, bear,)

‘-0.8568085788110785USD

Bull Call Spread

Buy a call at the low strike
Sell a call at the high strike

function bull_call(expiry::Date, K,, K;)
@assert K, != K,

c, = EuropeanCall(expiry, SingleStock(), K;)

c, = EuropeanCall(expiry, SingleStock(), K,)
Both(c,, Give(c,))
end

bull, = bull_call(expirydate, K,, K;)
r,p_bull, = payoff_curve(bull,, expirydate, price)

©Julia Computing Inc.

32

CHAPTER 4. EXTENDED EXAMPLES

Bull Call Payoff Curve at Expiry

Payoff

gy

blk = colorant"black"
red = colorant'red"
blu = colorant"blue"

["black", "red", "blue"l),

‘value(gbmm, bull,)

‘1.1196804045372653USD

‘value(crr, bull,)

‘1.1071634323407784USD

‘value(mcm, bull,)

‘1.1366268756697308USD

00 101
Stock Price
Figure 4.7:

Guide.title("Bull Call Payoff Curve at Expiry"),
Guide.xlabel("Stock Price"), Guide.ylabel("Payoff"))

m Bull Call
m call
m-call

102 103

plot(layer(x=s ,y=p_bull,,Geom.line,Theme(default_color=blk,line_width=1.5mm)),

layer(Xx=S,,y= cp4 ,Geom.line,Theme(default_color=red,line_width=1.0mm)),
layer(x=S,,y=-Cp» ,Geom.line, Theme(default_color=blu,line_width=1.0mm)),
Guide.manual_color_key("",["Bull Call", "call,", "-call,"],

©Julia Computing Inc.

4.1. SPREAD OPTIONS

33

Bear Put Payoff Curve at Expiry

Fayoft

97 98 99 00 101 102

Bull Put Spread

Buy a put at the high strike

Sell a put at the low strike

function bull_put(expiry::Date, K,, K;)
@assert K, != K,

Both(6ive(p,), Pp2)
end
bull, = bull_put(expirydate, K,, K;)
blk = colorant"black"

red = colorant'red"
blu = colorant"blue"

[llb'LachH’ llredll, Ub'Luell]),
Guide.title("Bear Put Payoff Curve at

‘value(gbmm, bull,)

©Julia Computing Inc.

p+ = EuropeanPut(expiry, SingleStock(),
p. = EuropeanPut(expiry, SingleStock(),

r,p_bull, = payoff_curve(bull,, expirydate,

Stock Price

Figure 4.8:

K4
K2)

price)

ll_put1 n , nputzn] ,

Expiry"),

Guide.xlabel("Stock Price"), Guide.ylabel("Payoff"))

i

plot(layer(x=s ,y=p_bull,,Geom.line,Theme(default_color=blk,line_width=1.5mm)),
layer(X=S,,Y=-Pp4 ,Geom.line,Theme(default_color=red,line_width=1.0mm)),
layer(x=S,,Yy= PPz ,Geom.line,Theme(default_color=blu,line_width=1
Guide.manual_color_Rey("",["Bear Put",

.omm)),

'l
(5]

3

m Baar Fut
m -put
W pul

34

CHAPTER 4. EXTENDED EXAMPLES

‘0.873755045943603USD

‘value(crr, bull,)

‘0.886272022140092USD

‘value(mcm, bull,)

‘0.8568085788110785USD

Straddle Spread

Buy a put and a call at the same strike

function straddle(expiry::Date, K)
p = EuropeanPut(expiry, SingleStock(), K)
c = EuropeanCall(expiry, SingleStock(), K)
Both(p, c)

end

strd, = straddle(expirydate, K,)

r,p_strd, = payoff_curve(strd,, expirydate, price)
blk = colorant"black"

red = colorant'red"

blu = colorant"blue"

["black", "red", "blue"l),

‘value(gbmm, strd,)

‘3.064820288046067USD

‘value(crr, strd,)

‘3.134123212064972USD

‘value(mcm, strd,)

‘3.0438416563071513USD

Guide.title("straddle Payoff Curve at Expiry"),
Guide.xlabel("Stock Price"), Guide.ylabel("Payoff"))

plot(layer(x=s ,y=p_strd,,Geom.line,Theme(default_color=blk,line_width=1.5mm)),
layer(x=s.,,y=Cp, ,Geom.line,Theme(default_color=red,line_width=1.0mm)),
layer(X=S,,y=pp2 ,Geom. line, Theme(default_color=blu,line_width=1
Guide.manual_color_Rey("",["Straddle", "call,",

.omm)),

©Julia Computing Inc.

4.1. SPREAD OPTIONS

35

Straddle Payoff Curve at Expiry

3

5
Q
=
o
L

i

a7 38 H34 00 101 102
Stock Price
Figure 4.9:
Strip Spread

Buy one call and two puts at the same strike

function strip(expiry::Date, K)
p = EuropeanPut(expiry, SingleStock(), K)
c = EuropeanCall(expiry, SingleStock(), K)
Both(c, Both(p, p))

end

strip, = strip(expirydate, K,)

r,p_strip = payoff_curve(strip,, expirydate, price)
blk = colorant"black"

red = colorant'red"

blu = colorant"blue"

Guide.manual_color_Rey("",["strip", "call,", "2put,"],
["black", "red", "blue"l),

Guide.title("strip Payoff Curve at Expiry"),
Guide.xlabel("Stock Price"), Guide.ylabel("Payoff"))

‘value(gbmm, strip,)
‘4.7608054043233285USD

©Julia Computing Inc.

plot(layer(x=s ,y=p_strip,Geom.line,Theme(default_color=blk,line_width=1.5mm)),
layer(x=s,,y=Cp. ,Geom.line,Theme(default_color=red,line_width=1.0mm)),
layer(x=s,,y=2pp. ,Geom.line,Theme(default_color=blu,line_width=1.0mm)),

i

e
(5]

3

B Straddle
m call
| ot

36

CHAPTER 4. EXTENDED EXAMPLES

Payoff

‘ value(crr, strip,)

N

‘4.864759790352304USD

‘value(mcm, strip,)

‘4.702706524585503USD

Strap Spread

gy 58

Strip Payoff Curve at Expiry

b 00 101

Stock Price

Figure 4.10:

Buy one put and two calls at the same strike
function strap(expiry::Date, K)

p =
c =

EuropeanPut (expiry, SingleStock(), K)
EuropeanCall(expiry, SingleStock(), K)

Both(p, Both(c, c))

end

strap, = strap(expirydate, K,)
r,p_strap = payoff_curve(strap,, expirydate, price)

blk = colorant"black"
red = colorant'"red"
blu = colorant"blue"

i

B Strip
mcall
B Zput

02 103

plot(layer(x=s ,y=p_strap,Geom.line,Theme(default_color=blk,line_width=1.5mm)),

layer(x=s.,,y=2cp,

,Geom. line, Theme(default_color=red,line_width=1.0mm)),

©Julia Computing Inc.

4.1. SPREAD OPTIONS 37

Strap Payoff Curve at Expiry

n

E . o =
g 1 W atrap
E W 2call
B put
2
1
g7 48 49 (0 1M 102 103
Stock Price
Figure 4.11:
layer(x=S,,y=pp2 ,Geom.line,Theme(default_color=blu,line_width=1.0mm)),

Guide.manual_color_key("",["Strap", "2call,", "put,"],
["black", "red", "blue"l]),

Guide.title("Strap Payoff Curve at Expiry"),
Guide.xlabel("Stock Price"), Guide.ylabel("Payoff"))

‘value(gbmm, strap,)

‘4.433655453814272USD

‘value(crr, strap,)

‘4.537609845842613USD

‘value(mcm, strap,)

‘4.428818444335952USD

©Julia Computing Inc.

38

CHAPTER 4. EXTENDED EXAMPLES

Strangle Payoff Curve at Expiry

-

Payoff

e
(RRE

Stock Price

e
(5]

i 101

Figure 4.12:

Strangle Spread

Buy a put at the low strike and a call at the high strike
function strangle(expiry::Date, K,, K;)

p = EuropeanPut(expiry, SingleStock(), K,)

c = EuropeanCall(expiry, SingleStock(), K,)

Both(p, c)
end

strangle, = strangle(expirydate, K., Kj)
r,p_strangle = payoff_curve(strangle,, expirydate, price)

blk = colorant"black"
red = colorant'red"
blu = colorant"blue"

layer(x=s.,,y=Cps
layer(x=S,,y=pp4
Guide.manual_color_key("",["strangle", "call,",
["black", "red", "blue"l),

Guide.title("Strangle Payoff Curve at Expiry"),
Guide.xlabel("Stock Price"), Guide.ylabel("Payoff"))

"put’l “] ki

‘value(gbmm, strangle,)

‘1.473840565881766USD

plot(layer(x=s ,y=p_strangle,Geom.line,Theme(default_color=blk,line_width=
,Geom.line,Theme(default_color=red, line_width=
,Geom.line,Theme(default_color=blu,line_width=

W Strangle
| call
B put
103
1.5mm)),
1.0mm)),
1.0mm)),

©Julia Computing Inc.

4.2. COUPON BEARING BONDS 39

‘ value(crr, strangle,)

‘1.5167575485224454USD

‘ value(mecm, strangle,)

‘1.4544457761800493USD

4.2 Coupon Bearing Bonds

Unlike a zero coupon bond, a coupon bearing bond pays the holder a specified amount at regular intervals up to the
maturity date of the bond. These coupon payments, and the interest that can accumulate on those payments must
be taken into account when pricing the coupon bond. The structuring of a coupon bond with Miletus provides an
example of how to construct a product with multiple observation dates.

using Miletus, BusinessDays
using Miletus.TermStructure
using Miletus.DayCounts

import Miletus: Both, Receive, Contract, When, AtObs, value
import Miletus: YieldModel

import BusinessDays: USGovernmentBond

import Base.Dates: today, days, Day, Year

First let's show an example of the creation of a zero coupon bond. For this type of bond a payment of the par amount
occurs only on the maturity date.

‘zcb = When(AtObs(today()+Day(360)), Receive(100USD))

when |-
{==1|
|-DateObs |
L2018-02-04
Amount
L100UsD

Next let’s define a function for our coupon bearing bond. The definition of multiple coupon payments and the final
par payment involves a nested set of Both types, with each individual payment constructed from a When of an date
observation and a payment contract.

function couponbond(par,coupon,periods::Int,start::Date,expiry::Date)
duration = expiry - start
bond = When(AtObs(expiry), Receive(par))
for p = periods-1:-1:1
coupondate = start + duration*p/periods
bond = Both(bond,When(AtObs(coupondate), Receive(coupon)))
end
return bond
end

©Julia Computing Inc.

40 CHAPTER 4. EXTENDED EXAMPLES

couponbond (generic function with 1 method)

To construct an individual coupon bond, we first define necessary parameters for the par, coupon, number of periods,
start date and expiry date.

par = 100USD
coupon = 1USD

periods = 12

startdate = today()

expirydate = today() + Day(360)

2018-02-04

Now we can construct an instance of a coupon bearing bond.
‘ cpb = couponbond(par,coupon,periods,startdate,expirydate)

Both|-
Both|

I
| | ==}
		FDateobs]
		L2018-02-04
	I—Amount	
	Leeusp	
Lwhen		
I		
	FDateobs]	
	L-2018-01-05	
I—Amount:		
LAusp		
Lwhen|

Fi==1|

| FDateobs]|

| L2017-12-06|

I—Amount|

L1usD|

Lwhen|

==}

| -Dateobs|

| L2017-11-06|

I—Amour1t|

LAusp|

Lwhen |

©Julia Computing Inc.

4.2. COUPON BEARING BONDS 41

| }-Dateobs|

| L2017-10-07|
LAmount |
LAusp|

|
I
|
|
| Lwhen|
| H==3]
| | FDateobs]|
| | L2017-09-07|
| LaAmount|
| Lqusp|
Lwhen|
Fi==}]
| }-Dateobs|
| L2017-08-08|
LAmount |
Lusp|
Lwhen|

| }-pateobs|

| L2017-07-09|

LAmount |
L1usp|

Lwhen|

| |-Dpateobs|
| L2017-06-09|
LAmount |

Lusp|
Lwhen|

==}

| |-pateobs|

| L2017-05-10|

L-Amount |

Lusp|

Lwhen|

| FDateobs]|

| L2017-04-10|

LAmount |
LuspL-

When

| Dateobs

| L2017-03-11

L_Amount
L1usD

Finally we can value this bond by constructing a yield curve and associated yield model and operating on the coupon
bond contract with the defined yield model.

‘yc = ConstantYieldCurve(Actual360(), .1, :Continuous, :NoFrequency, Dates.today())

‘ Miletus.TermStructure.ConstantYieldCurve(Miletus.DayCounts.Actual360(),0.1,:Continuous,-1,2017-02-09)

‘ym = YieldModel(yc, ModFollowing(), USGovernmentBond())

©Julia Computing Inc.

42 CHAPTER 4. EXTENDED EXAMPLES

Miletus.YieldModel{Miletus.TermStructure.ConstantYieldCurve,Miletus.DayCounts.ModFollowing,BusinessDays.
USGovernmentBond} (Miletus.TermStructure.ConstantYieldCurve(Miletus.DayCounts.Actual360(),0.1,:
Continuous,-1,2017-02-09) ,Miletus.DayCounts.ModFollowing(),BusinessDays.USGovernmentBond())

‘value(ym,cpb)

‘100.32417167207167USD

4.3 Asian Option pricing

Asian options are structures whose payoff depends on the average price of an underlying security over a specific period
of time, not just the price of the underlying at maturity. To price an Asian option, we will make use of a Monte Carlo
pricing model, as well as a contract that considers a MovingAveragePrice

using Miletus
using Gadfly
using Colors

d1 = Dates.today()
d2 = d1 + Dates.Day(120)

2017-06-09

Structing the model without currency units

m = GeomBMModel(d1, 100.00, 0.05, 0.0, 0.3)
mcm = montecarlo(m, d1:d2, 100_000)

Miletus.MonteCarloModel{Miletus.CoreModel{Float64,Miletus.TermStructure.ConstantYieldCurve,Miletus.
TermStructure.ConstantYieldCurve},StepRange{Date,Base.Dates.Day},Float64}(Miletus.CoreModel{Float64,
Miletus.TermStructure.ConstantYieldCurve,Miletus.TermStructure.ConstantYieldCurve}(100.0,Miletus.
TermStructure.ConstantYieldCurve(Miletus.DayCounts.Actual365(),0.05, :Continuous,-1,2017-02-09),
Miletus.TermStructure.ConstantYieldCurve(Miletus.DayCounts.Actual365(),0.0, :Continuous,-1,2017-02-09)
),2017-02-09:1 day:2017-06-09,[100.0 100.665 .. 118.557 119.593; 100.0 99.409 .. 88.9926 89.6832; .. ;
100.0 100.144 .. 84.2522 85.7512; 100.0 101.474 .. 148.781 146.818])

We can view the underlying simulation paths used for our Geometric Brownian Motion Model using Gadfly as follows:

theme=Theme (default_color=Colors.RGBA{Float32}(0.1, 0.1, 0.7, 0.1))
p = plot([layer(x=mcm.dates,y=mcm.paths[i,:],Geom.line,theme) for i1 = 1:200]...)

Now let’s value a vanilla European call option using a Geometric Brownian Motion Model.

o = EuropeanCall(d2, SingleStock(), 100.00)
value(m, o)

| 7.644207157741412

And value that same vanilla European call using a Monte Carlo Model

©Julia Computing Inc.

4.3. ASIAN OPTION PRICING 43

200
1840
y 100
ol
a
Mar Apr May Jun
X
Figure 4.13:

| value(mcm, o)

|7.611532298314782

Next we construct a fixed strike Asian Call option. Note the MovingAveragePrice embedded in the definition.
| 0al = AsianFixedStrikeCall(d2, SingleStock(), Dates.Month(1), 100.00)

when |-
{==}|
-DateObs |
L2017-06-09 -
Either
-Both
| FMovingAveragePrice
| | Fsinglestock
| | &1 month
| Leive
| Lamount
| L100.0
Lzero

| value(mcm, oa1)

©Julia Computing Inc.

44 CHAPTER 4. EXTENDED EXAMPLES

6.434610669797414

Similarly, we can construct a floating strike Asian Call option.
‘ 0a2 = AsianFloatingStrikeCall(d2, SingleStock(), Dates.Month(1), 100.00)

when |-

==}

|-Dateobs |
L2017-06-09 -
Either

-Both

| Fsinglestock

| Leive
| L MovingAveragePrice
| -singleStock
| L1 month
L zero

‘ value(mcm, oa2)

‘ 3.690794638247629

©Julia Computing Inc.

	Contents
	Introduction
	Introduction
	Overview
	Installation

	Tutorial
	Tutorial
	Motivating example
	Building Contracts with Primitive and Derived Types
	Contract primitives
	Primative Observables
	Derived Observables

	Constructing Observables and Contracts
	Built-in Derived Contracts
	DayCounts
	Processes
	Term Structures

	Models
	Implemented Models and Valuation methods
	Functions available for operating on a Model
	Implied Volatlity calculations

	Examples
	Extended Examples
	Spread Options
	Coupon Bearing Bonds
	Asian Option pricing

