
4/30/2018 Will Chapel Mark Next Great Awakening for Parallel Programmers?

https://www.nextplatform.com/2018/04/10/will-chapel-mark-next-great-awakening-for-parallel-programmers/ 1/4

Chapel supports a multithreaded
execution model via high-level
abstractions for data parallelism, task
parallelism, concurrency, and nested
parallelism. Chapel’s locale type enables
users to specify and reason about the
placement of data and tasks on a target
architecture in order to tune for locality
and affinity. Chapel supports global-view
data aggregates with user-defined
implementations, permitting operations
on distributed data structures to be
expressed in a natural manner. In
contrast to many previous higher-level
parallel languages, Chapel is designed
around a multiresolution philosophy,
permitting users to initially write very
abstract code and then incrementally add
more detail until they are as close to the
machine as their needs require. Chapel
supports code reuse and rapid
prototyping via object-oriented design,
type inference, and features for generic
programming. Existing code can be
integrated into Chapel programs (or
vice-versa) via interoperability features.

Will Chapel Mark Next Great Awakening for Parallel Programmers?

April 10, 2018 Nicole Hemsoth

Just because supercomputers are engineered to be far more
powerful over time does not necessarily mean programmer
productivity will follow the same curve. Added performance
means more complexity, which for parallel programmers
means working harder, especially when accelerators are thrown
into the mix.

It was with all of this in mind that DARPA’s High Productivity
Computing Systems (HPCS) project rolled out in 2009 to support higher performance but more
usable HPC systems. This is the era that spawned systems like Blue Waters, for instance, and
various co-design efforts from IBM and Intel to make parallelism within broader reach to the
wider technical computing base.

At the time when HPCS was getting traction, Brad Chamberlain, the lead architect for the Chapel
language effort and a new employee at supercomputer maker, Cray, noticed an opportunity
somewhere in between the much higher-level interfaces and down-low approaches like OpenMP,
MPI, and as GPUs crept into more supercomputing centers, CUDA. This was before HPC domain
scientists were using Python and at a time and during a decades-long stretch where HPC
programming was defined by strict modes, most of them very low-level.

“We had then—and now–a mission to grow the HPC
market, but if the community is saying that to work in
HPC you have to learn C, C++, Fortran, MPI, OpenMP,
and CUDA and this is the only way things are done, that
sure seems to shut out a huge swath of the modern
programming community who are already well versed
in Python, Matlab and tools that are more productive
and modern,” he tells The Next Platform. “For HPC to
say it is not willing to meet this group along the
spectrum is part of the reason HPC has not grown
much and it is the reason we have a hard time
recruiting and retaining the top software engineers in
the field.”

“The original goal was to make parallel programming
less mechanical, low level, and bottom-up and focus on
what people in HPC needed to express. This meant an
emphasis on parallelism, locality, and designing from
the top-down with higher level abstractions to help
users write their codes and move them from a laptop to
a cluster to a more specialized Cray supercomputer.

That final point begs an important question—and one
that has been the source of confusion since Chapel
emerged, even though Chamberlain and his Chapel
team manager, Ben Robbins, tell us they constantly
make clear. Even though Cray supports the fourteen-
person Chapel development team (a big team by HPC
development standards but miniscule compared to
other mainstream language dev efforts), the platform is
not intended to run specifically on Cray
supercomputers. It has been designed to be portable,
but Chamberlain says of course, when it comes to
taking advantage of Cray’s custom network and other
features in the Cray Linux Environment there are
benefits to Chapel that can be wrought elsewhere. Still,
he says the need for some middle ground in parallel
programming for HPC is still needed.

Driving Major Improvements to Weather Forecasting and
Public Safety

Using Machine Learning to Enhance the Customer
Experience

Optimized HPC Solutions Driving Performance, Efficiency,
and Scale

The Next Platform Weekly
Tap the stack to painlessly subscribe
for a weekly email from The Next
Platform, featuring highlights,
analysis, and stories from the week
directly from us to your inbox with
nothing in between.

ABOUT CONTRIBUTORS CONTACT THE REGISTER BOOKS

 HOME COMPUTE STORE CONNECT CONTROL CODE AI HPC ENTERPRISE HYPERSCALE CLOUD PODCAST

https://3s81si1s5ygj3mzby34dq6qf-wpengine.netdna-ssl.com/wp-content/uploads/2018/04/cray-chapel-logo.jpg
https://www.nextplatform.com/author/nicole/
https://chapel-lang.org/
https://www.nextplatform.com/micro-site-content/hpe-solutions/
https://www.nextplatform.com/micro-site-content/driving-major-improvements-weather-forecasting-public-safety/
https://www.nextplatform.com/micro-site-content/using-machine-learning-enhance-customer-experience/
https://www.nextplatform.com/micro-site-content/optimized-hpc-solutions-driving-performance-efficiency-scale/
https://www.nextplatform.com/register/
https://www.nextplatform.com/about/
https://www.nextplatform.com/contributors/
https://www.nextplatform.com/contact/
http://www.theregister.co.uk/
https://www.nextplatform.com/2016-titles-next-platform-press/
https://www.nextplatform.com/
https://www.nextplatform.com/
https://www.nextplatform.com/category/compute/
https://www.nextplatform.com/category/store/
https://www.nextplatform.com/category/connect/
https://www.nextplatform.com/category/control/
https://www.nextplatform.com/category/code/
https://www.nextplatform.com/category/analyze/
https://www.nextplatform.com/category/hpc/
https://www.nextplatform.com/category/enterprise/
https://www.nextplatform.com/category/hyperscale/
https://www.nextplatform.com/category/cloud/
https://www.nextplatform.com/category/podcast/

4/30/2018 Will Chapel Mark Next Great Awakening for Parallel Programmers?

https://www.nextplatform.com/2018/04/10/will-chapel-mark-next-great-awakening-for-parallel-programmers/ 2/4

The thing is, some could argue there is already a middle ground language for HPC. The Julia
language appeared after Chapel, emerging in 2012. While they might seem to be targeting the same
set of HPC users (which they are) the rationale is divided. Julia and Chapel have some of the same
aims but they are coming from different worlds—and this makes all the difference, Chamberlain
says. “We are both trying to be the ‘Python for HPC’ but Julia takes the approach of, ‘you’re already
a Python programmer? Let’s bring you into our world of HPC,’ whereas Chapel is designed from
the bottom up to talk to that base of existing HPC parallel programmers that see what they need to
control in terms of a machine’s resources and how to map efficiently and want to build from
higher level abstractions from there,” he says. “Most HPC programmers who have dug into Chapel
understand there are some high level programmability features but they still want to be able to
map down to the machine more efficiently.”

In other words, Julia can be considered a bit of an outsider with deeper mainstream roots than
Chapel, which is that HPC specific middle ground. Both support GPUs, both provide more
flexibility and scalability of performance than Python, but both have their own starting point—
something that Chamberlain says is a feature, not a bug.

“We want Chapel to be as accessible and readable as Python is; it should be easy to look at a bit of
code and see what’s happening pretty quickly, but all the while addressing things in Python that
aren’t a good fit for HPC and provide better performance. Fortran and MPI are the metrics people
expect for scalable performance and portability is also key so we wanted to have a feature-rich
language that also has all thing things one would expect from a C++, C#, Java, or Swift, for instance,”
Chamberlain explains.

The Chapel team has upped the benchmark ante in 2018 with some new graphs highlighting solid
performance on a number of HPC metrics, including those below (these are from 2018).

Chapel vs. MPI/OpenMP performance in recent talks, demonstrating that Chapel is increasingly
competitive for local computations (LCALS), embarrassingly parallel computations (stream),
random fine-grain communication (RA), stencil communications (Stencil PRK), and bucket
exchange patterns (ISx). The distributed memory timings here are on 2×18-core compute nodes (so
256 locales = 256*36 cores)

Cray also does performance testing nightly to put the results into the public to be used interactively
much like a stock ticker–and like a stock ticker, these can be challenging to draw good conclusions
from because in addition to Chapel improving or getting worse on a given night, the benchmark
itself could be modified, the underlying system or its software could be updated, etc.. Even still, it
provides one way to see some rough trends over a longer period of time. There’s an “annotation”
button under each graph which the team uses to label significant changes that have been
diagnosed. As one example, the following link shows some trends over time for 16 nodes of a Cray
XC supercomputer.

Good results, but there will always be those in HPC that want to stick as close to the machine as
possible. “If you’re happy programming with C++, MPI, OpenMP and CUDA you probably don’t
need Chapel per se. There are programmers in the DoE who work with those tools regularly but
want something more like Python to program in,” says Ben Robbins, the general manager for
Chapel. “Think about the days of Microsoft and Visual Basic—the reason it was so popular was
because it was productive; people no longer needed to stay in an elitist band of programmers.

We asked Chamberlain what Cray gets out of supporting what is likely a rather expensive effort
with the full time team needed, especially for an open source “product” that works for its users but
has other uses outside of Cray if it takes off. His answer was simply that Cray is interested in
anything that might make the HPC community larger—or bring more system sales to Cray from
outside of traditional HPC or even inside where broader bases of non-parallel programming
specialists reside. “It would be the death of any language to only run one system,” Chamberlain
explains, adding that their implementation is designed to run anywhere with C compiler or LLVM
with threads and way to communicate with either Cray’s own custom network, or more broadly,
InfiniBand and Ethernet.

As with all things open source, it is not simple to get a sense of how wide a platform’s user base is.
The code itself has over 50,000 commits on Github but that’s over a long span and does not

https://www.nextplatform.com/2016/01/26/dirt-simple-hpc-making-the-case-for-julia/
https://www.nextplatform.com/2017/11/28/julia-language-delivers-petascale-hpc-performance/
https://3s81si1s5ygj3mzby34dq6qf-wpengine.netdna-ssl.com/wp-content/uploads/2018/04/chapelbench1.png
https://chapel-lang.org/perf-nightly.html
https://chapel-lang.org/perf/16-node-xc/?startdate=2015/01/16&enddate=2018/02/19&configs=gnuugniqthreads&graphs=npbepperfmopssized,hpccraatomicsperfgupsn233,hpccraonperfgupsn233,hpccrarmoperfgupsn233,hpccstreamepperfgbsn5723827200,hpccglobalstreamperfgbsn5723827200,hpccpromotedstreamperfgbsn5723827200,sscassca2kernel4perftepssize2224vertices,prkstencilvariationsperf,isxhandoptimized,prkoptimizedstenciltimesec,studiesmdinspirednbodyliketesttimesecn300000,reductionstimesec

4/30/2018 Will Chapel Mark Next Great Awakening for Parallel Programmers?

https://www.nextplatform.com/2018/04/10/will-chapel-mark-next-great-awakening-for-parallel-programmers/ 3/4

Cristian Vasile says: April 10, 2018 at 1:12 pm

Riding the AI Cycle Instead of
Building It

Talking Up the Expanding
Markets for GPU Compute

indicate real world use. Clearly there is enough traction to keep Cray investing and Chamberlain
insists that the last 18 months in particular have shown remarkable performance jumps—an
important bit of news considering performance was still not there for some of their earlier users
when compared to more traditional approaches. This is no surprise as with any layer of
abstraction’s performance overhead, but the real question is what HPC developers are wiling to
live with.

“We have historically been geared toward HPC programmers because as Cray that is who we most
interacted with—the big DoE labs and such. But as parallel computing has gone mainstream the
number of people showing an interest in Chapel, especially those who are not already Cray
customers, is striking. They are the subset who are not satisfied with the status quo in HPC,” says
Robbins.

Chamberlain adds that the real challenge as more people from outside traditional large-scale HPC
see Chapel as a way to get high performance scalability on bigger clusters is to keep Chapel as
feature rich as the other languages but with all that parallelism, scalability and locality built in. This
is harder than it sounds he says but they are finally at the point where their benchmark results are
showing capabilities that can rival MPI—a significant achievement.

Pardon the play on words, but for any chapel to serve its purpose, it needs plenty of followers to
keep it full and vibrant. HPC is still committed to its lower level tools and that will remain the case
with domain scientists dabbling in Python until it fails to scale. This seems to clear the way for
either Julia or Chapel, but for HPC centers, the “P” tends to always stand for performance and not
productivity—something that both parallel programming upstarts need to keep tweaking to be the
answer to HPC programmer pleas.

Share this:

Reddit Facebook 24 LinkedIn Twitter Google Email

Similar Vein

Categories: Code, HPC

Tags: Chapel, Julia, OpenMP

One thought on “Will Chapel Mark Next Great Awakening for Parallel
Programmers?”

Other approach to HPC programming could use some strange named projects like Graal, Truffle,
Sulong, Substrate VM etc. The main idea is not to re-create the new Python or Java for HPC, but
reuse what has been developed and is battle tested.

     

Dirt Simple HPC: Making
the Case for Julia

Julia Language Delivers
Petascale HPC
Performance

OpenMP Has More in
Store for GPU
Supercomputing

Programming Toward
Exascale: A Look Ahead
at OpenACC in 2016

OpenMP: From Parallel
Loops To Exaflops

Turning OpenMP
Programs into Parallel
Hardware

https://www.nextplatform.com/2018/04/10/riding-the-ai-cycle-instead-of-building-it/
https://www.nextplatform.com/2018/04/10/the-more-you-buy-the-more-you-save/
https://www.nextplatform.com/2018/04/10/will-chapel-mark-next-great-awakening-for-parallel-programmers/?share=reddit&nb=1
https://www.nextplatform.com/2018/04/10/will-chapel-mark-next-great-awakening-for-parallel-programmers/?share=facebook&nb=1
https://www.nextplatform.com/2018/04/10/will-chapel-mark-next-great-awakening-for-parallel-programmers/?share=linkedin&nb=1
https://www.nextplatform.com/2018/04/10/will-chapel-mark-next-great-awakening-for-parallel-programmers/?share=twitter&nb=1
https://www.nextplatform.com/2018/04/10/will-chapel-mark-next-great-awakening-for-parallel-programmers/?share=google-plus-1&nb=1
https://www.nextplatform.com/2018/04/10/will-chapel-mark-next-great-awakening-for-parallel-programmers/?share=email&nb=1
https://www.nextplatform.com/category/code/
https://www.nextplatform.com/category/hpc/
https://www.nextplatform.com/tag/chapel/
https://www.nextplatform.com/tag/julia/
https://www.nextplatform.com/tag/openmp/
https://www.nextplatform.com/2016/01/26/dirt-simple-hpc-making-the-case-for-julia/
https://www.nextplatform.com/2016/01/26/dirt-simple-hpc-making-the-case-for-julia/
https://www.nextplatform.com/2017/11/28/julia-language-delivers-petascale-hpc-performance/
https://www.nextplatform.com/2017/11/28/julia-language-delivers-petascale-hpc-performance/
https://www.nextplatform.com/2018/02/02/openmp-store-gpu-supercomputing/
https://www.nextplatform.com/2018/02/02/openmp-store-gpu-supercomputing/
https://www.nextplatform.com/2016/03/24/programming-toward-exascale-look-ahead-openacc-2016/
https://www.nextplatform.com/2016/03/24/programming-toward-exascale-look-ahead-openacc-2016/
https://www.nextplatform.com/2017/05/03/openmp-parallel-loops-exaflops/
https://www.nextplatform.com/2017/05/03/openmp-parallel-loops-exaflops/
https://www.nextplatform.com/2016/10/19/turning-openmp-programs-parallel-hardware/
https://www.nextplatform.com/2016/10/19/turning-openmp-programs-parallel-hardware/

4/30/2018 Will Chapel Mark Next Great Awakening for Parallel Programmers?

https://www.nextplatform.com/2018/04/10/will-chapel-mark-next-great-awakening-for-parallel-programmers/ 4/4

Reply

In near future JavaScript, Julia, R, Fortan, C & C++ code will happily run on thin Java VM, inside
Singularity’s containers.

Leave a Reply

Your email address will not be published. Required fields are marked *

Comment

Name *

Email *

Website

Post Comment

Pages

About
Contact
Contributors
Newsletter

Recent Posts

Feeding The Insatiable Bandwidth
Beast
Playing Dominoes In Data Science
Sluggish Moore’s Law Doesn’t
Impede Intel One Bit
The Slow But Sure Return Of AMD
In The Datacenter
AI Software Writing AI Software
For Healthcare?

Copyright © 2017 The Next Platform

https://www.nextplatform.com/about/
https://www.nextplatform.com/contact/
https://www.nextplatform.com/contributors/
https://www.nextplatform.com/register/
https://www.nextplatform.com/2018/04/30/feeding-the-insatiable-bandwidth-beast/
https://www.nextplatform.com/2018/04/30/playing-dominoes-in-data-science/
https://www.nextplatform.com/2018/04/27/sluggish-moores-law-doesnt-impede-intel-one-bit/
https://www.nextplatform.com/2018/04/26/the-slow-but-sure-return-of-amd-in-the-datacenter/
https://www.nextplatform.com/2018/04/26/ai-software-writing-ai-software-for-healthcare/

