
11/28/2017 Julia - A new language for technical computing | Algorithmic Trading Articles & Financial Insight | Automated Trader

http://www.automatedtrader.net/articles/technology-strategy/157921/julia-_-a-new-language-for-technical-computing 1/3

HOME NEWS FEATURES ALGOWORLD EVENTS LATEST ISSUE JOBS ALERTS ABOUT US LOG IN SUBSCRIBE SEARCH...

AUTHOR'S BIO

Avik Sengupta has
worked on risk and trading
systems in investment
banking for many years,
mostly using Java
interspersed with snippets of the exotic R
and K languages. This experience left him
wondering whether there were better things
out there. Avik's quest concluded with the
appearance of Julia in 2012. He has been
happily coding in Julia and contributing to it
ever since.

AUTHOR'S BIO

Dr Simon Byrne is a
quantitative software
developer at Julia
Computing, where he
implements numerical
routines for financial and statistical models.
Simon has a PhD in Mathematics from the
University of Cambridge and has extensive
experience in computational statistics and
machine learning in both academia and
industry. He has been contributing to the
Julia project since 2012.

Julia - A new language for technical
computing
Published in Automated Trader Magazine Issue 43 Q2 2017

Historically, developers have faced a trade-off between the ease of use of scripting
languages and the power and flexibility of lower-level languages. Julia offers the
best of both worlds - and allows easy interoperability with existing languages.

The programming language Julia started from a
simple observation. Traditionally, programming
languages that focused on numerical computing
could be split into two distinct groups: a set of static
languages (for example, C, C++, Fortran) that are
fast for execution, but slow for development, and
another set of dynamic languages (for example,
Python, R, Matlab) that are often slow in their
execution, but enable rapid development. The
creators of Julia asked themselves if such a
dichotomy was really necessary. Was there some
sort of natural law preventing a numerical
programming language from being both high-
performing and productive? Overcoming the
performance deficiencies of existing high-level
scripting languages used in technical computing
often requires programmers to choose between two
options: either to re-implement portions of their
code in low-level systems languages using
interfaces provided by the high-level language, or
to rewrite completely their high-level language
application within a low-level language. To solve
this 'two-language problem' a single language is
required that addresses both the needs of the
computer when constructing code that can be
executed extremely fast, as well as the human
desire for writing high-level expressive code that
captures mathematical ideas in a concise and
generic manner.

Julia provides a solution to this two-language
problem. It enables developers and end-users from
numerous fields to harness this combination of high
productivity and high performance to help move ideas from conception to production at speeds that were
not previously possible.

http://www.automatedtrader.net/
http://www.automatedtrader.net/home.xhtm
http://www.automatedtrader.net/news.xhtm
http://www.automatedtrader.net/features.xhtm
http://www.automatedtrader.net/algoworld.xhtm
http://www.automatedtrader.net/events.xhtm
http://www.automatedtrader.net/magazine/49/issue-43-q2-2017
http://www.automatedtrader.net/jobs.xhtm
http://www.automatedtrader.net/alerts.xhtm
http://www.automatedtrader.net/about_us.xhtm
http://www.automatedtrader.net/login_2012.php
http://www.automatedtrader.net/shop.xhtm
http://www.automatedtrader.net/magazine/49/Issue-43-Q2-2017

11/28/2017 Julia - A new language for technical computing | Algorithmic Trading Articles & Financial Insight | Automated Trader

http://www.automatedtrader.net/articles/technology-strategy/157921/julia-_-a-new-language-for-technical-computing 2/3

Julia has been used in many sectors and industries, but financial services is one of its most natural
habitats. It has been used by organisations large and small to calculate regulatory capital, value portfolios
and design trading strategies. In this article, we will demonstrate one such example use case, calculating
the arbitrage opportunities in FX cross rates. We will show how a complex optimisation problem can be
implemented in a few lines of Julia code.

To start with, we will provide a brief introduction to Julia and its capabilities, as many readers might not
yet be familiar with the language.

Julia's history
Julia began its life in 2009 as an academic collaboration among the project's creators Jeff Bezanson,
Alan Edelman, Stefan Karpinski and Viral Shah to explore a solution to the two-language problem in
technical computing. In February 2012, the project was announced publicly as an open-source project,
freely downloadable and usable under an MIT license. Since that first public announcement, the Julia
language community itself has grown to include over 500 contributors to the base language. It has
spawned an ecosystem of over 1,300 packages in diverse topics including foundational mathematics
(statistics, optimisation, differential equations), financial analytics, machine learning, bioinformatics,
astrophysics, parallel and distributed computing, systems infrastructure (cloud management, identity
management) and many other areas. The Julia user community currently numbers in the hundreds of
thousands and is growing rapidly.

With the growing ecosystem and community, interest in the language has expanded beyond pure
academic research. In 2015, Julia Computing, Inc. was founded by the creators based on industry
requests for products, support and professional services centred on the Julia language ecosystem.

Julia's capabilities
Addressing the two-language problem necessitates careful design choices that balance the needs of the
human and the computer. Julia's ability to achieve both high performance and high productivity involve
the careful combination of the following features:

Points 1, 2 and 3 above are language features that are primarily concerned with how the human
expresses their intentions in code, while points 4, 5 and 6 are mostly about language implementation and
compiler internals addressing the needs of the computer. Point 7 involves bringing everything together to
enable the development of high performance libraries in Julia. An extensive discussion of these points
can be found in Bezanson et al. (2015) as well as references cited therein.

Performance

To demonstrate the type of performance that can be achieved with pure Julia code, we will perform a
simple benchmark of the sum function, comparing Julia's performance to implementations in both C and
Python. This particular example is derived from a lecture given by Prof Steven Johnson and refined by
Prof David P. Sanders and Prof Alan Edelman. In this example, we show a simple computation that sums
one million numbers. While we use and implement a function that is available in all standard libraries, this
code is instructive in demonstrating the power of Julia's language design when using modern hardware.

To begin, let's create a sample vector of one million uniformly distributed random numbers on the interval
from 0 to 1, and execute the version of the sum function included as part of a standard distribution of

1. An expressive type system, allowing optional type annotations
2. Multiple dispatch using these types to select implementations
3. Metaprogramming for code generation
4. A dataflow type inference algorithm allowing types of most expressions to be inferred
5. Aggressive code specialisation against run-time types
6. Just-in-time (JIT) compilation using the low-level virtual machine (LLVM) compiler framework
7. Carefully written libraries that leverage the language design (points 1-6 above)

11/28/2017 Julia - A new language for technical computing | Algorithmic Trading Articles & Financial Insight | Automated Trader

http://www.automatedtrader.net/articles/technology-strategy/157921/julia-_-a-new-language-for-technical-computing 3/3

Julia (see Listing 01).

The remainder of this article is only available to Registered
Viewers
Registration is FREE, click here to create an account

Add your Company to AlgoWorld

click here to return to the top of the page

Copyright © Automated Trader Ltd 2017 - STRATEGIES | COMPLIANCE | TECHNOLOGY

Cookie Policy Privacy Policy Sitemap Web Development:Johnny Vibrant

http://www.automatedtrader.net/register.xhtm
http://www.automatedtrader.net/create_algoworld.xhtm
http://www.automatedtrader.net/cookie_policy.xhtm
http://www.automatedtrader.net/Privacy_Policy.xhtm
http://www.automatedtrader.net/sitemap.xhtm
http://johnnyvibrant.com/

