
The Julia Language

The Julia Project

November 30, 2017

Contents

Contents i

I Home 1

II Julia Documentation 3

1 Manual 5

2 Standard Library 7

3 Developer Documentation 9

III Manual 11

4 Introduction 13

5 Getting Started 15

5.1 Resources . 17

6 Variables 19

6.1 Allowed Variable Names . 20

6.2 Stylistic Conventions . 21

7 Integers and Floating-Point Numbers 23

7.1 Integers . 24

Overflow behavior . 26

Division errors . 26

i

ii CONTENTS

7.2 Floating-Point Numbers . 26

Floating-point zero . 28

Special floating-point values . 28

Machine epsilon . 29

Roundingmodes . 30

Background and References . 31

7.3 Arbitrary Precision Arithmetic . 31

7.4 Numeric Literal Coefficients . 33

Syntax Conflicts . 34

7.5 Literal zero and one . 34

8 Mathematical Operations and Elementary Functions 35

8.1 Arithmetic Operators . 35

8.2 Bitwise Operators . 36

8.3 Updating operators . 36

8.4 Vectorized "dot" operators . 37

8.5 Numeric Comparisons . 37

Chaining comparisons . 40

Elementary Functions . 40

8.6 Operator Precedence . 40

8.7 Numerical Conversions . 41

Rounding functions . 42

Division functions . 42

Sign and absolute value functions . 43

Powers, logs and roots . 43

Trigonometric and hyperbolic functions . 43

Special functions . 43

9 Complex and Rational Numbers 45

9.1 Complex Numbers . 45

9.2 Rational Numbers . 48

10 Strings 51

10.1 Characters . 52

10.2 String Basics . 53

10.3 Unicode and UTF-8 . 54

10.4 Concatenation . 56

10.5 Interpolation . 56

10.6 Triple-Quoted String Literals . 57

10.7 CommonOperations . 58

10.8 Non-Standard String Literals . 59

10.9 Regular Expressions . 60

10.10Byte Array Literals . 63

10.11Version Number Literals . 64

10.12Raw String Literals . 65

11 Functions 67

11.1 Argument Passing Behavior . 68

11.2 The returnKeyword . 68

11.3 Operators Are Functions . 69

11.4 OperatorsWith Special Names . 69

11.5 Anonymous Functions . 70

CONTENTS iii

11.6 Multiple Return Values . 70

11.7 Varargs Functions . 71

11.8 Optional Arguments . 73

11.9 Keyword Arguments . 73

11.10 Evaluation Scope of Default Values . 74

11.11Do-Block Syntax for Function Arguments . 74

11.12Dot Syntax for Vectorizing Functions . 76

11.13 Further Reading . 77

12 Control Flow 79

12.1 Compound Expressions . 79

12.2 Conditional Evaluation . 80

12.3 Short-Circuit Evaluation . 83

12.4 Repeated Evaluation: Loops . 85

12.5 Exception Handling . 88

Built-in Exceptions . 88

The throw() function . 89

Errors . 90

Warnings and informational messages . 90

The try/catch statement . 91

finallyClauses . 92

12.6 Tasks (aka Coroutines) . 92

Core task operations . 94

Tasks and events . 94

Task states . 95

13 Scope of Variables 97

13.1 Global Scope . 98

13.2 Local Scope . 98

Soft Local Scope . 99

Hard Local Scope . 100

Hard vs. Soft Local Scope . 102

Let Blocks . 103

For Loops and Comprehensions . 104

13.3 Constants . 104

14 Types 107

14.1 Type Declarations . 108

14.2 Abstract Types . 109

14.3 Primitive Types . 111

14.4 Composite Types . 111

14.5 Mutable Composite Types . 113

14.6 Declared Types . 114

14.7 Type Unions . 114

14.8 Parametric Types . 115

Parametric Composite Types . 115

Parametric Abstract Types . 118

Tuple Types . 120

Vararg Tuple Types . 120

Parametric Primitive Types . 122

14.9 UnionAll Types . 122

14.10 Type Aliases . 123

iv CONTENTS

14.11Operations on Types . 124

14.12Custom pretty-printing . 125

14.13 "Value types" . 126

14.14Nullable Types: RepresentingMissing Values . 127

Constructing Nullable objects . 127

Checking if a Nullable object has a value . 128

Safely accessing the value of a Nullable object . 128

Performing operations on Nullable objects . 129

15 Methods 131

15.1 DefiningMethods . 131

15.2 Method Ambiguities . 134

15.3 ParametricMethods . 135

15.4 RedefiningMethods . 137

15.5 Parametrically-constrained Varargs methods . 139

15.6 Note onOptional and keyword Arguments . 139

15.7 Function-like objects . 140

15.8 Empty generic functions . 140

15.9 Method design and the avoidance of ambiguities . 140

Tuple andNTuple arguments . 141

Orthogonalize your design . 141

Dispatch on one argument at a time . 142

Abstract containers and element types . 142

Complexmethod "cascades" with default arguments . 142

16 Constructors 145

16.1 Outer ConstructorMethods . 145

16.2 Inner ConstructorMethods . 146

16.3 Incomplete Initialization . 147

16.4 Parametric Constructors . 149

16.5 Case Study: Rational . 151

16.6 Constructors and Conversion . 152

16.7 Outer-only constructors . 153

17 Conversion and Promotion 155

17.1 Conversion . 156

Defining NewConversions . 156

Case Study: Rational Conversions . 157

17.2 Promotion . 158

Defining Promotion Rules . 159

Case Study: Rational Promotions . 160

18 Interfaces 161

18.1 Iteration . 161

18.2 Indexing . 163

18.3 Abstract Arrays . 164

19 Modules 169

19.1 Summary of module usage . 170

Modules and files . 170

Standardmodules . 171

Default top-level definitions and baremodules . 171

CONTENTS v

Relative and absolutemodule paths . 171

Module file paths . 172

Namespacemiscellanea . 172

Module initialization and precompilation . 172

20 Documentation 177

20.1 Accessing Documentation . 179

20.2 Functions &Methods . 180

20.3 Advanced Usage . 180

Dynamic documentation . 181

20.4 Syntax Guide . 181

Functions andMethods . 182

Macros . 182

Types . 183

Modules . 183

Global Variables . 184

Multiple Objects . 184

Macro-generated code . 185

20.5 Markdown syntax . 185

Inline elements . 185

Toplevel elements . 187

20.6 Markdown Syntax Extensions . 191

21 Metaprogramming 193

21.1 Program representation . 193

Symbols . 194

21.2 Expressions and evaluation . 195

Quoting . 195

Interpolation . 196

eval() and effects . 196

Functions on Expressions . 197

21.3 Macros . 198

Basics . 198

Hold up: whymacros? . 199

Macro invocation . 200

Building an advancedmacro . 200

Hygiene . 202

21.4 Code Generation . 203

21.5 Non-Standard String Literals . 204

21.6 Generated functions . 205

An advanced example . 209

22 Multi-dimensional Arrays 211

22.1 Arrays . 211

Basic Functions . 211

Construction and Initialization . 212

Concatenation . 212

Typed array initializers . 213

Comprehensions . 213

Generator Expressions . 214

Indexing . 215

Assignment . 216

vi CONTENTS

Supported index types . 216

Iteration . 219

Array traits . 219

Array and VectorizedOperators and Functions . 219

Broadcasting . 220

Implementation . 221

22.2 Sparse Vectors andMatrices . 222

Compressed Sparse Column (CSC) SparseMatrix Storage . 222

Sparse Vector Storage . 223

Sparse Vector andMatrix Constructors . 223

Sparsematrix operations . 225

Correspondence of dense and sparsemethods . 225

23 Linear algebra 227

23.1 Special matrices . 229

Elementary operations . 229

Matrix factorizations . 229

The uniform scaling operator . 230

23.2 Matrix factorizations . 230

24 Networking and Streams 233

24.1 Basic Stream I/O . 233

24.2 Text I/O . 234

24.3 IOOutput Contextual Properties . 235

24.4 Working with Files . 235

24.5 A simple TCP example . 236

24.6 Resolving IP Addresses . 237

25 Parallel Computing 239

25.1 Code Availability and Loading Packages . 240

25.2 DataMovement . 242

26 Global variables 245

26.1 Parallel Map and Loops . 246

26.2 SynchronizationWith Remote References . 248

26.3 Scheduling . 248

26.4 Channels . 249

26.5 Remote References and AbstractChannels . 252

26.6 Channels and RemoteChannels . 252

26.7 Remote References andDistributed Garbage Collection . 253

26.8 Shared Arrays . 254

26.9 Shared Arrays andDistributed Garbage Collection . 257

26.10ClusterManagers . 257

26.11ClusterManagers with Custom Transports . 260

26.12Network Requirements for LocalManager and SSHManager . 261

26.13Cluster Cookie . 262

26.14 Specifying Network Topology (Experimental) . 262

26.15Multi-Threading (Experimental) . 263

Setup . 263

The @threadsMacro . 263

26.16@threadcall (Experimental) . 264

CONTENTS vii

27 Date andDateTime 265

27.1 Constructors . 265

27.2 Durations/Comparisons . 267

27.3 Accessor Functions . 268

27.4 Query Functions . 269

27.5 TimeType-Period Arithmetic . 270

27.6 Adjuster Functions . 271

27.7 Period Types . 273

27.8 Rounding . 273

Rounding Epoch . 274

28 InteractingWith Julia 277

28.1 The different promptmodes . 277

The Julianmode . 277

Helpmode . 278

Shell mode . 279

Searchmodes . 279

28.2 Key bindings . 279

Customizing keybindings . 279

28.3 Tab completion . 280

28.4 Customizing Colors . 282

29 Running External Programs 285

29.1 Interpolation . 286

29.2 Quoting . 287

29.3 Pipelines . 288

Avoiding Deadlock in Pipelines . 289

Complex Example . 290

30 Calling C and Fortran Code 291

30.1 Creating C-Compatible Julia Function Pointers . 293

30.2 Mapping C Types to Julia . 294

Auto-conversion: . 294

Type Correspondences: . 295

Bits Types: . 295

Struct Type correspondences . 298

Type Parameters . 299

SIMDValues . 299

MemoryOwnership . 300

When to use T, Ptr{T} and Ref{T} . 300

30.3 Mapping C Functions to Julia . 300

ccall/cfunction argument translation guide . 300

ccall/cfunction return type translation guide . 301

Passing Pointers forModifying Inputs . 302

Special Reference Syntax for ccall (deprecated): . 302

30.4 Some Examples of CWrappers . 303

30.5 Garbage Collection Safety . 305

30.6 Non-constant Function Specifications . 305

30.7 Indirect Calls . 305

30.8 Calling Convention . 306

30.9 Accessing Global Variables . 306

30.10Accessing Data through a Pointer . 306

viii CONTENTS

30.11 Thread-safety . 307

30.12More About Callbacks . 307

30.13C++ . 307

31 HandlingOperating SystemVariation 309

32 Environment Variables 311

32.1 File locations . 311

JULIA_HOME . 311

JULIA_LOAD_PATH . 312

JULIA_PKGDIR . 312

JULIA_HISTORY . 312

JULIA_PKGRESOLVE_ACCURACY . 312

32.2 External applications . 313

JULIA_SHELL . 313

JULIA_EDITOR . 313

32.3 Parallelization . 313

JULIA_CPU_CORES . 313

JULIA_WORKER_TIMEOUT . 313

JULIA_NUM_THREADS . 313

JULIA_THREAD_SLEEP_THRESHOLD . 313

JULIA_EXCLUSIVE . 313

32.4 REPL formatting . 314

JULIA_ERROR_COLOR . 314

JULIA_WARN_COLOR . 314

JULIA_INFO_COLOR . 314

JULIA_INPUT_COLOR . 314

JULIA_ANSWER_COLOR . 314

JULIA_STACKFRAME_LINEINFO_COLOR . 314

JULIA_STACKFRAME_FUNCTION_COLOR . 314

32.5 Debugging and profiling . 314

JULIA_GC_ALLOC_POOL, JULIA_GC_ALLOC_OTHER, JULIA_GC_ALLOC_PRINT 314

JULIA_GC_NO_GENERATIONAL . 315

JULIA_GC_WAIT_FOR_DEBUGGER . 315

ENABLE_JITPROFILING . 315

JULIA_LLVM_ARGS . 315

JULIA_DEBUG_LOADING . 315

33 Embedding Julia 317

33.1 High-Level Embedding . 317

Using julia-config to automatically determine build parameters . 318

33.2 Converting Types . 319

33.3 Calling Julia Functions . 319

33.4 MemoryManagement . 320

Manipulating the Garbage Collector . 321

33.5 Working with Arrays . 321

Accessing Returned Arrays . 321

Multidimensional Arrays . 322

33.6 Exceptions . 322

Throwing Julia Exceptions . 322

34 Packages 323

CONTENTS ix

34.1 Package Status . 323

34.2 Adding and Removing Packages . 324

34.3 Offline Installation of Packages . 326

34.4 Installing Unregistered Packages . 326

34.5 Updating Packages . 327

34.6 Checkout, Pin and Free . 328

34.7 CustomMETADATARepository . 330

35 Package Development 331

35.1 Initial Setup . 331

35.2 Making changes to an existing package . 331

Documentation changes . 331

Code changes . 332

Dirty packages . 333

Making a branch post hoc . 333

Squashing and rebasing . 334

35.3 Creating a new Package . 335

REQUIRE speaks for itself . 335

Guidelines for naming a package . 335

Generating the package . 336

Loading Static Non-Julia Files . 337

Making Your Package Available . 337

Tagging and Publishing Your Package . 338

35.4 Fixing Package Requirements . 340

35.5 Requirements Specification . 340

36 Profiling 343

36.1 Basic usage . 343

36.2 Accumulation and clearing . 346

36.3 Options for controlling the display of profile results . 346

36.4 Configuration . 347

37 Memory allocation analysis 349

38 Stack Traces 351

38.1 Viewing a stack trace . 351

38.2 Extracting useful information . 352

38.3 Error handling . 353

38.4 Comparison with backtrace() . 354

39 Performance Tips 357

39.1 Avoid global variables . 357

39.2 Measure performance with @time and pay attention tomemory allocation 358

39.3 Tools . 358

39.4 Avoid containers with abstract type parameters . 359

39.5 Type declarations . 359

Avoid fields with abstract type . 359

Avoid fields with abstract containers . 361

Annotate values taken from untyped locations . 364

Declare types of keyword arguments . 364

39.6 Break functions intomultiple definitions . 365

39.7 Write "type-stable" functions . 365

x CONTENTS

39.8 Avoid changing the type of a variable . 365

39.9 Separate kernel functions (aka, function barriers) . 366

39.10 Types with values-as-parameters . 367

39.11 The dangers of abusingmultiple dispatch (aka, more on types with values-as-parameters) 368

39.12Access arrays in memory order, along columns . 369

39.13Pre-allocating outputs . 370

39.14More dots: Fuse vectorized operations . 372

39.15Consider using views for slices . 372

39.16Avoid string interpolation for I/O . 373

39.17Optimize network I/O during parallel execution . 373

39.18 Fix deprecation warnings . 374

39.19 Tweaks . 374

39.20Performance Annotations . 374

39.21 Treat Subnormal Numbers as Zeros . 377

39.22@code_warntype . 378

40 Workflow Tips 381

40.1 REPL-basedworkflow . 381

A basic editor/REPLworkflow . 381

Simplify initialization . 382

40.2 Browser-basedworkflow . 382

41 Style Guide 383

41.1 Write functions, not just scripts . 383

41.2 Avoid writing overly-specific types . 383

41.3 Handle excess argument diversity in the caller . 384

41.4 Append ! to names of functions that modify their arguments . 384

41.5 Avoid strange type Unions . 385

41.6 Avoid type Unions in fields . 385

41.7 Avoid elaborate container types . 385

41.8 Use naming conventions consistent with Julia's base/ . 385

41.9 Don't overuse try-catch . 386

41.10Don't parenthesize conditions . 386

41.11Don't overuse ... 386

41.12Don't use unnecessary static parameters . 386

41.13Avoid confusion about whether something is an instance or a type 386

41.14Don't overusemacros . 387

41.15Don't expose unsafe operations at the interface level . 387

41.16Don't overloadmethods of base container types . 387

41.17Avoid type piracy . 387

41.18Be careful with type equality . 388

41.19Do not write x->f(x) . 388

41.20Avoid using floats for numeric literals in generic codewhen possible 388

42 Frequently AskedQuestions 391

42.1 Sessions and the REPL . 391

How do I delete an object in memory? . 391

How can I modify the declaration of a type inmy session? . 391

42.2 Functions . 391

I passed an argument x to a function, modified it inside that function, but on the outside, 391

Can I use using or import inside a function? . 392

What does the ... operator do? . 393

CONTENTS xi

The two uses of the ... operator: slurping and splatting . 393

... combinesmany arguments into one argument in function definitions 393

... splits one argument intomany different arguments in function calls 394

42.3 Types, type declarations, and constructors . 394

What does "type-stable" mean? . 394

Why does Julia give a DomainError for certain seemingly-sensible operations? 394

Why does Julia use nativemachine integer arithmetic? . 395

What are the possible causes of an UndefVarError during remote execution? 399

42.4 Packages andModules . 400

What is the difference between "using" and "importall"? . 400

42.5 Nothingness andmissing values . 400

How does "null" or "nothingness" work in Julia? . 400

42.6 Memory . 401

Why does x += y allocatememory when x and y are arrays? . 401

42.7 Asynchronous IO and concurrent synchronous writes . 401

Why do concurrent writes to the same stream result in inter-mixed output? 401

42.8 Julia Releases . 402

Do I want to use a release, beta, or nightly version of Julia? . 402

When are deprecated functions removed? . 403

43 Noteworthy Differences from other Languages 405

43.1 Noteworthy differences fromMATLAB . 405

43.2 Noteworthy differences fromR . 407

43.3 Noteworthy differences from Python . 409

43.4 Noteworthy differences fromC/C++ . 410

44 Unicode Input 413

IV Standard Library 415

45 Essentials 417

45.1 Introduction . 417

45.2 Getting Around . 417

45.3 All Objects . 423

45.4 Types . 429

45.5 Generic Functions . 437

45.6 Syntax . 438

45.7 Nullables . 441

45.8 System . 443

45.9 Errors . 451

45.10 Events . 456

45.11Reflection . 456

45.12 Internals . 459

46 Collections andData Structures 463

46.1 Iteration . 463

46.2 General Collections . 465

46.3 Iterable Collections . 467

46.4 Indexable Collections . 488

46.5 Associative Collections . 489

46.6 Set-Like Collections . 497

xii CONTENTS

46.7 Dequeues . 499

47 Mathematics 507

47.1 Mathematical Operators . 507

47.2 Mathematical Functions . 522

47.3 Statistics . 546

47.4 Signal Processing . 551

48 Numbers 559

48.1 Standard Numeric Types . 559

Abstract number types . 559

Concrete number types . 560

48.2 Data Formats . 562

48.3 General Number Functions and Constants . 568

Integers . 576

48.4 BigFloats . 577

48.5 RandomNumbers . 578

49 Strings 583

50 Arrays 599

50.1 Constructors and Types . 599

50.2 Basic functions . 607

50.3 Broadcast and vectorization . 612

50.4 Indexing and assignment . 615

50.5 Views (SubArrays and other view types) . 619

50.6 Concatenation and permutation . 623

50.7 Array functions . 635

50.8 Combinatorics . 642

50.9 BitArrays . 647

50.10 Sparse Vectors andMatrices . 649

51 Tasks and Parallel Computing 661

51.1 Tasks . 661

51.2 General Parallel Computing Support . 668

51.3 Shared Arrays . 679

51.4 Multi-Threading . 680

51.5 ccall using a threadpool (Experimental) . 685

51.6 Synchronization Primitives . 686

51.7 ClusterManager Interface . 688

52 Linear Algebra 691

52.1 Standard Functions . 691

52.2 Low-level matrix operations . 748

52.3 BLAS Functions . 751

BLAS Character Arguments . 751

52.4 LAPACK Functions . 759

53 Constants 777

54 Filesystem 781

55 I/O andNetwork 793

CONTENTS xiii

55.1 General I/O . 793

55.2 Text I/O . 803

55.3 Multimedia I/O . 810

55.4 Memory-mapped I/O . 813

55.5 Network I/O . 815

56 Punctuation 821

57 Sorting and Related Functions 823

57.1 Sorting Functions . 825

57.2 Order-Related Functions . 828

57.3 Sorting Algorithms . 831

58 PackageManager Functions 833

59 Dates and Time 837

59.1 Dates and Time Types . 837

59.2 Dates Functions . 838

Accessor Functions . 843

Query Functions . 846

Adjuster Functions . 848

Periods . 850

Rounding Functions . 851

Conversion Functions . 853

Constants . 854

60 Iteration utilities 855

61 Unit Testing 861

61.1 Testing Base Julia . 861

61.2 Basic Unit Tests . 861

61.3 Working with Test Sets . 863

61.4 Other TestMacros . 864

61.5 Broken Tests . 866

61.6 Creating Custom AbstractTestSet Types . 866

62 C Interface 869

63 LLVM Interface 877

64 C Standard Library 879

65 Dynamic Linker 883

66 Profiling 885

67 StackTraces 887

68 SIMD Support 889

V Developer Documentation 891

69 Reflection and introspection 893

xiv CONTENTS

69.1 Module bindings . 893

69.2 DataType fields . 893

69.3 Subtypes . 894

69.4 DataType layout . 894

69.5 Functionmethods . 894

69.6 Expansion and lowering . 894

69.7 Intermediate and compiled representations . 895

70 Documentation of Julia’s Internals 897

70.1 Initialization of the Julia runtime . 897

main() . 897

julia_init() . 897

true_main() . 899

Base._start . 899

Base.eval . 899

jl_atexit_hook() . 899

julia_save() . 899

70.2 Julia ASTs . 899

Lowered form . 900

Surface syntax AST . 905

70.3 More about types . 908

Types and sets (and Any and Union{}/Bottom) . 908

UnionAll types . 909

Free variables . 910

TypeNames . 911

Tuple types . 912

Diagonal types . 913

Subtyping diagonal variables . 915

Introduction to the internal machinery . 915

Subtyping andmethod sorting . 916

70.4 Memory layout of Julia Objects . 916

Object layout (jl_value_t) . 916

Garbage collector mark bits . 917

Object allocation . 917

70.5 Eval of Julia code . 919

Julia Execution . 919

Parsing . 920

Macro Expansion . 920

Type Inference . 920

JIT Code Generation . 921

System Image . 922

70.6 Calling Conventions . 922

Julia Native Calling Convention . 922

JL Call Convention . 922

CABI . 923

70.7 High-level Overview of the Native-Code Generation Process . 923

Representation of Pointers . 923

Representation of Intermediate Values . 923

Union representation . 923

Specialized Calling Convention Signature Representation . 924

70.8 Julia Functions . 924

Method Tables . 925

CONTENTS xv

Function calls . 925

Addingmethods . 925

Creating generic functions . 925

Closures . 926

Constructors . 926

Builtins . 926

Keyword arguments . 926

Compiler efficiency issues . 928

70.9 Base.Cartesian . 929

Principles of usage . 929

Basic syntax . 930

70.10 Talking to the compiler (the :metamechanism) . 934

70.11 SubArrays . 934

Indexing: cartesian vs. linear indexing . 934

Index replacement . 935

SubArray design . 935

70.12 System Image Building . 938

Building the Julia system image . 938

70.13Working with LLVM . 939

Overview of Julia to LLVM Interface . 939

Building Julia with a different version of LLVM . 940

Passing options to LLVM . 940

Improving LLVMoptimizations for Julia . 940

70.14 printf() and stdio in the Julia runtime . 940

Libuv wrappers for stdio . 940

Interface between JL_STD* and Julia code . 941

printf() during initialization . 941

Legacy ios.c library . 942

70.15Bounds checking . 942

Eliding bounds checks . 942

Propagating inbounds . 943

The bounds checking call hierarchy . 943

70.16Propermaintenance and care of multi-threading locks . 944

Locks . 944

Broken Locks . 945

Shared Global Data Structures . 945

70.17Arrays with custom indices . 946

Generalizing existing code . 946

Writing custom array types with non-1 indexing . 948

Summary . 950

70.18Base.LibGit2 . 950

70.19Module loading . 973

Experimental features . 973

71 Developing/debugging Julia’s C code 975

71.1 Reporting and analyzing crashes (segfaults) . 975

Version/Environment info . 975

Segfaults during bootstrap (sysimg.jl) . 975

Segfaults when running a script . 976

Errors during Julia startup . 976

Glossary . 977

71.2 gdb debugging tips . 977

xvi CONTENTS

Displaying Julia variables . 977

Useful Julia variables for Inspecting . 977

Useful Julia functions for Inspecting those variables . 977

Inserting breakpoints for inspection from gdb . 978

Inserting breakpoints upon certain conditions . 978

Dealing with signals . 978

Debugging during Julia's build process (bootstrap) . 979

Debugging precompilation errors . 980

Mozilla's Record and Replay Framework (rr) . 980

71.3 Using Valgrind with Julia . 980

General considerations . 980

Suppressions . 981

Running the Julia test suite under Valgrind . 981

Caveats . 981

71.4 Sanitizer support . 981

General considerations . 981

Address Sanitizer (ASAN) . 982

Memory Sanitizer (MSAN) . 982

Part I

Home

1

Part II

Julia Documentation

3

Chapter 1

Manual

• Introduction

• Getting Started

• Variables

• Integers and Floating-Point Numbers

• Mathematical Operations and Elementary Functions

• Complex and Rational Numbers

• Strings

• Functions

• Control Flow

• Scope of Variables

• Types

• Methods

• Constructors

• Conversion and Promotion

• Interfaces

• Modules

• Documentation

• Metaprogramming

• Multi-dimensional Arrays

• Linear Algebra

• Networking and Streams

• Parallel Computing

• Date andDateTime

5

6 CHAPTER 1. MANUAL

• Running External Programs

• Calling C and Fortran Code

• Handling Operating SystemVariation

• Environment Variables

• InteractingWith Julia

• Embedding Julia

• Packages

• Profiling

• Stack Traces

• Performance Tips

• Workflow Tips

• Style Guide

• Frequently AskedQuestions

• Noteworthy Differences from other Languages

• Unicode Input

Chapter 2

Standard Library

• Essentials

• Collections andData Structures

• Mathematics

• Numbers

• Strings

• Arrays

• Tasks and Parallel Computing

• Linear Algebra

• Constants

• Filesystem

• I/O andNetwork

• Punctuation

• Sorting and Related Functions

• PackageManager Functions

• Dates and Time

• Iteration utilities

• Unit Testing

• C Interface

• C Standard Library

• Dynamic Linker

• Profiling

• StackTraces

• SIMD Support

7

Chapter 3

Developer Documentation

• Reflection and introspection

• Documentation of Julia's Internals

– Initialization of the Julia runtime

– Julia ASTs

– More about types

– Memory layout of Julia Objects

– Eval of Julia code

– Calling Conventions

– High-level Overview of the Native-Code Generation Process

– Julia Functions

– Base.Cartesian

– Talking to the compiler (the :metamechanism)

– SubArrays

– System Image Building

– Working with LLVM

– printf() and stdio in the Julia runtime

– Bounds checking

– Propermaintenance and care of multi-threading locks

– Arrays with custom indices

– Base.LibGit2

– Module loading

• Developing/debugging Julia's C code

– Reporting and analyzing crashes (segfaults)

– gdb debugging tips

– Using Valgrind with Julia

– Sanitizer support

9

Part III

Manual

11

Chapter 4

Introduction

Scientific computing has traditionally required the highest performance, yet domain experts have largely moved to

slower dynamic languages for daily work. We believe there are many good reasons to prefer dynamic languages for

these applications, andwedonot expect their use to diminish. Fortunately,modern language design and compiler tech-

niques make it possible to mostly eliminate the performance trade-off and provide a single environment productive

enough for prototyping and efficient enough for deploying performance-intensive applications. The Julia programming

language fills this role: it is a flexible dynamic language, appropriate for scientific and numerical computing, with per-

formance comparable to traditional statically-typed languages.

Because Julia's compiler is different from the interpreters used for languages like Python or R, youmay find that Julia's

performance is unintuitive at first. If you find that something is slow, we highly recommend reading through the Per-

formance Tips section before trying anything else. Once you understand how Julia works, it's easy to write code that's

nearly as fast as C.

Julia features optional typing, multiple dispatch, and good performance, achieved using type inference and just-in-

time (JIT) compilation, implementedusing LLVM. It ismulti-paradigm, combining features of imperative, functional, and

object-oriented programming. Julia provides ease and expressiveness for high-level numerical computing, in the same

way as languages such as R,MATLAB, and Python, but also supports general programming. To achieve this, Julia builds

upon the lineage of mathematical programming languages, but also borrows much from popular dynamic languages,

including Lisp, Perl, Python, Lua, and Ruby.

Themost significant departures of Julia from typical dynamic languages are:

• The core language imposes very little; the standard library iswritten in Julia itself, including primitive operations

like integer arithmetic

• A rich language of types for constructing and describing objects, that can also optionally be used to make type

declarations

• The ability to define function behavior across many combinations of argument types via multiple dispatch

• Automatic generation of efficient, specialized code for different argument types

• Good performance, approaching that of statically-compiled languages like C

Althoughonesometimesspeaksofdynamic languagesasbeing"typeless", theyaredefinitelynot: everyobject,whether

primitive or user-defined, has a type. The lack of type declarations in most dynamic languages, however, means that

one cannot instruct the compiler about the types of values, and often cannot explicitly talk about types at all. In static

languages, on the other hand, while one can – and usually must – annotate types for the compiler, types exist only at

compile time and cannot bemanipulated or expressed at run time. In Julia, types are themselves run-time objects, and

can also be used to convey information to the compiler.

13

https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Low_Level_Virtual_Machine
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Perl_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Multiple_dispatch

14 CHAPTER 4. INTRODUCTION

While the casual programmer need not explicitly use types or multiple dispatch, they are the core unifying features

of Julia: functions are defined on different combinations of argument types, and applied by dispatching to the most

specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first

argument to "own" an operation as in traditional object-oriented dispatch. Operators are just functions with special

notation – to extend addition to newuser-defined data types, you define newmethods for the + function. Existing code

then seamlessly applies to the new data types.

Partly because of run-time type inference (augmented by optional type annotations), and partly because of a strong

focus on performance from the inception of the project, Julia's computational efficiency exceeds that of other dynamic

languages, and even rivals that of statically-compiled languages. For large scale numerical problems, speed always has

been, continues to be, andprobably alwayswill be crucial: the amount of data being processedhas easily kept pacewith

Moore's Law over the past decades.

Juliaaims tocreateanunprecedentedcombinationofease-of-use, power, andefficiency inasingle language. Inaddition

to the above, some advantages of Julia over comparable systems include:

• Free and open source (MIT licensed)

• User-defined types are as fast and compact as built-ins

• No need to vectorize code for performance; devectorized code is fast

• Designed for parallelism and distributed computation

• Lightweight "green" threading (coroutines)

• Unobtrusive yet powerful type system

• Elegant and extensible conversions and promotions for numeric and other types

• Efficient support for Unicode, including but not limited to UTF-8

• Call C functions directly (no wrappers or special APIs needed)

• Powerful shell-like capabilities for managing other processes

• Lisp-likemacros and other metaprogramming facilities

https://github.com/JuliaLang/julia/blob/master/LICENSE.md
https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

Chapter 5

Getting Started

Julia installation is straightforward,whetherusingprecompiledbinariesorcompiling fromsource. Downloadand install

Julia by following the instructions at https://julialang.org/downloads/.

The easiest way to learn and experimentwith Julia is by starting an interactive session (also known as a read-eval-print

loop or "repl") by double-clicking the Julia executable or running julia from the command line:

$ julia

_

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: https://docs.julialang.org

_ _ _| |_ __ _ | Type "?help" for help.

| | | | | | |/ _` | |

| | |_| | | | (_| | | Version 0.5.0-dev+2440 (2016-02-01 02:22 UTC)

_/ |__'_|_|_|__'_| | Commit 2bb94d6 (11 days old master)

|__/ | x86_64-apple-darwin13.1.0

julia> 1 + 2

3

julia> ans

3

Toexit the interactive session, type^D– thecontrol key togetherwith thedkeyor typequit(). Whenrun in interactive

mode, julia displays a banner and prompts the user for input. Once the user has entered a complete expression, such

as1 + 2, andhits enter, the interactive sessionevaluates theexpressionandshows its value. If anexpression is entered

into an interactive sessionwith a trailing semicolon, its value is not shown. The variableans is bound to the value of the

last evaluated expression whether it is shown or not. The ans variable is only bound in interactive sessions, not when

Julia code is run in other ways.

To evaluate expressions written in a source file file.jl, write include("file.jl").

To run code in a file non-interactively, you can give it as the first argument to the julia command:

$ julia script.jl arg1 arg2...

As the example implies, the following command-line arguments to julia are taken as command-line arguments to

the program script.jl, passed in the global constant ARGS. The name of the script itself is passed in as the global

PROGRAM_FILE. Note that ARGS is also set when script code is given using the -e option on the command line (see the

julia help output below) but PROGRAM_FILEwill be empty. For example, to just print the arguments given to a script,

you could do this:

$ julia -e 'println(PROGRAM_FILE); for x in ARGS; println(x); end' foo bar

15

https://julialang.org/downloads/

16 CHAPTER 5. GETTING STARTED

foo

bar

Or you could put that code into a script and run it:

$ echo 'println(PROGRAM_FILE); for x in ARGS; println(x); end' > script.jl

$ julia script.jl foo bar

script.jl

foo

bar

The -- delimiter can be used to separate command-line args to the scriptfile from args to Julia:

$ julia --color=yes -O -- foo.jl arg1 arg2..

Julia can be started in parallel modewith either the -p or the --machinefile options. -p nwill launch an additional

nworker processes, while --machinefile filewill launch aworker for each line in file file. Themachines defined

in filemust be accessible via a passwordless ssh login, with Julia installed at the same location as the current host.

Each machine definition takes the form [count*][user@]host[:port] [bind_addr[:port]] . user defaults to

currentuser,port to thestandardsshport. count is thenumberofworkers tospawnonthenode, anddefaults to1. The

optional bind-to bind_addr[:port] specifies the ip-address and port that other workers should use to connect to

this worker.

If you have code that youwant executedwhenever Julia is run, you can put it in ~/.juliarc.jl:

$ echo 'println("Greetings! ! ?")' > ~/.juliarc.jl

$ julia

Greetings! ! ?

...

Therearevariousways to runJulia codeandprovideoptions, similar to thoseavailable for theperlandrubyprograms:

julia [switches] -- [programfile] [args...]

-v, --version Display version information

-h, --help Print this message

-J, --sysimage <file> Start up with the given system image file

--precompiled={yes|no} Use precompiled code from system image if available

--compilecache={yes|no} Enable/disable incremental precompilation of modules

-H, --home <dir> Set location of `julia` executable

--startup-file={yes|no} Load ~/.juliarc.jl

--handle-signals={yes|no} Enable or disable Julia's default signal handlers

-e, --eval <expr> Evaluate <expr>

-E, --print <expr> Evaluate and show <expr>

-L, --load <file> Load <file> immediately on all processors

-p, --procs {N|auto} Integer value N launches N additional local worker processes

"auto" launches as many workers as the number of local cores

--machinefile <file> Run processes on hosts listed in <file>

-i Interactive mode; REPL runs and isinteractive() is true

-q, --quiet Quiet startup (no banner)

--color={yes|no} Enable or disable color text

--history-file={yes|no} Load or save history

5.1. RESOURCES 17

--compile={yes|no|all|min}Enable or disable JIT compiler, or request exhaustive compilation

-C, --cpu-target <target> Limit usage of cpu features up to <target>

-O, --optimize={0,1,2,3} Set the optimization level (default is 2 if unspecified or 3 if

specified as -O)

-g, -g <level> Enable / Set the level of debug info generation (default is 1 if

unspecified or 2 if specified as -g)

--inline={yes|no} Control whether inlining is permitted (overrides functions declared as

@inline)

--check-bounds={yes|no} Emit bounds checks always or never (ignoring declarations)

--math-mode={ieee,fast} Disallow or enable unsafe floating point optimizations (overrides

@fastmath declaration)

--depwarn={yes|no|error} Enable or disable syntax and method deprecation warnings ("error"

turns warnings into errors)

--output-o name Generate an object file (including system image data)

--output-ji name Generate a system image data file (.ji)

--output-bc name Generate LLVM bitcode (.bc)

--output-incremental=no Generate an incremental output file (rather than complete)

--code-coverage={none|user|all}, --code-coverage

Count executions of source lines (omitting setting is equivalent to "

user")

--track-allocation={none|user|all}, --track-allocation

Count bytes allocated by each source line

5.1 Resources

In addition to this manual, there are various other resources that may help new users get started with Julia:

• Julia and IJulia cheatsheet

• Learn Julia in a fewminutes

• Learn Julia the HardWay

• Julia by Example

• Hands-on Julia

• Tutorial for Homer Reid's numerical analysis class

• An introductory presentation

• Videos from the Julia tutorial atMIT

• YouTube videos from the JuliaCons

http://math.mit.edu/{~}stevenj/Julia-cheatsheet.pdf
https://learnxinyminutes.com/docs/julia/
https://github.com/chrisvoncsefalvay/learn-julia-the-hard-way
http://samuelcolvin.github.io/JuliaByExample/
https://github.com/dpsanders/hands_on_julia
http://homerreid.dyndns.org/teaching/18.330/JuliaProgramming.shtml
https://raw.githubusercontent.com/ViralBShah/julia-presentations/master/Fifth-Elephant-2013/Fifth-Elephant-2013.pdf
https://julialang.org/blog/2013/03/julia-tutorial-MIT
https://www.youtube.com/user/JuliaLanguage/playlists

Chapter 6

Variables

A variable, in Julia, is a name associated (or bound) to a value. It's useful when you want to store a value (that you

obtained after somemath, for example) for later use. For example:

Assign the value 10 to the variable x

julia> x = 10

10

Doing math with x's value

julia> x + 1

11

Reassign x's value

julia> x = 1 + 1

2

You can assign values of other types, like strings of text

julia> x = "Hello World!"

"Hello World!"

Julia provides an extremely flexible system for naming variables. Variable names are case-sensitive, and have no se-

mantic meaning (that is, the language will not treat variables differently based on their names).

julia> x = 1.0

1.0

julia> y = -3

-3

julia> Z = "My string"

"My string"

julia> customary_phrase = "Hello world!"

"Hello world!"

julia> UniversalDeclarationOfHumanRightsStart = ""

""

Unicode names (in UTF-8 encoding) are allowed:

19

20 CHAPTER 6. VARIABLES

julia> δ = 0.00001

1.0e-5

julia> = "Hello"

"Hello"

In the Julia REPL and several other Julia editing environments, you can typemanyUnicodemath symbols by typing the

backslashed LaTeX symbol name followed by tab. For example, the variable name δ can be entered by typing \delta-

tab, or even α by \alpha-tab-\hat- tab-_2-tab. (If you find a symbol somewhere, e.g. in someone else's code, that you

don't know how to type, the REPL help will tell you: just type ? and then paste the symbol.)

Julia will even let you redefine built-in constants and functions if needed:

julia> pi

π = 3.1415926535897...

julia> pi = 3

WARNING: imported binding for pi overwritten in module Main

3

julia> pi

3

julia> sqrt(100)

10.0

julia> sqrt = 4

WARNING: imported binding for sqrt overwritten in module Main

4

However, this is obviously not recommended to avoid potential confusion.

6.1 Allowed Variable Names

Variable namesmust beginwith a letter (A-Z or a-z), underscore, or a subset ofUnicode code points greater than 00A0;

in particular, Unicode character categories Lu/Ll/Lt/Lm/Lo/Nl (letters), Sc/So (currency and other symbols), and a few

other letter-like characters (e.g. a subset of the Smmath symbols) are allowed. Subsequent charactersmay also include

! and digits (0-9 and other characters in categories Nd/No), as well as other Unicode code points: diacritics and other

modifyingmarks (categoriesMn/Mc/Me/Sk), somepunctuation connectors (categoryPc), primes, anda fewother char-

acters.

Operators like + are also valid identifiers, but are parsed specially. In some contexts, operators can be used just like

variables; for example (+) refers to the addition function, and (+) = fwill reassign it. Most of the Unicode infix op-

erators (in category Sm), such as , are parsed as infix operators and are available for user-definedmethods (e.g. you can

use const = kron to define as an infix Kronecker product).

The only explicitly disallowed names for variables are the names of built-in statements:

julia> else = false

ERROR: syntax: unexpected "else"

julia> try = "No"

ERROR: syntax: unexpected "="

http://www.fileformat.info/info/unicode/category/index.htm

6.2. STYLISTIC CONVENTIONS 21

Some Unicode characters are considered to be equivalent in identifiers. Different ways of entering Unicode combin-

ing characters (e.g., accents) are treated as equivalent (specifically, Julia identifiers are NFC-normalized). The Unicode

characters (U+025B: Latin small letter opene) andµ (U+00B5: micro sign) are treated as equivalent to the correspond-

ing Greek letters, because the former are easily accessible via some input methods.

6.2 Stylistic Conventions

While Julia imposes few restrictions on valid names, it has become useful to adopt the following conventions:

• Names of variables are in lower case.

• Word separation can be indicated by underscores ('_'), but use of underscores is discouraged unless the name

would be hard to read otherwise.

• Names of Types and Modules begin with a capital letter and word separation is shown with upper camel case

instead of underscores.

• Names of functions and macros are in lower case, without underscores.

• Functions thatwrite to their arguments have names that end in !. These are sometimes called "mutating" or "in-

place" functions because they are intended to produce changes in their arguments after the function is called,

not just return a value.

For more information about stylistic conventions, see the Style Guide.

Chapter 7

Integers and Floating-Point Numbers

Integers andfloating-point values are the basic building blocks of arithmetic and computation. Built-in representations

of suchvaluesare callednumericprimitives,while representationsof integers andfloating-pointnumbersas immediate

values in codeareknownasnumeric literals. For example,1 is an integer literal,while1.0 is afloating-point literal; their

binary in-memory representations as objects are numeric primitives.

Julia provides a broad range of primitive numeric types, and a full complement of arithmetic and bitwise operators as

well as standard mathematical functions are defined over them. These map directly onto numeric types and opera-

tions that are natively supported on modern computers, thus allowing Julia to take full advantage of computational

resources. Additionally, Julia provides software support for Arbitrary Precision Arithmetic, which can handle opera-

tions on numeric values that cannot be represented effectively in native hardware representations, but at the cost of

relatively slower performance.

The following are Julia's primitive numeric types:

• Integer types:

Type Signed? Number of bits Smallest value Largest value

Int8 8 -2^7 2^7 - 1

UInt8 8 0 2^8 - 1

Int16 16 -2^15 2^15 - 1

UInt16 16 0 2^16 - 1

Int32 32 -2^31 2^31 - 1

UInt32 32 0 2^32 - 1

Int64 64 -2^63 2^63 - 1

UInt64 64 0 2^64 - 1

Int128 128 -2^127 2^127 - 1

UInt128 128 0 2^128 - 1

Bool N/A 8 false (0) true (1)

• Floating-point types:

Additionally, full support forComplexandRationalNumbers isbuilt on topof theseprimitivenumeric types. All numeric

types interoperate naturally without explicit casting, thanks to a flexible, user-extensible type promotion system.

23

24 CHAPTER 7. INTEGERS AND FLOATING-POINT NUMBERS

Type Precision Number of bits

Float16 half 16

Float32 single 32

Float64 double 64

7.1 Integers

Literal integers are represented in the standardmanner:

julia> 1

1

julia> 1234

1234

The default type for an integer literal depends onwhether the target systemhas a 32-bit architecture or a 64-bit archi-

tecture:

32-bit system:

julia> typeof(1)

Int32

64-bit system:

julia> typeof(1)

Int64

The Julia internal variable Sys.WORD_SIZE indicates whether the target system is 32-bit or 64-bit:

32-bit system:

julia> Sys.WORD_SIZE

32

64-bit system:

julia> Sys.WORD_SIZE

64

Julia also defines the types Int and UInt, which are aliases for the system's signed and unsigned native integer types

respectively:

32-bit system:

julia> Int

Int32

julia> UInt

UInt32

64-bit system:

julia> Int

Int64

julia> UInt

UInt64

https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Single_precision_floating-point_format
https://en.wikipedia.org/wiki/Double_precision_floating-point_format

7.1. INTEGERS 25

Larger integer literals that cannot be represented using only 32 bits but can be represented in 64 bits always create

64-bit integers, regardless of the system type:

32-bit or 64-bit system:

julia> typeof(3000000000)

Int64

Unsigned integers are input and output using the 0x prefix and hexadecimal (base 16) digits 0-9a-f (the capitalized

digits A-F also work for input). The size of the unsigned value is determined by the number of hex digits used:

julia> 0x1

0x01

julia> typeof(ans)

UInt8

julia> 0x123

0x0123

julia> typeof(ans)

UInt16

julia> 0x1234567

0x01234567

julia> typeof(ans)

UInt32

julia> 0x123456789abcdef

0x0123456789abcdef

julia> typeof(ans)

UInt64

This behavior is based on the observation that when one uses unsigned hex literals for integer values, one typically is

using them to represent a fixed numeric byte sequence, rather than just an integer value.

Recall that the variable ans is set to the value of the last expression evaluated in an interactive session. This does not

occur when Julia code is run in other ways.

Binary and octal literals are also supported:

julia> 0b10

0x02

julia> typeof(ans)

UInt8

julia> 0o10

0x08

julia> typeof(ans)

UInt8

26 CHAPTER 7. INTEGERS AND FLOATING-POINT NUMBERS

Theminimumandmaximumrepresentablevaluesofprimitivenumeric typessuchas integersaregivenbythetypemin()

and typemax() functions:

julia> (typemin(Int32), typemax(Int32))

(-2147483648, 2147483647)

julia> for T in [Int8,Int16,Int32,Int64,Int128,UInt8,UInt16,UInt32,UInt64,UInt128]

println("$(lpad(T,7)): [$(typemin(T)),$(typemax(T))]")

end

Int8: [-128,127]

Int16: [-32768,32767]

Int32: [-2147483648,2147483647]

Int64: [-9223372036854775808,9223372036854775807]

Int128: [-170141183460469231731687303715884105728,170141183460469231731687303715884105727]

UInt8: [0,255]

UInt16: [0,65535]

UInt32: [0,4294967295]

UInt64: [0,18446744073709551615]

UInt128: [0,340282366920938463463374607431768211455]

Thevalues returnedbytypemin() andtypemax() are alwaysof the givenargument type. (The aboveexpressionuses

several features we have yet to introduce, including for loops, Strings, and Interpolation, but should be easy enough to

understand for users with some existing programming experience.)

Overflow behavior

In Julia, exceeding themaximum representable value of a given type results in a wraparound behavior:

julia> x = typemax(Int64)

9223372036854775807

julia> x + 1

-9223372036854775808

julia> x + 1 == typemin(Int64)

true

Thus, arithmetic with Julia integers is actually a form of modular arithmetic. This reflects the characteristics of the

underlying arithmetic of integers as implemented on modern computers. In applications where overflow is possible,

explicit checking for wraparound produced by overflow is essential; otherwise, the BigInt type in Arbitrary Precision

Arithmetic is recommended instead.

Division errors

Integer division (thediv function) has twoexceptional cases: dividingby zero, anddividing the lowest negative number

(typemin()) by -1. Both of these cases throw a DivideError. The remainder and modulus functions (rem and mod)

throw a DivideErrorwhen their second argument is zero.

7.2 Floating-Point Numbers

Literal floating-point numbers are represented in the standard formats:

https://en.wikipedia.org/wiki/Modular_arithmetic

7.2. FLOATING-POINT NUMBERS 27

julia> 1.0

1.0

julia> 1.

1.0

julia> 0.5

0.5

julia> .5

0.5

julia> -1.23

-1.23

julia> 1e10

1.0e10

julia> 2.5e-4

0.00025

The above results are all Float64 values. Literal Float32 values can be entered bywriting an f in place of e:

julia> 0.5f0

0.5f0

julia> typeof(ans)

Float32

julia> 2.5f-4

0.00025f0

Values can be converted to Float32 easily:

julia> Float32(-1.5)

-1.5f0

julia> typeof(ans)

Float32

Hexadecimal floating-point literals are also valid, but only as Float64 values:

julia> 0x1p0

1.0

julia> 0x1.8p3

12.0

julia> 0x.4p-1

0.125

julia> typeof(ans)

Float64

28 CHAPTER 7. INTEGERS AND FLOATING-POINT NUMBERS

Half-precision floating-point numbers are also supported (Float16), but they are implemented in software and use

Float32 for calculations.

julia> sizeof(Float16(4.))

2

julia> 2*Float16(4.)

Float16(8.0)

The underscore _ can be used as digit separator:

julia> 10_000, 0.000_000_005, 0xdead_beef, 0b1011_0010

(10000, 5.0e-9, 0xdeadbeef, 0xb2)

Floating-point zero

Floating-pointnumbershave twozeros, positive zeroandnegative zero. Theyareequal toeachotherbuthavedifferent

binary representations, as can be seen using the bits function: :

julia> 0.0 == -0.0

true

julia> bits(0.0)

"00"

julia> bits(-0.0)

"1000"

Special floating-point values

There are three specified standard floating-point values that do not correspond to any point on the real number line:

Float16 Float32 Float64 Name Description

Inf16 Inf32 Inf positive infinity a value greater than all finite floating-point values

-Inf16 -Inf32 -Inf negative

infinity

a value less than all finite floating-point values

NaN16 NaN32 NaN not a number a value not == to any floating-point value (including

itself)

For further discussion of how these non-finite floating-point values are ordered with respect to each other and other

floats, seeNumeric Comparisons. By the IEEE754 standard, these floating-point values are the results of certain arith-

metic operations:

julia> 1/Inf

0.0

julia> 1/0

Inf

julia> -5/0

-Inf

https://en.wikipedia.org/wiki/Signed_zero
https://en.wikipedia.org/wiki/IEEE_754-2008

7.2. FLOATING-POINT NUMBERS 29

julia> 0.000001/0

Inf

julia> 0/0

NaN

julia> 500 + Inf

Inf

julia> 500 - Inf

-Inf

julia> Inf + Inf

Inf

julia> Inf - Inf

NaN

julia> Inf * Inf

Inf

julia> Inf / Inf

NaN

julia> 0 * Inf

NaN

The typemin() and typemax() functions also apply to floating-point types:

julia> (typemin(Float16),typemax(Float16))

(-Inf16, Inf16)

julia> (typemin(Float32),typemax(Float32))

(-Inf32, Inf32)

julia> (typemin(Float64),typemax(Float64))

(-Inf, Inf)

Machine epsilon

Most real numbers cannotbe representedexactlywithfloating-pointnumbers, andso formanypurposes it is important

to know the distance between two adjacent representable floating-point numbers, which is often known as machine

epsilon.

Julia provides eps(), which gives the distance between 1.0 and the next larger representable floating-point value:

julia> eps(Float32)

1.1920929f-7

julia> eps(Float64)

2.220446049250313e-16

julia> eps() # same as eps(Float64)

2.220446049250313e-16

https://en.wikipedia.org/wiki/Machine_epsilon
https://en.wikipedia.org/wiki/Machine_epsilon

30 CHAPTER 7. INTEGERS AND FLOATING-POINT NUMBERS

These values are 2.0^-23 and 2.0^-52 as Float32 and Float64 values, respectively. The eps() function can also

take a floating-point value as an argument, and gives the absolute difference between that value and the next repre-

sentable floating point value. That is, eps(x) yields a value of the same type as x such that x + eps(x) is the next

representable floating-point value larger than x:

julia> eps(1.0)

2.220446049250313e-16

julia> eps(1000.)

1.1368683772161603e-13

julia> eps(1e-27)

1.793662034335766e-43

julia> eps(0.0)

5.0e-324

The distance between two adjacent representable floating-point numbers is not constant, but is smaller for smaller

values and larger for larger values. In other words, the representable floating-point numbers are densest in the real

number line near zero, and grow sparser exponentially as onemoves farther away from zero. By definition, eps(1.0)

is the same as eps(Float64) since 1.0 is a 64-bit floating-point value.

Julia also provides the nextfloat() and prevfloat() functions which return the next largest or smallest repre-

sentable floating-point number to the argument respectively:

julia> x = 1.25f0

1.25f0

julia> nextfloat(x)

1.2500001f0

julia> prevfloat(x)

1.2499999f0

julia> bits(prevfloat(x))

"00111111100111111111111111111111"

julia> bits(x)

"00111111101000000000000000000000"

julia> bits(nextfloat(x))

"00111111101000000000000000000001"

This examplehighlights thegeneral principle that theadjacent representablefloating-pointnumbersalsohaveadjacent

binary integer representations.

Roundingmodes

If a number doesn't have an exact floating-point representation, it must be rounded to an appropriate representable

value, however, if wanted, the manner in which this rounding is done can be changed according to the rounding modes

presented in the IEEE 754 standard.

julia> x = 1.1; y = 0.1;

https://en.wikipedia.org/wiki/IEEE_754-2008

7.3. ARBITRARY PRECISION ARITHMETIC 31

julia> x + y

1.2000000000000002

julia> setrounding(Float64,RoundDown) do

x + y

end

1.2

The default mode used is always RoundNearest, which rounds to the nearest representable value, with ties rounded

towards the nearest value with an even least significant bit.

Warning

Rounding is generally only correct for basic arithmetic functions (+(), -(), *(), /() and sqrt()) and

type conversion operations. Many other functions assume the default RoundNearestmode is set, and

can give erroneous results when operating under other roundingmodes.

Background and References

Floating-point arithmetic entailsmany subtletieswhich canbe surprising to userswhoare unfamiliarwith the low-level

implementation details. However, these subtleties are described in detail in most books on scientific computation, and

also in the following references:

• The definitive guide to floating point arithmetic is the IEEE 754-2008 Standard; however, it is not available for

free online.

• For a brief but lucid presentation of how floating-point numbers are represented, see John D. Cook's article on

the subject as well as his introduction to some of the issues arising from how this representation differs in be-

havior from the idealized abstraction of real numbers.

• Also recommended is Bruce Dawson's series of blog posts on floating-point numbers.

• For an excellent, in-depth discussion of floating-point numbers and issues of numerical accuracy encountered

when computing with them, see David Goldberg's paper What Every Computer Scientist Should Know About

Floating-Point Arithmetic.

• For even more extensive documentation of the history of, rationale for, and issues with floating-point numbers,

as well as discussion of many other topics in numerical computing, see the collected writings ofWilliam Kahan,

commonly knownas the "Father of Floating-Point". Of particular interestmaybeAn Interviewwith theOldMan

of Floating-Point.

7.3 Arbitrary Precision Arithmetic

Toallow computationswith arbitrary-precision integers andfloating point numbers, Juliawraps theGNUMultiple Pre-

cision Arithmetic Library (GMP) and the GNUMPFR Library, respectively. The BigInt and BigFloat types are avail-

able in Julia for arbitrary precision integer and floating point numbers respectively.

Constructors exist to create these types from primitive numerical types, and parse() can be used to construct them

from AbstractStrings. Once created, they participate in arithmetic with all other numeric types thanks to Julia's

type promotion and conversionmechanism:

julia> BigInt(typemax(Int64)) + 1

9223372036854775808

http://standards.ieee.org/findstds/standard/754-2008.html
https://www.johndcook.com/blog/2009/04/06/anatomy-of-a-floating-point-number/
https://www.johndcook.com/blog/2009/04/06/numbers-are-a-leaky-abstraction/
https://randomascii.wordpress.com/2012/05/20/thats-not-normalthe-performance-of-odd-floats/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
https://people.eecs.berkeley.edu/{~}wkahan/
https://en.wikipedia.org/wiki/William_Kahan
https://people.eecs.berkeley.edu/{~}wkahan/ieee754status/754story.html
https://people.eecs.berkeley.edu/{~}wkahan/ieee754status/754story.html
https://gmplib.org
https://gmplib.org
http://www.mpfr.org

32 CHAPTER 7. INTEGERS AND FLOATING-POINT NUMBERS

julia> parse(BigInt, "123456789012345678901234567890") + 1

123456789012345678901234567891

julia> parse(BigFloat, "1.23456789012345678901")

1.234567890123456789010004

julia> BigFloat(2.0^66) / 3

2.459565876494606882133344e+19

julia> factorial(BigInt(40))

815915283247897734345611269596115894272000000000

However, type promotion between the primitive types above and BigInt/BigFloat is not automatic and must be

explicitly stated.

julia> x = typemin(Int64)

-9223372036854775808

julia> x = x - 1

9223372036854775807

julia> typeof(x)

Int64

julia> y = BigInt(typemin(Int64))

-9223372036854775808

julia> y = y - 1

-9223372036854775809

julia> typeof(y)

BigInt

The default precision (in number of bits of the significand) and roundingmode of BigFloat operations can be changed

globally by calling setprecision() and setrounding(), and all further calculations will take these changes in ac-

count. Alternatively, the precision or the rounding can be changed only within the execution of a particular block of

code by using the same functions with a do block:

julia> setrounding(BigFloat, RoundUp) do

BigFloat(1) + parse(BigFloat, "0.1")

end

1.1003

julia> setrounding(BigFloat, RoundDown) do

BigFloat(1) + parse(BigFloat, "0.1")

end

1.099986

julia> setprecision(40) do

BigFloat(1) + parse(BigFloat, "0.1")

end

1.1000000000004

7.4. NUMERIC LITERAL COEFFICIENTS 33

7.4 Numeric Literal Coefficients

To make common numeric formulas and expressions clearer, Julia allows variables to be immediately preceded by a

numeric literal, implyingmultiplication. This makes writing polynomial expressionsmuch cleaner:

julia> x = 3

3

julia> 2x^2 - 3x + 1

10

julia> 1.5x^2 - .5x + 1

13.0

It alsomakes writing exponential functionsmore elegant:

julia> 2^2x

64

Theprecedenceof numeric literal coefficients is the sameas thatof unaryoperators suchasnegation. So2^3x is parsed

as 2^(3x), and 2x^3 is parsed as 2*(x^3).

Numeric literals also work as coefficients to parenthesized expressions:

julia> 2(x-1)^2 - 3(x-1) + 1

3

Note

The precedence of numeric literal coefficients used for implicit multiplication is higher than other binary

operators such as multiplication (*), and division (/, \, and //). This means, for example, that 1 / 2im

equals -0.5im and 6 // 2(2 + 1) equals 1 // 1.

Additionally, parenthesized expressions can be used as coefficients to variables, implying multiplication of the expres-

sion by the variable:

julia> (x-1)x

6

Neither juxtapositionof twoparenthesizedexpressions, nor placing a variable before aparenthesizedexpression, how-

ever, can be used to imply multiplication:

julia> (x-1)(x+1)

ERROR: MethodError: objects of type Int64 are not callable

julia> x(x+1)

ERROR: MethodError: objects of type Int64 are not callable

Bothexpressions are interpretedas function application: anyexpression that is not anumeric literal, when immediately

followed by a parenthetical, is interpreted as a function applied to the values in parentheses (see Functions for more

about functions). Thus, in both of these cases, an error occurs since the left-hand value is not a function.

The above syntactic enhancements significantly reduce the visual noise incurred when writing commonmathematical

formulae. Note that nowhitespacemay come between a numeric literal coefficient and the identifier or parenthesized

expression which it multiplies.

34 CHAPTER 7. INTEGERS AND FLOATING-POINT NUMBERS

Syntax Conflicts

Juxtaposed literal coefficient syntax may conflict with two numeric literal syntaxes: hexadecimal integer literals and

engineering notation for floating-point literals. Here are some situations where syntactic conflicts arise:

• The hexadecimal integer literal expression 0xff could be interpreted as the numeric literal 0multiplied by the

variable xff.

• Thefloating-point literal expression1e10 could be interpreted as the numeric literal1multiplied by the variable

e10, and similarly with the equivalent E form.

In both cases, we resolve the ambiguity in favor of interpretation as a numeric literals:

• Expressions starting with 0x are always hexadecimal literals.

• Expressions starting with a numeric literal followed by e or E are always floating-point literals.

7.5 Literal zero and one

Julia provides functions which return literal 0 and 1 corresponding to a specified type or the type of a given variable.

Function Description

zero(x) Literal zero of type x or type of variable x

one(x) Literal one of type x or type of variable x

These functions are useful in Numeric Comparisons to avoid overhead from unnecessary type conversion.

Examples:

julia> zero(Float32)

0.0f0

julia> zero(1.0)

0.0

julia> one(Int32)

1

julia> one(BigFloat)

1.00

Chapter 8

Mathematical Operations and Elementary Functions

Julia provides a complete collection of basic arithmetic and bitwise operators across all of its numeric primitive types,

as well as providing portable, efficient implementations of a comprehensive collection of standardmathematical func-

tions.

8.1 Arithmetic Operators

The following arithmetic operators are supported on all primitive numeric types:

Expression Name Description

+x unary plus the identity operation

-x unaryminus maps values to their additive inverses

x + y binary plus performs addition

x - y binaryminus performs subtraction

x * y times performsmultiplication

x / y divide performs division

x \ y inverse divide equivalent to y / x

x ^ y power raises x to the yth power

x % y remainder equivalent to rem(x,y)

as well as the negation on Bool types:

Expression Name Description

!x negation changes true to false and vice versa

Julia's promotion system makes arithmetic operations on mixtures of argument types "just work" naturally and auto-

matically. See Conversion and Promotion for details of the promotion system.

Here are some simple examples using arithmetic operators:

julia> 1 + 2 + 3

6

julia> 1 - 2

-1

julia> 3*2/12

0.5

35

https://en.wikipedia.org/wiki/Arithmetic#Arithmetic_operations

36 CHAPTER 8. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS

(By convention,we tend to spaceoperatorsmore tightly if theyget appliedbeforeothernearbyoperators. For instance,

wewould generally write -x + 2 to reflect that first x gets negated, and then 2 is added to that result.)

8.2 Bitwise Operators

The following bitwise operators are supported on all primitive integer types:

Expression Name

~x bitwise not

x & y bitwise and

x | y bitwise or

x y bitwise xor (exclusive or)

x >>> y logical shift right

x >> y arithmetic shift right

x << y logical/arithmetic shift left

Here are some examples with bitwise operators:

julia> ~123

-124

julia> 123 & 234

106

julia> 123 | 234

251

julia> 123 234

145

julia> xor(123, 234)

145

julia> ~UInt32(123)

0xffffff84

julia> ~UInt8(123)

0x84

8.3 Updating operators

Every binary arithmetic and bitwise operator also has an updating version that assigns the result of the operation back

into its leftoperand. Theupdatingversionof thebinaryoperator is formedbyplacinga= immediatelyafter theoperator.

For example, writing x += 3 is equivalent to writing x = x + 3:

julia> x = 1

1

julia> x += 3

4

julia> x

4

https://en.wikipedia.org/wiki/Bitwise_operation#Bitwise_operators
https://en.wikipedia.org/wiki/Logical_shift
https://en.wikipedia.org/wiki/Arithmetic_shift

8.4. VECTORIZED "DOT" OPERATORS 37

The updating versions of all the binary arithmetic and bitwise operators are:

+= -= *= /= \= ÷= %= ^= &= |= = >>>= >>= <<=

Note

An updating operator rebinds the variable on the left-hand side. As a result, the type of the variable may

change.

julia> x = 0x01; typeof(x)

UInt8

julia> x *= 2 # Same as x = x * 2

2

julia> typeof(x)

Int64

8.4 Vectorized "dot" operators

For every binary operation like ^, there is a corresponding "dot" operation .^ that is automatically defined to perform

^ element-by-element on arrays. For example, [1,2,3] ^ 3 is not defined, since there is no standard mathemati-

cal meaning to "cubing" an array, but [1,2,3] .^ 3 is defined as computing the elementwise (or "vectorized") result

[1^3, 2^3, 3^3]. Similarly for unary operators like ! or √, there is a corresponding .√ that applies the operator

elementwise.

julia> [1,2,3] .^ 3

3-element Array{Int64,1}:

1

8

27

More specifically,a .^ b is parsed as the "dot" call(^).(a,b), which performs a broadcast operation: it can combine

arrays and scalars, arrays of the same size (performing the operation elementwise), and even arrays of different shapes

(e.g. combining row and column vectors to produce amatrix). Moreover, like all vectorized "dot calls," these "dot oper-

ators" are fusing. For example, if you compute 2 .* A.^2 .+ sin.(A) (or equivalently @. 2A^2 + sin(A), using

the@.macro) foranarrayA, it performsa single loopoverA, computing2a^2 + sin(a) foreachelementofA. Inpartic-

ular, nested dot calls like f.(g.(x)) are fused, and "adjacent" binary operators like x .+ 3 .* x.^2 are equivalent

to nested dot calls (+).(x, (*).(3, (^).(x, 2))).

Furthermore, "dotted" updating operators like a .+= b (or @. a += b) are parsed as a .= a .+ b, where .= is a

fused in-place assignment operation (see the dot syntax documentation).

Note the dot syntax is also applicable to user-defined operators. For example, if you define (A,B) = kron(A,B) to

give a convenient infix syntaxA B forKronecker products (kron), then[A,B] . [C,D]will compute[AC, BD]with

no additional coding.

8.5 Numeric Comparisons

Standard comparison operations are defined for all the primitive numeric types:

Here are some simple examples:

38 CHAPTER 8. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS

Operator Name

== equality

!=, ≠ inequality

< less than

<=, ≤ less than or equal to

> greater than

>=, ≥ greater than or equal to

julia> 1 == 1

true

julia> 1 == 2

false

julia> 1 != 2

true

julia> 1 == 1.0

true

julia> 1 < 2

true

julia> 1.0 > 3

false

julia> 1 >= 1.0

true

julia> -1 <= 1

true

julia> -1 <= -1

true

julia> -1 <= -2

false

julia> 3 < -0.5

false

Integersarecompared in thestandardmanner–bycomparisonofbits. Floating-pointnumbersarecomparedaccording

to the IEEE 754 standard:

• Finite numbers are ordered in the usual manner.

• Positive zero is equal but not greater than negative zero.

• Inf is equal to itself and greater than everything else except NaN.

• -Inf is equal to itself and less then everything else except NaN.

• NaN is not equal to, not less than, and not greater than anything, including itself.

https://en.wikipedia.org/wiki/IEEE_754-2008

8.5. NUMERIC COMPARISONS 39

The last point is potentially surprising and thus worth noting:

julia> NaN == NaN

false

julia> NaN != NaN

true

julia> NaN < NaN

false

julia> NaN > NaN

false

and can cause especial headaches with Arrays:

julia> [1 NaN] == [1 NaN]

false

Julia provides additional functions to test numbers for special values, which can be useful in situations like hash key

comparisons:

Function Tests if

isequal(x, y) x and y are identical

isfinite(x) x is a finite number

isinf(x) x is infinite

isnan(x) x is not a number

isequal() considers NaNs equal to each other:

julia> isequal(NaN, NaN)

true

julia> isequal([1 NaN], [1 NaN])

true

julia> isequal(NaN, NaN32)

true

isequal() can also be used to distinguish signed zeros:

julia> -0.0 == 0.0

true

julia> isequal(-0.0, 0.0)

false

Mixed-type comparisons between signed integers, unsigned integers, and floats can be tricky. A great deal of care has

been taken to ensure that Julia does them correctly.

For other types, isequal() defaults to calling ==(), so if you want to define equality for your own types then you

only need to add a ==()method. If you define your own equality function, you should probably define a corresponding

hash()method to ensure that isequal(x,y) implies hash(x) == hash(y).

40 CHAPTER 8. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS

Chaining comparisons

Unlikemost languages, with the notable exception of Python, comparisons can be arbitrarily chained:

julia> 1 < 2 <= 2 < 3 == 3 > 2 >= 1 == 1 < 3 != 5

true

Chaining comparisons is often quite convenient in numerical code. Chained comparisons use the&& operator for scalar

comparisons, and the & operator for elementwise comparisons, which allows them to work on arrays. For example, 0

.< A .< 1 gives a boolean array whose entries are true where the corresponding elements of A are between 0 and 1.

Note the evaluation behavior of chained comparisons:

julia> v(x) = (println(x); x)

v (generic function with 1 method)

julia> v(1) < v(2) <= v(3)

2

1

3

true

julia> v(1) > v(2) <= v(3)

2

1

false

The middle expression is only evaluated once, rather than twice as it would be if the expression were written as v(1)

< v(2) && v(2) <= v(3). However, the order of evaluations in a chained comparison is undefined. It is strongly

recommended not to use expressions with side effects (such as printing) in chained comparisons. If side effects are

required, the short-circuit && operator should be used explicitly (see Short-Circuit Evaluation).

Elementary Functions

Julia provides a comprehensive collection of mathematical functions and operators. These mathematical operations

are defined over as broad a class of numerical values as permit sensible definitions, including integers, floating-point

numbers, rationals, and complex numbers, wherever such definitionsmake sense.

Moreover, these functions (like any Julia function) can be applied in "vectorized" fashion to arrays and other collections

with the dot syntax f.(A), e.g. sin.(A)will compute the sine of each element of an array A.

8.6 Operator Precedence

Julia applies the following order of operations, from highest precedence to lowest:

For a complete list of every Julia operator's precedence, see the top of this file: src/julia-parser.scm

Youcanalsofindthenumericalprecedence foranygivenoperatorvia thebuilt-in functionBase.operator_precedence,

where higher numbers take precedence:

julia> Base.operator_precedence(:+), Base.operator_precedence(:*), Base.operator_precedence(:.)

(9, 11, 15)

julia> Base.operator_precedence(:+=), Base.operator_precedence(:(=)) # (Note the necessary parens

on `:(=)`)↪→

(1, 1)

https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Comparison_operators
https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm

8.7. NUMERICAL CONVERSIONS 41

Category Operators

Syntax . followed by ::

Exponentiation ^

Fractions //

Multiplication * / % & \

Bitshifts << >> >>>

Addition + - |

Syntax : .. followed by |>

Comparisons > < >= <= == === != !== <:

Control flow && followed by || followed by ?

Assignments = += -= *= /= //= \= ^= ÷= %= |= &= = <<= >>= >>>=

8.7 Numerical Conversions

Julia supports three forms of numerical conversion, which differ in their handling of inexact conversions.

• The notation T(x) or convert(T,x) converts x to a value of type T.

– IfT is afloating-point type, theresult is thenearest representablevalue,whichcouldbepositiveornegative

infinity.

– If T is an integer type, an InexactError is raised if x is not representable by T.

• x % T converts an integer x to a value of integer type T congruent to xmodulo 2^n, where n is the number of

bits in T. In other words, the binary representation is truncated to fit.

• The Rounding functions take a type T as an optional argument. For example, round(Int,x) is a shorthand for

Int(round(x)).

The following examples show the different forms.

julia> Int8(127)

127

julia> Int8(128)

ERROR: InexactError()

Stacktrace:

[1] Int8(::Int64) at ./sysimg.jl:77

julia> Int8(127.0)

127

julia> Int8(3.14)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Int8}, ::Float64) at ./float.jl:658

[2] Int8(::Float64) at ./sysimg.jl:77

julia> Int8(128.0)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Int8}, ::Float64) at ./float.jl:658

[2] Int8(::Float64) at ./sysimg.jl:77

42 CHAPTER 8. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS

julia> 127 % Int8

127

julia> 128 % Int8

-128

julia> round(Int8,127.4)

127

julia> round(Int8,127.6)

ERROR: InexactError()

Stacktrace:

[1] trunc(::Type{Int8}, ::Float64) at ./float.jl:651

[2] round(::Type{Int8}, ::Float64) at ./float.jl:337

See Conversion and Promotion for how to define your own conversions and promotions.

Rounding functions

Function Description Return type

round(x) round x to the nearest integer typeof(x)

round(T, x) round x to the nearest integer T

floor(x) round x towards -Inf typeof(x)

floor(T, x) round x towards -Inf T

ceil(x) round x towards +Inf typeof(x)

ceil(T, x) round x towards +Inf T

trunc(x) round x towards zero typeof(x)

trunc(T, x) round x towards zero T

Division functions

Function Description

div(x,y) truncated division; quotient rounded towards zero

fld(x,y) floored division; quotient rounded towards -Inf

cld(x,y) ceiling division; quotient rounded towards +Inf

rem(x,y) remainder; satisfies x == div(x,y)*y + rem(x,y); signmatches x

mod(x,y) modulus; satisfies x == fld(x,y)*y + mod(x,y); signmatches y

mod1(x,y) mod()with offset 1; returns r(0,y] for y>0 or r[y,0) for y<0, where mod(r, y) == mod(x,

y)

mod2pi(x) modulus with respect to 2pi; 0 <= mod2pi(x) < 2pi

divrem(x,y) returns (div(x,y),rem(x,y))

fldmod(x,y) returns (fld(x,y),mod(x,y))

gcd(x,y...) greatest positive common divisor of x, y,...

lcm(x,y...) least positive commonmultiple of x, y,...

8.7. NUMERICAL CONVERSIONS 43

Function Description

abs(x) a positive value with themagnitude of x

abs2(x) the squaredmagnitude of x

sign(x) indicates the sign of x, returning -1, 0, or +1

signbit(x) indicates whether the sign bit is on (true) or off (false)

copysign(x,y) a value with themagnitude of x and the sign of y

flipsign(x,y) a value with themagnitude of x and the sign of x*y

Function Description

sqrt(x), √x square root of x

cbrt(x), x cube root of x

hypot(x,y) hypotenuse of right-angled triangle with other sides of length x and y

exp(x) natural exponential function at x

expm1(x) accurate exp(x)-1 for x near zero

ldexp(x,n) x*2^n computed efficiently for integer values of n

log(x) natural logarithm of x

log(b,x) base b logarithm of x

log2(x) base 2 logarithm of x

log10(x) base 10 logarithm of x

log1p(x) accurate log(1+x) for x near zero

exponent(x) binary exponent of x

significand(x) binary significand (a.k.a. mantissa) of a floating-point number x

Sign and absolute value functions

Powers, logs and roots

For an overview of why functions like hypot(), expm1(), and log1p() are necessary and useful, see John D. Cook's

excellent pair of blog posts on the subject: expm1, log1p, erfc, and hypot.

Trigonometric and hyperbolic functions

All the standard trigonometric and hyperbolic functions are also defined:

sin cos tan cot sec csc

sinh cosh tanh coth sech csch

asin acos atan acot asec acsc

asinh acosh atanh acoth asech acsch

sinc cosc atan2

Theseareall single-argument functions,with theexceptionof atan2,whichgives theangle in radiansbetween the x-axis

and the point specified by its arguments, interpreted as x and y coordinates.

Additionally, sinpi(x) and cospi(x) are provided for more accurate computations of sin(pi*x) and cos(pi*x)

respectively.

In order to compute trigonometric functions with degrees instead of radians, suffix the function with d. For example,

sind(x) computes the sine of x where x is specified in degrees. The complete list of trigonometric functions with

degree variants is:

sind cosd tand cotd secd cscd

asind acosd atand acotd asecd acscd

Special functions

https://www.johndcook.com/blog/2010/06/07/math-library-functions-that-seem-unnecessary/
https://www.johndcook.com/blog/2010/06/02/whats-so-hard-about-finding-a-hypotenuse/
https://en.wikipedia.org/wiki/Atan2
https://en.wikipedia.org/wiki/Radian

44 CHAPTER 8. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS

Function Description

gamma(x) gamma function at x

lgamma(x) accurate log(gamma(x)) for large x

lfact(x) accurate log(factorial(x)) for large x; same as lgamma(x+1) for x > 1, zero otherwise

beta(x,y) beta function at x,y

lbeta(x,y) accurate log(beta(x,y)) for large x or y

https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Beta_function

Chapter 9

Complex and Rational Numbers

Julia ships with predefined types representing both complex and rational numbers, and supports all standard Mathe-

matical Operations and Elementary Functions on them. Conversion and Promotion are defined so that operations on

any combination of predefined numeric types, whether primitive or composite, behave as expected.

9.1 Complex Numbers

The global constant im is bound to the complex number i, representing the principal square root of -1. It was deemed

harmful to co-opt the name i for a global constant, since it is such a popular index variable name. Since Julia allows

numeric literals to be juxtaposed with identifiers as coefficients, this binding suffices to provide convenient syntax for

complex numbers, similar to the traditional mathematical notation:

julia> 1 + 2im

1 + 2im

You can perform all the standard arithmetic operations with complex numbers:

julia> (1 + 2im)*(2 - 3im)

8 + 1im

julia> (1 + 2im)/(1 - 2im)

-0.6 + 0.8im

julia> (1 + 2im) + (1 - 2im)

2 + 0im

julia> (-3 + 2im) - (5 - 1im)

-8 + 3im

julia> (-1 + 2im)^2

-3 - 4im

julia> (-1 + 2im)^2.5

2.7296244647840084 - 6.960664459571898im

julia> (-1 + 2im)^(1 + 1im)

-0.27910381075826657 + 0.08708053414102428im

julia> 3(2 - 5im)

45

46 CHAPTER 9. COMPLEX AND RATIONAL NUMBERS

6 - 15im

julia> 3(2 - 5im)^2

-63 - 60im

julia> 3(2 - 5im)^-1.0

0.20689655172413796 + 0.5172413793103449im

The promotionmechanism ensures that combinations of operands of different types just work:

julia> 2(1 - 1im)

2 - 2im

julia> (2 + 3im) - 1

1 + 3im

julia> (1 + 2im) + 0.5

1.5 + 2.0im

julia> (2 + 3im) - 0.5im

2.0 + 2.5im

julia> 0.75(1 + 2im)

0.75 + 1.5im

julia> (2 + 3im) / 2

1.0 + 1.5im

julia> (1 - 3im) / (2 + 2im)

-0.5 - 1.0im

julia> 2im^2

-2 + 0im

julia> 1 + 3/4im

1.0 - 0.75im

Note that 3/4im == 3/(4*im) == -(3/4*im), since a literal coefficient bindsmore tightly than division.

Standard functions tomanipulate complex values are provided:

julia> z = 1 + 2im

1 + 2im

julia> real(1 + 2im) # real part of z

1

julia> imag(1 + 2im) # imaginary part of z

2

julia> conj(1 + 2im) # complex conjugate of z

1 - 2im

julia> abs(1 + 2im) # absolute value of z

2.23606797749979

9.1. COMPLEX NUMBERS 47

julia> abs2(1 + 2im) # squared absolute value

5

julia> angle(1 + 2im) # phase angle in radians

1.1071487177940904

As usual, the absolute value (abs()) of a complex number is its distance from zero. abs2() gives the square of the

absolute value, and is of particular use for complex numberswhere it avoids taking a square root. angle() returns the

phase angle in radians (also known as the argument or arg function). The full gamut of other Elementary Functions is

also defined for complex numbers:

julia> sqrt(1im)

0.7071067811865476 + 0.7071067811865475im

julia> sqrt(1 + 2im)

1.272019649514069 + 0.7861513777574233im

julia> cos(1 + 2im)

2.0327230070196656 - 3.0518977991518im

julia> exp(1 + 2im)

-1.1312043837568135 + 2.4717266720048188im

julia> sinh(1 + 2im)

-0.4890562590412937 + 1.4031192506220405im

Note that mathematical functions typically return real values when applied to real numbers and complex values when

applied to complex numbers. For example, sqrt() behaves differently when applied to -1 versus -1 + 0im even

though -1 == -1 + 0im:

julia> sqrt(-1)

ERROR: DomainError:

sqrt will only return a complex result if called with a complex argument. Try sqrt(complex(x)).

Stacktrace:

[1] sqrt(::Int64) at ./math.jl:434

julia> sqrt(-1 + 0im)

0.0 + 1.0im

The literal numeric coefficient notation does not work when constructing a complex number from variables. Instead,

themultiplicationmust be explicitly written out:

julia> a = 1; b = 2; a + b*im

1 + 2im

However, this is not recommended; Use the complex() function instead to construct a complex value directly from its

real and imaginary parts:

julia> a = 1; b = 2; complex(a, b)

1 + 2im

48 CHAPTER 9. COMPLEX AND RATIONAL NUMBERS

This construction avoids themultiplication and addition operations.

Inf and NaN propagate through complex numbers in the real and imaginary parts of a complex number as described in

the Special floating-point values section:

julia> 1 + Inf*im

1.0 + Inf*im

julia> 1 + NaN*im

1.0 + NaN*im

9.2 Rational Numbers

Julia has a rational number type to represent exact ratios of integers. Rationals are constructed using the // operator:

julia> 2//3

2//3

If the numerator and denominator of a rational have common factors, they are reduced to lowest terms such that the

denominator is non-negative:

julia> 6//9

2//3

julia> -4//8

-1//2

julia> 5//-15

-1//3

julia> -4//-12

1//3

Thisnormalized formfora ratioof integers is unique, soequalityof rational values canbe testedbychecking forequality

of the numerator and denominator. The standardized numerator and denominator of a rational value can be extracted

using the numerator() and denominator() functions:

julia> numerator(2//3)

2

julia> denominator(2//3)

3

Direct comparison of the numerator and denominator is generally not necessary, since the standard arithmetic and

comparison operations are defined for rational values:

julia> 2//3 == 6//9

true

julia> 2//3 == 9//27

false

9.2. RATIONAL NUMBERS 49

julia> 3//7 < 1//2

true

julia> 3//4 > 2//3

true

julia> 2//4 + 1//6

2//3

julia> 5//12 - 1//4

1//6

julia> 5//8 * 3//12

5//32

julia> 6//5 / 10//7

21//25

Rationals can be easily converted to floating-point numbers:

julia> float(3//4)

0.75

Conversion from rational to floating-point respects the following identity for any integral values of a and b, with the

exception of the case a == 0 and b == 0:

julia> a = 1; b = 2;

julia> isequal(float(a//b), a/b)

true

Constructing infinite rational values is acceptable:

julia> 5//0

1//0

julia> -3//0

-1//0

julia> typeof(ans)

Rational{Int64}

Trying to construct a NaN rational value, however, is not:

julia> 0//0

ERROR: ArgumentError: invalid rational: zero(Int64)//zero(Int64)

Stacktrace:

[1] Rational{Int64}(::Int64, ::Int64) at ./rational.jl:13

[2] //(::Int64, ::Int64) at ./rational.jl:40

As usual, the promotion systemmakes interactions with other numeric types effortless:

50 CHAPTER 9. COMPLEX AND RATIONAL NUMBERS

julia> 3//5 + 1

8//5

julia> 3//5 - 0.5

0.09999999999999998

julia> 2//7 * (1 + 2im)

2//7 + 4//7*im

julia> 2//7 * (1.5 + 2im)

0.42857142857142855 + 0.5714285714285714im

julia> 3//2 / (1 + 2im)

3//10 - 3//5*im

julia> 1//2 + 2im

1//2 + 2//1*im

julia> 1 + 2//3im

1//1 - 2//3*im

julia> 0.5 == 1//2

true

julia> 0.33 == 1//3

false

julia> 0.33 < 1//3

true

julia> 1//3 - 0.33

0.0033333333333332993

Chapter 10

Strings

Strings are finite sequences of characters. Of course, the real trouble comes when one asks what a character is. The

characters that English speakers are familiarwith are the lettersA,B,C, etc., togetherwith numerals and commonpunc-

tuation symbols. These characters are standardized together with a mapping to integer values between 0 and 127 by

the ASCII standard. There are, of course, many other characters used in non-English languages, including variants of

the ASCII characters with accents and other modifications, related scripts such as Cyrillic and Greek, and scripts com-

pletely unrelated to ASCII and English, including Arabic, Chinese, Hebrew, Hindi, Japanese, and Korean. The Unicode

standard tackles the complexities of what exactly a character is, and is generally accepted as the definitive standard

addressing this problem. Depending on your needs, you can either ignore these complexities entirely and just pretend

that only ASCII characters exist, or you canwrite code that can handle any of the characters or encodings that onemay

encounter when handling non-ASCII text. Julia makes dealing with plain ASCII text simple and efficient, and handling

Unicode is as simple and efficient as possible. In particular, you can write C-style string code to process ASCII strings,

and they will work as expected, both in terms of performance and semantics. If such code encounters non-ASCII text,

it will gracefully fail with a clear error message, rather than silently introducing corrupt results. When this happens,

modifying the code to handle non-ASCII data is straightforward.

There are a few noteworthy high-level features about Julia's strings:

• The built-in concrete type used for strings (and string literals) in Julia is String. This supports the full range

of Unicode characters via the UTF-8 encoding. (A transcode() function is provided to convert to/from other

Unicode encodings.)

• All string types are subtypes of the abstract type AbstractString, and external packages define additional

AbstractString subtypes (e.g. for other encodings). If you define a function expecting a string argument, you

should declare the type as AbstractString in order to accept any string type.

• Like C and Java, but unlike most dynamic languages, Julia has a first-class type representing a single character,

called Char. This is just a special kind of 32-bit primitive type whose numeric value represents a Unicode code

point.

• As in Java, strings are immutable: the value of an AbstractString object cannot be changed. To construct a

different string value, you construct a new string from parts of other strings.

• Conceptually, a string is a partial function from indices to characters: for some index values, no character value is

returned, and instead an exception is thrown. This allows for efficient indexing into strings by the byte index of

an encoded representation rather than by a character index, which cannot be implemented both efficiently and

simply for variable-width encodings of Unicode strings.

51

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

52 CHAPTER 10. STRINGS

10.1 Characters

A Char value represents a single character: it is just a 32-bit primitive type with a special literal representation and

appropriatearithmeticbehaviors,whosenumeric value is interpretedasaUnicodecodepoint. Here is howCharvalues

are input and shown:

julia> 'x'

'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> typeof(ans)

Char

You can convert a Char to its integer value, i.e. code point, easily:

julia> Int('x')

120

julia> typeof(ans)

Int64

On 32-bit architectures, typeof(ans)will be Int32. You can convert an integer value back to a Char just as easily:

julia> Char(120)

'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

Not all integer values are valid Unicode code points, but for performance, the Char() conversion does not check that

every character value is valid. If you want to check that each converted value is a valid code point, use the isvalid()

function:

julia> Char(0x110000)

'\U110000': Unicode U+110000 (category Cn: Other, not assigned)

julia> isvalid(Char, 0x110000)

false

As of thiswriting, the validUnicode code points areU+00 throughU+d7ff andU+e000 throughU+10ffff. These have

not all been assigned intelligible meanings yet, nor are they necessarily interpretable by applications, but all of these

values are considered to be valid Unicode characters.

You can input anyUnicode character in single quotes using \u followed by up to four hexadecimal digits or \U followed

by up to eight hexadecimal digits (the longest valid value only requires six):

julia> '\u0'

'\0': ASCII/Unicode U+0000 (category Cc: Other, control)

julia> '\u78'

'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> '\u2200'

'': Unicode U+2200 (category Sm: Symbol, math)

julia> '\U10ffff'

'\U10ffff': Unicode U+10ffff (category Cn: Other, not assigned)

https://en.wikipedia.org/wiki/Code_point

10.2. STRING BASICS 53

Julia uses your system's locale and language settings to determine which characters can be printed as-is and which

must be output using the generic, escaped \u or \U input forms. In addition to these Unicode escape forms, all of C's

traditional escaped input forms can also be used:

julia> Int('\0')

0

julia> Int('\t')

9

julia> Int('\n')

10

julia> Int('\e')

27

julia> Int('\x7f')

127

julia> Int('\177')

127

julia> Int('\xff')

255

You can do comparisons and a limited amount of arithmetic with Char values:

julia> 'A' < 'a'

true

julia> 'A' <= 'a' <= 'Z'

false

julia> 'A' <= 'X' <= 'Z'

true

julia> 'x' - 'a'

23

julia> 'A' + 1

'B': ASCII/Unicode U+0042 (category Lu: Letter, uppercase)

10.2 String Basics

String literals are delimited by double quotes or triple double quotes:

julia> str = "Hello, world.\n"

"Hello, world.\n"

julia> """Contains "quote" characters"""

"Contains \"quote\" characters"

If youwant to extract a character from a string, you index into it:

https://en.wikipedia.org/wiki/C_syntax#Backslash_escapes
https://en.wikipedia.org/wiki/C_syntax#Backslash_escapes

54 CHAPTER 10. STRINGS

julia> str[1]

'H': ASCII/Unicode U+0048 (category Lu: Letter, uppercase)

julia> str[6]

',': ASCII/Unicode U+002c (category Po: Punctuation, other)

julia> str[end]

'\n': ASCII/Unicode U+000a (category Cc: Other, control)

All indexing in Julia is 1-based: the first element of any integer-indexed object is found at index 1. (Aswewill see below,

this does not necessarily mean that the last element is found at index n, where n is the length of the string.)

In any indexing expression, the keyword end can be used as a shorthand for the last index (computed by endof(str)).

You can perform arithmetic and other operations with end, just like a normal value:

julia> str[end-1]

'.': ASCII/Unicode U+002e (category Po: Punctuation, other)

julia> str[end÷2]

' ': ASCII/Unicode U+0020 (category Zs: Separator, space)

Using an index less than 1 or greater than end raises an error:

julia> str[0]

ERROR: BoundsError: attempt to access "Hello, world.\n"

at index [0]

[...]

julia> str[end+1]

ERROR: BoundsError: attempt to access "Hello, world.\n"

at index [15]

[...]

You can also extract a substring using range indexing:

julia> str[4:9]

"lo, wo"

Notice that the expressions str[k] and str[k:k] do not give the same result:

julia> str[6]

',': ASCII/Unicode U+002c (category Po: Punctuation, other)

julia> str[6:6]

","

The former is a single character valueof typeChar, while the latter is a string value that happens to contain only a single

character. In Julia these are very different things.

10.3 Unicode andUTF-8

Julia fully supports Unicode characters and strings. As discussed above, in character literals, Unicode code points can

be represented using Unicode \u and \U escape sequences, as well as all the standard C escape sequences. These can

likewise be used to write string literals:

julia> s = "\u2200 x \u2203 y"

" x y"

10.3. UNICODE ANDUTF-8 55

Whether theseUnicode characters are displayed as escapes or shown as special characters depends on your terminal's

locale settings and its support for Unicode. String literals are encoded using the UTF-8 encoding. UTF-8 is a variable-

width encoding,meaning that not all characters are encoded in the samenumber of bytes. InUTF-8, ASCII characters –

i.e. thosewith code points less than 0x80 (128) – are encoded as they are inASCII, using a single byte, while code points

0x80 and above are encoded usingmultiple bytes – up to four per character. This means that not every byte index into

aUTF-8 string is necessarily a valid index for a character. If you index into a string at such an invalid byte index, an error

is thrown:

julia> s[1]

'': Unicode U+2200 (category Sm: Symbol, math)

julia> s[2]

ERROR: UnicodeError: invalid character index

[...]

julia> s[3]

ERROR: UnicodeError: invalid character index

[...]

julia> s[4]

' ': ASCII/Unicode U+0020 (category Zs: Separator, space)

In this case, the character is a three-byte character, so the indices 2 and 3 are invalid and the next character's index is

4; this next valid index can be computed by nextind(s,1), and the next index after that by nextind(s,4) and so on.

Becauseof variable-lengthencodings, thenumberof characters in a string (givenbylength(s)) is not always the same

as the last index. If you iterate through the indices 1 through endof(s) and index into s, the sequence of characters

returned when errors aren't thrown is the sequence of characters comprising the string s. Thus we have the identity

thatlength(s) <= endof(s), since each character in a stringmust have its own index. The following is an inefficient

and verbose way to iterate through the characters of s:

julia> for i = 1:endof(s)

try

println(s[i])

catch

ignore the index error

end

end

x

y

Theblank linesactuallyhavespacesonthem. Fortunately, theaboveawkward idiomisunnecessary for iterating through

the characters in a string, since you can just use the string as an iterable object, no exception handling required:

julia> for c in s

println(c)

end

x

56 CHAPTER 10. STRINGS

y

Julia uses the UTF-8 encoding by default, and support for new encodings can be added by packages. For example, the

LegacyStrings.jl package implementsUTF16StringandUTF32String types. Additional discussionofotherencodings

and how to implement support for them is beyond the scope of this document for the time being. For further discussion

ofUTF-8encoding issues, see thesectionbelowonbytearray literals. Thetranscode() function isprovidedtoconvert

data between the various UTF-xx encodings, primarily for working with external data and libraries.

10.4 Concatenation

One of themost common and useful string operations is concatenation:

julia> greet = "Hello"

"Hello"

julia> whom = "world"

"world"

julia> string(greet, ", ", whom, ".\n")

"Hello, world.\n"

Julia also provides * for string concatenation:

julia> greet * ", " * whom * ".\n"

"Hello, world.\n"

While*may seem like a surprising choice to users of languages that provide+ for string concatenation, this use of* has

precedent in mathematics, particularly in abstract algebra.

Inmathematics,+usually denotes a commutativeoperation,where theorder of theoperandsdoes notmatter. Anexam-

ple of this is matrix addition, where A + B == B + A for any matrices A and B that have the same shape. In contrast,

* typically denotes a noncommutative operation, where the order of the operands does matter. An example of this is

matrix multiplication, where in general A * B != B * A. As with matrix multiplication, string concatenation is non-

commutative: greet * whom != whom * greet. As such,* is amorenatural choice foran infixstringconcatenation

operator, consistent with commonmathematical use.

More precisely, the set of all finite-length strings S together with the string concatenation operator * forms a free

monoid (S, *). The identity element of this set is the empty string, "". Whenever a free monoid is not commutative,

the operation is typically represented as \cdot, *, or a similar symbol, rather than +, which as stated usually implies

commutativity.

10.5 Interpolation

Constructingstringsusingconcatenationcanbecomeabit cumbersome, however. Toreducetheneedfor theseverbose

calls to string() or repeatedmultiplications, Julia allows interpolation into string literals using $, as in Perl:

julia> "$greet, $whom.\n"

"Hello, world.\n"

This is more readable and convenient and equivalent to the above string concatenation – the system rewrites this ap-

parent single string literal into a concatenation of string literals with variables.

The shortest complete expression after the$ is takenas theexpressionwhose value is tobe interpolated into the string.

Thus, you can interpolate any expression into a string using parentheses:

https://github.com/JuliaArchive/LegacyStrings.jl
https://en.wikipedia.org/wiki/Free_monoid
https://en.wikipedia.org/wiki/Free_monoid

10.6. TRIPLE-QUOTED STRING LITERALS 57

julia> "1 + 2 = $(1 + 2)"

"1 + 2 = 3"

Bothconcatenationandstring interpolationcallstring() toconvertobjects intostring form. Mostnon-AbstractString

objects are converted to strings closely corresponding to how they are entered as literal expressions:

julia> v = [1,2,3]

3-element Array{Int64,1}:

1

2

3

julia> "v: $v"

"v: [1, 2, 3]"

string() is the identity for AbstractString and Char values, so these are interpolated into strings as themselves,

unquoted and unescaped:

julia> c = 'x'

'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> "hi, $c"

"hi, x"

To include a literal $ in a string literal, escape it with a backslash:

julia> print("I have \$100 in my account.\n")

I have $100 in my account.

10.6 Triple-Quoted String Literals

When strings are created using triple-quotes ("""...""") they have some special behavior that can be useful for cre-

ating longer blocks of text. First, if the opening """ is followed by a newline, the newline is stripped from the resulting

string.

"""hello"""

is equivalent to

"""

hello"""

but

"""

hello"""

will contain a literal newline at the beginning. Trailingwhitespace is left unaltered. They can contain " symbolswithout

escaping. Triple-quotedstringsarealsodedented to the levelof the least-indented line. This isuseful fordefiningstrings

within code that is indented. For example:

58 CHAPTER 10. STRINGS

julia> str = """

Hello,

world.

"""

" Hello,\n world.\n"

In this case the final (empty) line before the closing """ sets the indentation level.

Note that linebreaks in literal strings,whether single-or triple-quoted, result in anewline (LF) character\n in the string,

even if your editor uses a carriage return \r (CR) or CRLF combination to end lines. To include a CR in a string, use an

explicit escape \r; for example, you can enter the literal string "a CRLF line ending\r\n".

10.7 CommonOperations

You can lexicographically compare strings using the standard comparison operators:

julia> "abracadabra" < "xylophone"

true

julia> "abracadabra" == "xylophone"

false

julia> "Hello, world." != "Goodbye, world."

true

julia> "1 + 2 = 3" == "1 + 2 = $(1 + 2)"

true

You can search for the index of a particular character using the search() function:

julia> search("xylophone", 'x')

1

julia> search("xylophone", 'p')

5

julia> search("xylophone", 'z')

0

You can start the search for a character at a given offset by providing a third argument:

julia> search("xylophone", 'o')

4

julia> search("xylophone", 'o', 5)

7

julia> search("xylophone", 'o', 8)

0

You can use the contains() function to check if a substring is contained in a string:

10.8. NON-STANDARD STRING LITERALS 59

julia> contains("Hello, world.", "world")

true

julia> contains("Xylophon", "o")

true

julia> contains("Xylophon", "a")

false

julia> contains("Xylophon", 'o')

ERROR: MethodError: no method matching contains(::String, ::Char)

Closest candidates are:

contains(!Matched::Function, ::Any, !Matched::Any) at reduce.jl:664

contains(::AbstractString, !Matched::AbstractString) at strings/search.jl:378

The last error is because 'o' is a character literal, and contains() is a generic function that looks for subsequences.

To look for an element in a sequence, youmust use in() instead.

Two other handy string functions are repeat() and join():

julia> repeat(".:Z:.", 10)

".:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:."

julia> join(["apples", "bananas", "pineapples"], ", ", " and ")

"apples, bananas and pineapples"

Some other useful functions include:

• endof(str) gives themaximal (byte) index that can be used to index into str.

• length(str) the number of characters in str.

• i = start(str) gives the first valid index at which a character can be found in str (typically 1).

• c, j = next(str,i) returnsnextcharacteratorafter the indexiandthenextvalidcharacter index following

that. With start() and endof(), can be used to iterate through the characters in str.

• ind2chr(str,i) gives the number of characters in str up to and including any at index i.

• chr2ind(str,j) gives the index at which the jth character in str occurs.

10.8 Non-Standard String Literals

Thereare situationswhenyouwant to construct a stringoruse string semantics, but thebehavior of the standard string

construct is not quite what is needed. For these kinds of situations, Julia provides non-standard string literals. A non-

standard string literal looks like a regular double-quoted string literal, but is immediately prefixed by an identifier, and

doesn't behave quite like a normal string literal. Regular expressions, byte array literals and version number literals, as

describedbelow, are someexamplesof non-standard string literals. Other examples are given in theMetaprogramming

section.

60 CHAPTER 10. STRINGS

10.9 Regular Expressions

Julia has Perl-compatible regular expressions (regexes), as provided by the PCRE library. Regular expressions are re-

lated to strings in two ways: the obvious connection is that regular expressions are used to find regular patterns in

strings; the other connection is that regular expressions are themselves input as strings, which are parsed into a state

machine that can be used to efficiently search for patterns in strings. In Julia, regular expressions are input using non-

standard string literals prefixedwithvarious identifiersbeginningwithr. Themostbasic regular expression literalwith-

out any options turned on just uses r"...":

julia> r"^\s*(?:#|$)"

r"^\s*(?:#|$)"

julia> typeof(ans)

Regex

To check if a regexmatches a string, use ismatch():

julia> ismatch(r"^\s*(?:#|$)", "not a comment")

false

julia> ismatch(r"^\s*(?:#|$)", "# a comment")

true

As one can see here, ismatch() simply returns true or false, indicating whether the given regexmatches the string or

not. Commonly, however, one wants to know not just whether a string matched, but also how it matched. To capture

this information about amatch, use the match() function instead:

julia> match(r"^\s*(?:#|$)", "not a comment")

julia> match(r"^\s*(?:#|$)", "# a comment")

RegexMatch("#")

If the regular expression does not match the given string, match() returns nothing – a special value that does not

print anything at the interactive prompt. Other than not printing, it is a completely normal value and you can test for it

programmatically:

m = match(r"^\s*(?:#|$)", line)

if m === nothing

println("not a comment")

else

println("blank or comment")

end

If a regular expression doesmatch, the value returned by match() is a RegexMatch object. These objects record how

the expressionmatches, including the substring that the patternmatches and any captured substrings, if there are any.

This example only captures the portion of the substring that matches, but perhaps we want to capture any non-blank

text after the comment character. We could do the following:

julia> m = match(r"^\s*(?:#\s*(.*?)\s*$|$)", "# a comment ")

RegexMatch("# a comment ", 1="a comment")

http://www.pcre.org/

10.9. REGULAR EXPRESSIONS 61

When calling match(), you have the option to specify an index at which to start the search. For example:

julia> m = match(r"[0-9]","aaaa1aaaa2aaaa3",1)

RegexMatch("1")

julia> m = match(r"[0-9]","aaaa1aaaa2aaaa3",6)

RegexMatch("2")

julia> m = match(r"[0-9]","aaaa1aaaa2aaaa3",11)

RegexMatch("3")

You can extract the following info from a RegexMatch object:

• the entire substringmatched: m.match

• the captured substrings as an array of strings: m.captures

• the offset at which the wholematch begins: m.offset

• the offsets of the captured substrings as a vector: m.offsets

Forwhenacapturedoesn'tmatch, insteadofasubstring,m.capturescontainsnothing in thatposition, andm.offsets

has a zero offset (recall that indices in Julia are 1-based, so a zero offset into a string is invalid). Here is a pair of some-

what contrived examples:

julia> m = match(r"(a|b)(c)?(d)", "acd")

RegexMatch("acd", 1="a", 2="c", 3="d")

julia> m.match

"acd"

julia> m.captures

3-element Array{Union{SubString{String}, Void},1}:

"a"

"c"

"d"

julia> m.offset

1

julia> m.offsets

3-element Array{Int64,1}:

1

2

3

julia> m = match(r"(a|b)(c)?(d)", "ad")

RegexMatch("ad", 1="a", 2=nothing, 3="d")

julia> m.match

"ad"

julia> m.captures

3-element Array{Union{SubString{String}, Void},1}:

"a"

62 CHAPTER 10. STRINGS

nothing

"d"

julia> m.offset

1

julia> m.offsets

3-element Array{Int64,1}:

1

0

2

It is convenient to have captures returned as an array so that one can use destructuring syntax to bind them to local

variables:

julia> first, second, third = m.captures; first

"a"

Captures can also be accessed by indexing the RegexMatch object with the number or name of the capture group:

julia> m=match(r"(?<hour>\d+):(?<minute>\d+)","12:45")

RegexMatch("12:45", hour="12", minute="45")

julia> m[:minute]

"45"

julia> m[2]

"45"

Captures canbe referenced ina substitution stringwhenusingreplace()byusing\n to refer to thenth capturegroup

and prefixing the substitution string with s. Capture group 0 refers to the entire match object. Named capture groups

can be referenced in the substitution with g<groupname>. For example:

julia> replace("first second", r"(\w+) (?<agroup>\w+)", s"\g<agroup> \1")

"second first"

Numbered capture groups can also be referenced as \g<n> for disambiguation, as in:

julia> replace("a", r".", s"\g<0>1")

"a1"

You can modify the behavior of regular expressions by some combination of the flags i, m, s, and x after the closing

double quote mark. These flags have the same meaning as they do in Perl, as explained in this excerpt from the perlre

manpage:

i Do case-insensitive pattern matching.

If locale matching rules are in effect, the case map is taken

from the current locale for code points less than 255, and

from Unicode rules for larger code points. However, matches

that would cross the Unicode rules/non-Unicode rules boundary

(ords 255/256) will not succeed.

m Treat string as multiple lines. That is, change "^" and "$"

http://perldoc.perl.org/perlre.html#Modifiers
http://perldoc.perl.org/perlre.html#Modifiers

10.10. BYTE ARRAY LITERALS 63

from matching the start or end of the string to matching the

start or end of any line anywhere within the string.

s Treat string as single line. That is, change "." to match any

character whatsoever, even a newline, which normally it would

not match.

Used together, as r""ms, they let the "." match any character

whatsoever, while still allowing "^" and "$" to match,

respectively, just after and just before newlines within the

string.

x Tells the regular expression parser to ignore most whitespace

that is neither backslashed nor within a character class. You

can use this to break up your regular expression into

(slightly) more readable parts. The '#' character is also

treated as a metacharacter introducing a comment, just as in

ordinary code.

For example, the following regex has all three flags turned on:

julia> r"a+.*b+.*?d$"ism

r"a+.*b+.*?d$"ims

julia> match(r"a+.*b+.*?d$"ism, "Goodbye,\nOh, angry,\nBad world\n")

RegexMatch("angry,\nBad world")

Triple-quoted regex strings, of the form r"""...""", are also supported (and may be convenient for regular expres-

sions containing quotationmarks or newlines).

10.10 Byte Array Literals

Another useful non-standard string literal is the byte-array string literal: b"...". This form lets youuse string notation

to express literal byte arrays – i.e. arrays of UInt8 values. The rules for byte array literals are the following:

• ASCII characters and ASCII escapes produce a single byte.

• \x and octal escape sequences produce the byte corresponding to the escape value.

• Unicode escape sequences produce a sequence of bytes encoding that code point in UTF-8.

There is some overlap between these rules since the behavior of \x and octal escapes less than 0x80 (128) are covered

by both of the first two rules, but here these rules agree. Together, these rules allow one to easily use ASCII characters,

arbitrary byte values, and UTF-8 sequences to produce arrays of bytes. Here is an example using all three:

julia> b"DATA\xff\u2200"

8-element Array{UInt8,1}:

0x44

0x41

0x54

0x41

0xff

0xe2

0x88

0x80

64 CHAPTER 10. STRINGS

The ASCII string "DATA" corresponds to the bytes 68, 65, 84, 65. \xff produces the single byte 255. The Unicode

escape \u2200 is encoded in UTF-8 as the three bytes 226, 136, 128. Note that the resulting byte array does not cor-

respond to a valid UTF-8 string – if you try to use this as a regular string literal, you will get a syntax error:

julia> "DATA\xff\u2200"

ERROR: syntax: invalid UTF-8 sequence

Also observe the significant distinction between \xff and \uff: the former escape sequence encodes the byte 255,

whereas the latter escape sequence represents the code point 255, which is encoded as two bytes in UTF-8:

julia> b"\xff"

1-element Array{UInt8,1}:

0xff

julia> b"\uff"

2-element Array{UInt8,1}:

0xc3

0xbf

In character literals, this distinction is glossed over and \xff is allowed to represent the code point 255, because char-

acters always represent code points. In strings, however, \x escapes always represent bytes, not code points, whereas

\u and \U escapes always represent code points, which are encoded in one or more bytes. For code points less than

\u80, it happens that the UTF-8 encoding of each code point is just the single byte produced by the corresponding \x

escape, so thedistinctioncansafelybe ignored. For theescapes\x80 through\xffascompared to\u80 through\uff,

however, there is a major difference: the former escapes all encode single bytes, which – unless followed by very spe-

cific continuation bytes – do not form valid UTF-8 data, whereas the latter escapes all represent Unicode code points

with two-byte encodings.

If this is all extremely confusing, try reading "The AbsoluteMinimum Every Software Developer Absolutely, Positively

Must Know About Unicode and Character Sets". It's an excellent introduction to Unicode and UTF-8, and may help

alleviate some confusion regarding thematter.

10.11 Version Number Literals

Version numbers can easily be expressedwith non-standard string literals of the form v"...". Version number literals

create VersionNumber objects which follow the specifications of semantic versioning, and therefore are composed

of major, minor and patch numeric values, followed by pre-release and build alpha-numeric annotations. For exam-

ple, v"0.2.1-rc1+win64" is broken intomajor version 0, minor version 2, patch version 1, pre-release rc1 and build

win64. When entering a version literal, everything except themajor version number is optional, therefore e.g. v"0.2"

is equivalent to v"0.2.0" (with empty pre-release/build annotations), v"2" is equivalent to v"2.0.0", and so on.

VersionNumber objects are mostly useful to easily and correctly compare two (or more) versions. For example, the

constantVERSIONholds Julia versionnumber as aVersionNumberobject, and thereforeone candefine someversion-

specific behavior using simple statements as:

if v"0.2" <= VERSION < v"0.3-"

do something specific to 0.2 release series

end

Note that in the above example the non-standard version number v"0.3-" is used, with a trailing -: this notation is a

Julia extension of the standard, and it's used to indicate a version which is lower than any 0.3 release, including all of

its pre-releases. So in the above example the code would only run with stable 0.2 versions, and exclude such versions

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
http://semver.org

10.12. RAW STRING LITERALS 65

as v"0.3.0-rc1". In order to also allow for unstable (i.e. pre-release) 0.2 versions, the lower bound check should be

modified like this: v"0.2-" <= VERSION.

Another non-standard version specification extension allows one to use a trailing + to express an upper limit on build

versions, e.g. VERSION > v"0.2-rc1+" can be used to mean any version above 0.2-rc1 and any of its builds: it will

return false for version v"0.2-rc1+win64" and true for v"0.2-rc2".

It is goodpractice touse such special versions in comparisons (particularly, the trailing- should alwaysbeusedonupper

bounds unless there's a good reasonnot to), but theymust not beused as the actual versionnumber of anything, as they

are invalid in the semantic versioning scheme.

Besides being used for the VERSION constant, VersionNumber objects are widely used in the Pkgmodule, to specify

packages versions and their dependencies.

10.12 Raw String Literals

Rawstringswithout interpolationorunescapingcanbeexpressedwithnon-standardstring literalsof the formraw"...".

Raw string literals create ordinary String objects which contain the enclosed contents exactly as entered with no in-

terpolation or unescaping. This is useful for strings which contain code or markup in other languages which use $ or \

as special characters. The exception is quotationmarks that still must be escaped, e.g. raw"\"" is equivalent to "\"".

Chapter 11

Functions

In Julia, a function is an object that maps a tuple of argument values to a return value. Julia functions are not pure

mathematical functions, in the sense that functions can alter and be affected by the global state of the program. The

basic syntax for defining functions in Julia is:

julia> function f(x,y)

x + y

end

f (generic function with 1 method)

There is a second,more terse syntax for defining a function in Julia. The traditional function declaration syntax demon-

strated above is equivalent to the following compact "assignment form":

julia> f(x,y) = x + y

f (generic function with 1 method)

In the assignment form, the body of the function must be a single expression, although it can be a compound expres-

sion (see Compound Expressions). Short, simple function definitions are common in Julia. The short function syntax is

accordingly quite idiomatic, considerably reducing both typing and visual noise.

A function is called using the traditional parenthesis syntax:

julia> f(2,3)

5

Without parentheses, the expression f refers to the function object, and can be passed around like any value:

julia> g = f;

julia> g(2,3)

5

Aswith variables, Unicode can also be used for function names:

julia> ∑(x,y) = x + y

∑ (generic function with 1 method)

julia> ∑(2, 3)

5

67

68 CHAPTER 11. FUNCTIONS

11.1 Argument Passing Behavior

Julia function arguments follow a convention sometimes called "pass-by-sharing", which means that values are not

copied when they are passed to functions. Function arguments themselves act as new variable bindings (new locations

that can refer to values), but the values they refer to are identical to the passed values. Modifications tomutable values

(such as Arrays) made within a function will be visible to the caller. This is the same behavior found in Scheme, most

Lisps, Python, Ruby and Perl, among other dynamic languages.

11.2 The returnKeyword

The value returned by a function is the value of the last expression evaluated, which, by default, is the last expression

in the body of the function definition. In the example function, f, from the previous section this is the value of the ex-

pression x + y. As in C and most other imperative or functional languages, the return keyword causes a function to

return immediately, providing an expression whose value is returned:

function g(x,y)

return x * y

x + y

end

Since function definitions can be entered into interactive sessions, it is easy to compare these definitions:

julia> f(x,y) = x + y

f (generic function with 1 method)

julia> function g(x,y)

return x * y

x + y

end

g (generic function with 1 method)

julia> f(2,3)

5

julia> g(2,3)

6

Of course, in a purely linear function body like g, the usage of return is pointless since the expression x + y is never

evaluated and we could simply make x * y the last expression in the function and omit the return. In conjunction

with other control flow, however, return is of real use. Here, for example, is a function that computes the hypotenuse

length of a right triangle with sides of length x and y, avoiding overflow:

julia> function hypot(x,y)

x = abs(x)

y = abs(y)

if x > y

r = y/x

return x*sqrt(1+r*r)

end

if y == 0

return zero(x)

end

11.3. OPERATORS ARE FUNCTIONS 69

r = x/y

return y*sqrt(1+r*r)

end

hypot (generic function with 1 method)

julia> hypot(3, 4)

5.0

There are three possible points of return from this function, returning the values of three different expressions, de-

pending on the values of x and y. The return on the last line could be omitted since it is the last expression.

11.3 Operators Are Functions

In Julia, most operators are just functions with support for special syntax. (The exceptions are operators with special

evaluation semantics like && and ||. These operators cannot be functions since Short-Circuit Evaluation requires that

their operands are not evaluated before evaluation of the operator.) Accordingly, you can also apply them using paren-

thesized argument lists, just as youwould any other function:

julia> 1 + 2 + 3

6

julia> +(1,2,3)

6

The infix form isexactlyequivalent to the functionapplication form– in fact the former isparsed toproduce the function

call internally. This also means that you can assign and pass around operators such as +() and *() just like you would

with other function values:

julia> f = +;

julia> f(1,2,3)

6

Under the name f, the function does not support infix notation, however.

11.4 OperatorsWith Special Names

A few special expressions correspond to calls to functions with non-obvious names. These are:

Expression Calls

[A B C ...] hcat()

[A; B; C; ...] vcat()

[A B; C D; ...] hvcat()

A' ctranspose()

A.' transpose()

1:n colon()

A[i] getindex()

A[i]=x setindex!()

These functions are included in the Base.Operatorsmodule even though they do not have operator-like names.

70 CHAPTER 11. FUNCTIONS

11.5 Anonymous Functions

Functions in Julia are first-class objects: they can be assigned to variables, and called using the standard function call

syntax fromthevariable theyhavebeenassigned to. Theycanbeusedasarguments, and theycanbe returnedasvalues.

They can also be created anonymously, without being given a name, using either of these syntaxes:

julia> x -> x^2 + 2x - 1

(::#1) (generic function with 1 method)

julia> function (x)

x^2 + 2x - 1

end

(::#3) (generic function with 1 method)

This creates a function taking one argument x and returning the value of the polynomial x^2 + 2x - 1 at that value.

Notice that the result is a generic function, but with a compiler-generated name based on consecutive numbering.

The primary use for anonymous functions is passing them to functions which take other functions as arguments. A

classic example is map(), which applies a function to each value of an array and returns a new array containing the

resulting values:

julia> map(round, [1.2,3.5,1.7])

3-element Array{Float64,1}:

1.0

4.0

2.0

This is fine if a named function effecting the transform onewants already exists to pass as the first argument to map().

Often, however, a ready-to-use, named function does not exist. In these situations, the anonymous function construct

allows easy creation of a single-use function object without needing a name:

julia> map(x -> x^2 + 2x - 1, [1,3,-1])

3-element Array{Int64,1}:

2

14

-2

An anonymous function accepting multiple arguments can be written using the syntax (x,y,z)->2x+y-z. A zero-

argument anonymous function is written as ()->3. The idea of a function with no arguments may seem strange, but is

useful for "delaying" a computation. In this usage, a block of code iswrapped in a zero-argument function, which is later

invoked by calling it as f().

11.6 Multiple Return Values

In Julia, one returns a tupleof values to simulate returningmultiple values. However, tuples canbe createdanddestruc-

tured without needing parentheses, thereby providing an illusion that multiple values are being returned, rather than

a single tuple value. For example, the following function returns a pair of values:

julia> function foo(a,b)

a+b, a*b

end

foo (generic function with 1 method)

https://en.wikipedia.org/wiki/First-class_citizen

11.7. VARARGS FUNCTIONS 71

If you call it in an interactive session without assigning the return value anywhere, youwill see the tuple returned:

julia> foo(2,3)

(5, 6)

A typical usage of such a pair of return values, however, extracts each value into a variable. Julia supports simple tuple

"destructuring" that facilitates this:

julia> x, y = foo(2,3)

(5, 6)

julia> x

5

julia> y

6

You can also returnmultiple values via an explicit usage of the return keyword:

function foo(a,b)

return a+b, a*b

end

This has the exact same effect as the previous definition of foo.

11.7 Varargs Functions

It is often convenient to be able to write functions taking an arbitrary number of arguments. Such functions are tra-

ditionally known as "varargs" functions, which is short for "variable number of arguments". You can define a varargs

function by following the last argument with an ellipsis:

julia> bar(a,b,x...) = (a,b,x)

bar (generic function with 1 method)

The variables a and b are bound to the first two argument values as usual, and the variable x is bound to an iterable

collection of the zero ormore values passed to bar after its first two arguments:

julia> bar(1,2)

(1, 2, ())

julia> bar(1,2,3)

(1, 2, (3,))

julia> bar(1, 2, 3, 4)

(1, 2, (3, 4))

julia> bar(1,2,3,4,5,6)

(1, 2, (3, 4, 5, 6))

In all these cases, x is bound to a tuple of the trailing values passed to bar.

It ispossible toconstrain thenumberofvaluespassedasavariableargument; thiswill bediscussed later inParametrically-

constrained Varargs methods.

On theflip side, it is oftenhandy to "splice" the values contained in an iterable collection into a function call as individual

arguments. To do this, one also uses ... but in the function call instead:

72 CHAPTER 11. FUNCTIONS

julia> x = (3, 4)

(3, 4)

julia> bar(1,2,x...)

(1, 2, (3, 4))

In this case a tuple of values is spliced into a varargs call precisely where the variable number of arguments go. This

need not be the case, however:

julia> x = (2, 3, 4)

(2, 3, 4)

julia> bar(1,x...)

(1, 2, (3, 4))

julia> x = (1, 2, 3, 4)

(1, 2, 3, 4)

julia> bar(x...)

(1, 2, (3, 4))

Furthermore, the iterable object spliced into a function call need not be a tuple:

julia> x = [3,4]

2-element Array{Int64,1}:

3

4

julia> bar(1,2,x...)

(1, 2, (3, 4))

julia> x = [1,2,3,4]

4-element Array{Int64,1}:

1

2

3

4

julia> bar(x...)

(1, 2, (3, 4))

Also, the function that arguments are spliced into need not be a varargs function (although it often is):

julia> baz(a,b) = a + b;

julia> args = [1,2]

2-element Array{Int64,1}:

1

2

julia> baz(args...)

3

julia> args = [1,2,3]

3-element Array{Int64,1}:

1

11.8. OPTIONAL ARGUMENTS 73

2

3

julia> baz(args...)

ERROR: MethodError: no method matching baz(::Int64, ::Int64, ::Int64)

Closest candidates are:

baz(::Any, ::Any) at none:1

As you can see, if the wrong number of elements are in the spliced container, then the function call will fail, just as it

would if toomany arguments were given explicitly.

11.8 Optional Arguments

In many cases, function arguments have sensible default values and thereforemight not need to be passed explicitly in

every call. For example, the library function parse(T, num, base) interprets a string as a number in some base. The

base argument defaults to 10. This behavior can be expressed concisely as:

function parse(T, num, base=10)

###

end

With this definition, the function canbe calledwith either twoor three arguments, and10 is automatically passedwhen

a third argument is not specified:

julia> parse(Int,"12",10)

12

julia> parse(Int,"12",3)

5

julia> parse(Int,"12")

12

Optional arguments are actually just a convenient syntax for writing multiple method definitions with different num-

bers of arguments (see Note onOptional and keyword Arguments).

11.9 Keyword Arguments

Some functions need a large number of arguments, or have a large number of behaviors. Remembering how to call such

functions can be difficult. Keyword arguments canmake these complex interfaces easier to use and extend by allowing

arguments to be identified by name instead of only by position.

For example, consider a functionplot that plots a line. This functionmight havemanyoptions, for controlling line style,

width, color, and so on. If it accepts keyword arguments, a possible call might look like plot(x, y, width=2), where

we have chosen to specify only line width. Notice that this serves two purposes. The call is easier to read, since we can

label an argument with its meaning. It also becomes possible to pass any subset of a large number of arguments, in any

order.

Functions with keyword arguments are defined using a semicolon in the signature:

function plot(x, y; style="solid", width=1, color="black")

###

end

74 CHAPTER 11. FUNCTIONS

When the function is called, the semicolon is optional: one can either call plot(x, y, width=2) or plot(x, y;

width=2), but the former style ismorecommon. Anexplicit semicolon is requiredonly forpassingvarargsor computed

keywords as described below.

Keyword argument default values are evaluated onlywhen necessary (when a corresponding keyword argument is not

passed), and in left-to-right order. Therefore default expressionsmay refer to prior keyword arguments.

The types of keyword arguments can bemade explicit as follows:

function f(;x::Int64=1)

###

end

Extra keyword arguments can be collected using ..., as in varargs functions:

function f(x; y=0, kwargs...)

###

end

Insidef,kwargswill beacollectionof(key,value) tuples,whereeachkey is a symbol. Suchcollections canbepassed

as keyword arguments using a semicolon in a call, e.g. f(x, z=1; kwargs...). Dictionaries can also be used for this

purpose.

One can also pass (key,value) tuples, or any iterable expression (such as a => pair) that can be assigned to such a

tuple, explicitly after a semicolon. For example, plot(x, y; (:width,2)) and plot(x, y; :width => 2) are

equivalent to plot(x, y, width=2). This is useful in situations where the keyword name is computed at runtime.

The nature of keyword argumentsmakes it possible to specify the same argumentmore than once. For example, in the

call plot(x, y; options..., width=2) it is possible that the options structure also contains a value for width.

In such a case the rightmost occurrence takes precedence; in this example, width is certain to have the value 2.

11.10 Evaluation Scope of Default Values

Optional and keyword arguments differ slightly in how their default values are evaluated. When optional argument

default expressions are evaluated, only previous arguments are in scope. In contrast, all the arguments are in scope

when keyword arguments default expressions are evaluated. For example, given this definition:

function f(x, a=b, b=1)

###

end

theb ina=b refers toab inanouter scope, not thesubsequentargumentb. However, ifaandbwerekeywordarguments

instead, then both would be created in the same scope and the b in a=b would refer to the subsequent argument b

(shadowing any b in an outer scope), which would result in an undefined variable error (since the default expressions

are evaluated left-to-right, and b has not been assigned yet).

11.11 Do-Block Syntax for Function Arguments

Passing functionsasarguments toother functions is apowerful technique, but the syntax for it is not always convenient.

Such calls are especially awkward towritewhen the function argument requiresmultiple lines. As an example, consider

calling map() on a function with several cases:

11.11. DO-BLOCK SYNTAX FOR FUNCTION ARGUMENTS 75

map(x->begin

if x < 0 && iseven(x)

return 0

elseif x == 0

return 1

else

return x

end

end,

[A, B, C])

Julia provides a reservedword do for rewriting this codemore clearly:

map([A, B, C]) do x

if x < 0 && iseven(x)

return 0

elseif x == 0

return 1

else

return x

end

end

The do x syntax creates an anonymous function with argument x and passes it as the first argument to map(). Simi-

larly, do a,bwould create a two-argument anonymous function, and a plain dowould declare that what follows is an

anonymous function of the form () ->

Howtheseargumentsare initializeddependsonthe"outer" function; here,map()will sequentially setx toA,B,C, calling

the anonymous function on each, just as would happen in the syntax map(func, [A, B, C]).

This syntaxmakes it easier to use functions to effectively extend the language, since calls look like normal code blocks.

Therearemanypossibleusesquitedifferent frommap(), suchasmanagingsystemstate. Forexample, there is aversion

of open() that runs code ensuring that the opened file is eventually closed:

open("outfile", "w") do io

write(io, data)

end

This is accomplished by the following definition:

function open(f::Function, args...)

io = open(args...)

try

f(io)

finally

close(io)

end

end

Here, open() first opens the file for writing and then passes the resulting output stream to the anonymous function

you defined in the do ... end block. After your function exits, open() will make sure that the stream is properly

closed, regardless of whether your function exited normally or threw an exception. (The try/finally construct will

be described in Control Flow.)

With the do block syntax, it helps to check the documentation or implementation to know how the arguments of the

user function are initialized.

76 CHAPTER 11. FUNCTIONS

11.12 Dot Syntax for Vectorizing Functions

In technical-computing languages, it is common to have "vectorized" versions of functions, which simply apply a given

function f(x) to each element of an array A to yield a new array via f(A). This kind of syntax is convenient for data

processing, but in other languages vectorization is also often required for performance: if loops are slow, the "vector-

ized" version of a function can call fast library codewritten in a low-level language. In Julia, vectorized functions are not

required for performance, and indeed it is often beneficial towrite your own loops (see PerformanceTips), but they can

still be convenient. Therefore, any Julia function f can be applied elementwise to any array (or other collection) with

the syntax f.(A). For example sin can be applied to all elements in the vector A, like so:

julia> A = [1.0, 2.0, 3.0]

3-element Array{Float64,1}:

1.0

2.0

3.0

julia> sin.(A)

3-element Array{Float64,1}:

0.841471

0.909297

0.14112

Of course, you can omit the dot if you write a specialized "vector" method of f, e.g. via f(A::AbstractArray) =

map(f, A), and this is just as efficient as f.(A). But that approach requires you to decide in advance which functions

youwant to vectorize.

More generally, f.(args...) is actually equivalent to broadcast(f, args...), which allows you to operate on

multiple arrays (even of different shapes), or a mix of arrays and scalars (see Broadcasting). For example, if you have

f(x,y) = 3x + 4y, thenf.(pi,A)will returnanewarrayconsistingoff(pi,a) foreacha inA, andf.(vector1,vector2)

will returnanewvector consistingoff(vector1[i],vector2[i]) for each indexi (throwinganexception if thevec-

tors have different length).

julia> f(x,y) = 3x + 4y;

julia> A = [1.0, 2.0, 3.0];

julia> B = [4.0, 5.0, 6.0];

julia> f.(pi, A)

3-element Array{Float64,1}:

13.4248

17.4248

21.4248

julia> f.(A, B)

3-element Array{Float64,1}:

19.0

26.0

33.0

Moreover, nested f.(args...) calls are fused into a single broadcast loop. For example, sin.(cos.(X)) is equiv-

alent to broadcast(x -> sin(cos(x)), X), similar to [sin(cos(x)) for x in X]: there is only a single loop

overX, and a single array is allocated for the result. [In contrast, sin(cos(X)) in a typical "vectorized" languagewould

11.13. FURTHER READING 77

first allocate one temporary array for tmp=cos(X), and then compute sin(tmp) in a separate loop, allocating a sec-

ond array.] This loop fusion is not a compiler optimization thatmayormaynot occur, it is a syntactic guaranteewhenever

nestedf.(args...) calls are encountered. Technically, the fusion stops as soonas a "non-dot" function call is encoun-

tered; for example, in sin.(sort(cos.(X))) the sin and cos loops cannot be merged because of the intervening

sort function.

Finally, the maximum efficiency is typically achieved when the output array of a vectorized operation is pre-allocated,

so that repeated calls do not allocate new arrays over and over again for the results (Pre-allocating outputs:). A conve-

nient syntax for this isX .= ..., which isequivalent tobroadcast!(identity, X, ...) except that, asabove, the

broadcast! loop is fusedwithanynested"dot"calls. Forexample,X .= sin.(Y) isequivalent tobroadcast!(sin,

X, Y), overwriting X with sin.(Y) in-place. If the left-hand side is an array-indexing expression, e.g. X[2:end] .=

sin.(Y), then it translates tobroadcast! onaview, e.g. broadcast!(sin, view(X, 2:endof(X)), Y), so that

the left-hand side is updated in-place.

Since adding dots tomany operations and function calls in an expression can be tedious and lead to code that is difficult

to read, the macro @. is provided to convert every function call, operation, and assignment in an expression into the

"dotted" version.

julia> Y = [1.0, 2.0, 3.0, 4.0];

julia> X = similar(Y); # pre-allocate output array

julia> @. X = sin(cos(Y)) # equivalent to X .= sin.(cos.(Y))

4-element Array{Float64,1}:

0.514395

-0.404239

-0.836022

-0.608083

Binary (or unary) operators like .+ are handledwith the samemechanism: they are equivalent to broadcast calls and

are fusedwith other nested "dot" calls. X .+= Y etcetera is equivalent to X .= X .+ Y and results in a fused in-place

assignment; see also dot operators.

11.13 Further Reading

We should mention here that this is far from a complete picture of defining functions. Julia has a sophisticated type

systemand allowsmultiple dispatch on argument types. Noneof the examples givenhere provide any type annotations

on their arguments, meaning that they are applicable to all types of arguments. The type system is described in Types

and defining a function in terms of methods chosen by multiple dispatch on run-time argument types is described in

Methods.

Chapter 12

Control Flow

Julia provides a variety of control flow constructs:

• Compound Expressions: begin and (;).

• Conditional Evaluation: if-elseif-else and ?: (ternary operator).

• Short-Circuit Evaluation: &&, || and chained comparisons.

• Repeated Evaluation: Loops: while and for.

• Exception Handling: try-catch, error() and throw().

• Tasks (aka Coroutines): yieldto().

The first five control flowmechanisms are standard to high-level programming languages. Tasks are not so standard:

they provide non-local control flow, making it possible to switch between temporarily-suspended computations. This

is a powerful construct: both exception handling and cooperative multitasking are implemented in Julia using tasks.

Everyday programming requires no direct usage of tasks, but certain problems can be solvedmuchmore easily by using

tasks.

12.1 Compound Expressions

Sometimes it is convenient to have a single expression which evaluates several subexpressions in order, returning the

value of the last subexpression as its value. There are two Julia constructs that accomplish this: begin blocks and (;)

chains. The value of both compound expression constructs is that of the last subexpression. Here's an example of a

begin block:

julia> z = begin

x = 1

y = 2

x + y

end

3

Since these are fairly small, simple expressions, they could easily be placed onto a single line, which is where the (;)

chain syntax comes in handy:

79

80 CHAPTER 12. CONTROL FLOW

julia> z = (x = 1; y = 2; x + y)

3

This syntax is particularly useful with the terse single-line function definition form introduced in Functions. Although it

is typical, there is no requirement that begin blocks bemultiline or that (;) chains be single-line:

julia> begin x = 1; y = 2; x + y end

3

julia> (x = 1;

y = 2;

x + y)

3

12.2 Conditional Evaluation

Conditional evaluation allows portions of code to be evaluated or not evaluated depending on the value of a boolean

expression. Here is the anatomy of the if-elseif-else conditional syntax:

if x < y

println("x is less than y")

elseif x > y

println("x is greater than y")

else

println("x is equal to y")

end

If the condition expression x < y is true, then the corresponding block is evaluated; otherwise the condition expres-

sion x > y is evaluated, and if it is true, the corresponding block is evaluated; if neither expression is true, the else

block is evaluated. Here it is in action:

julia> function test(x, y)

if x < y

println("x is less than y")

elseif x > y

println("x is greater than y")

else

println("x is equal to y")

end

end

test (generic function with 1 method)

julia> test(1, 2)

x is less than y

julia> test(2, 1)

x is greater than y

julia> test(1, 1)

x is equal to y

12.2. CONDITIONAL EVALUATION 81

The elseif and else blocks are optional, and as many elseif blocks as desired can be used. The condition expres-

sions in the if-elseif-else construct are evaluated until the first one evaluates to true, after which the associated

block is evaluated, and no further condition expressions or blocks are evaluated.

if blocks are "leaky", i.e. they do not introduce a local scope. This means that new variables defined inside the if

clauses can be used after theifblock, even if theyweren't definedbefore. So, we could have defined thetest function

above as

julia> function test(x,y)

if x < y

relation = "less than"

elseif x == y

relation = "equal to"

else

relation = "greater than"

end

println("x is ", relation, " y.")

end

test (generic function with 1 method)

julia> test(2, 1)

x is greater than y.

The variable relation is declared inside the if block, but used outside. However, when depending on this behavior,

make sure all possible code paths define a value for the variable. The following change to the above function results in

a runtime error

julia> function test(x,y)

if x < y

relation = "less than"

elseif x == y

relation = "equal to"

end

println("x is ", relation, " y.")

end

test (generic function with 1 method)

julia> test(1,2)

x is less than y.

julia> test(2,1)

ERROR: UndefVarError: relation not defined

Stacktrace:

[1] test(::Int64, ::Int64) at ./none:7

if blocks also return a value, which may seem unintuitive to users coming from many other languages. This value is

simply the return value of the last executed statement in the branch that was chosen, so

julia> x = 3

3

julia> if x > 0

"positive!"

else

82 CHAPTER 12. CONTROL FLOW

"negative..."

end

"positive!"

Note that very short conditional statements (one-liners) are frequently expressed using Short-Circuit Evaluation in Ju-

lia, as outlined in the next section.

Unlike C,MATLAB, Perl, Python, and Ruby – but like Java, and a few other stricter, typed languages – it is an error if the

value of a conditional expression is anything but true or false:

julia> if 1

println("true")

end

ERROR: TypeError: non-boolean (Int64) used in boolean context

This error indicates that the conditional was of the wrong type: Int64 rather than the required Bool.

The so-called "ternary operator", ?:, is closely related to the if-elseif-else syntax, but is used where a conditional

choice between single expression values is required, as opposed to conditional execution of longer blocks of code. It

gets its name from being the only operator in most languages taking three operands:

a ? b : c

The expression a, before the ?, is a condition expression, and the ternary operation evaluates the expression b, before

the :, if the condition a is true or the expression c, after the :, if it is false.

The easiest way to understand this behavior is to see an example. In the previous example, the println call is shared

by all three branches: the only real choice is which literal string to print. This could bewrittenmore concisely using the

ternary operator. For the sake of clarity, let's try a two-way version first:

julia> x = 1; y = 2;

julia> println(x < y ? "less than" : "not less than")

less than

julia> x = 1; y = 0;

julia> println(x < y ? "less than" : "not less than")

not less than

If the expression x < y is true, the entire ternary operator expression evaluates to the string "less than" and oth-

erwise it evaluates to the string "not less than". The original three-way example requires chaining multiple uses

of the ternary operator together:

julia> test(x, y) = println(x < y ? "x is less than y" :

x > y ? "x is greater than y" : "x is equal to y")

test (generic function with 1 method)

julia> test(1, 2)

x is less than y

julia> test(2, 1)

x is greater than y

12.3. SHORT-CIRCUIT EVALUATION 83

julia> test(1, 1)

x is equal to y

To facilitate chaining, the operator associates from right to left.

It is significant that like if-elseif-else, the expressions before and after the : are only evaluated if the condition

expression evaluates to true or false, respectively:

julia> v(x) = (println(x); x)

v (generic function with 1 method)

julia> 1 < 2 ? v("yes") : v("no")

yes

"yes"

julia> 1 > 2 ? v("yes") : v("no")

no

"no"

12.3 Short-Circuit Evaluation

Short-circuit evaluation is quite similar to conditional evaluation. The behavior is found in most imperative program-

ming languages having the && and || boolean operators: in a series of boolean expressions connected by these opera-

tors, only the minimum number of expressions are evaluated as are necessary to determine the final boolean value of

the entire chain. Explicitly, this means that:

• In the expression a && b, the subexpression b is only evaluated if a evaluates to true.

• In the expression a || b, the subexpression b is only evaluated if a evaluates to false.

The reasoning is that a && b must be false if a is false, regardless of the value of b, and likewise, the value of a

|| b must be true if a is true, regardless of the value of b. Both && and || associate to the right, but && has higher

precedence than || does. It's easy to experiment with this behavior:

julia> t(x) = (println(x); true)

t (generic function with 1 method)

julia> f(x) = (println(x); false)

f (generic function with 1 method)

julia> t(1) && t(2)

1

2

true

julia> t(1) && f(2)

1

2

false

julia> f(1) && t(2)

1

false

84 CHAPTER 12. CONTROL FLOW

julia> f(1) && f(2)

1

false

julia> t(1) || t(2)

1

true

julia> t(1) || f(2)

1

true

julia> f(1) || t(2)

1

2

true

julia> f(1) || f(2)

1

2

false

You can easily experiment in the samewaywith the associativity and precedence of various combinations of && and ||

operators.

This behavior is frequently used in Julia to form an alternative to very short if statements. Instead of if <cond>

<statement> end, one canwrite<cond> && <statement> (which couldbe readas: <cond>and then<statement>).

Similarly, instead of if ! <cond> <statement> end, one can write <cond> || <statement> (which could be

read as: <cond> or else <statement>).

For example, a recursive factorial routine could be defined like this:

julia> function fact(n::Int)

n >= 0 || error("n must be non-negative")

n == 0 && return 1

n * fact(n-1)

end

fact (generic function with 1 method)

julia> fact(5)

120

julia> fact(0)

1

julia> fact(-1)

ERROR: n must be non-negative

Stacktrace:

[1] fact(::Int64) at ./none:2

Booleanoperationswithout short-circuitevaluationcanbedonewith thebitwisebooleanoperators introduced inMath-

ematical Operations and Elementary Functions: & and |. These are normal functions, which happen to support infix

operator syntax, but always evaluate their arguments:

julia> f(1) & t(2)

12.4. REPEATED EVALUATION: LOOPS 85

1

2

false

julia> t(1) | t(2)

1

2

true

Just like condition expressions used in if, elseif or the ternary operator, the operands of && or ||must be boolean

values (true orfalse). Using a non-boolean value anywhere except for the last entry in a conditional chain is an error:

julia> 1 && true

ERROR: TypeError: non-boolean (Int64) used in boolean context

Ontheotherhand, any typeof expression canbeusedat theendof a conditional chain. Itwill beevaluatedand returned

depending on the preceding conditionals:

julia> true && (x = (1, 2, 3))

(1, 2, 3)

julia> false && (x = (1, 2, 3))

false

12.4 Repeated Evaluation: Loops

There are two constructs for repeated evaluation of expressions: the while loop and the for loop. Here is an example

of a while loop:

julia> i = 1;

julia> while i <= 5

println(i)

i += 1

end

1

2

3

4

5

The while loop evaluates the condition expression (i <= 5 in this case), and as long it remains true, keeps also eval-

uating the body of the while loop. If the condition expression is falsewhen the while loop is first reached, the body

is never evaluated.

The for loop makes common repeated evaluation idioms easier to write. Since counting up and down like the above

while loop does is so common, it can be expressedmore concisely with a for loop:

julia> for i = 1:5

println(i)

end

1

86 CHAPTER 12. CONTROL FLOW

2

3

4

5

Here the 1:5 is a Range object, representing the sequence of numbers 1, 2, 3, 4, 5. The for loop iterates through these

values, assigning each one in turn to the variable i. One rather important distinction between the previous while loop

form and the for loop form is the scope during which the variable is visible. If the variable i has not been introduced

in an other scope, in the for loop form, it is visible only inside of the for loop, and not afterwards. You'll either need a

new interactive session instance or a different variable name to test this:

julia> for j = 1:5

println(j)

end

1

2

3

4

5

julia> j

ERROR: UndefVarError: j not defined

See Scope of Variables for a detailed explanation of variable scope and how it works in Julia.

In general, the for loop construct can iterate over any container. In these cases, the alternative (but fully equivalent)

keyword in or is typically used instead of =, since it makes the code readmore clearly:

julia> for i in [1,4,0]

println(i)

end

1

4

0

julia> for s ["foo","bar","baz"]

println(s)

end

foo

bar

baz

Various types of iterable containers will be introduced and discussed in later sections of the manual (see, e.g., Multi-

dimensional Arrays).

It is sometimes convenient to terminate the repetition of a while before the test condition is falsified or stop iterating

in a for loop before the end of the iterable object is reached. This can be accomplishedwith the break keyword:

julia> i = 1;

julia> while true

println(i)

if i >= 5

12.4. REPEATED EVALUATION: LOOPS 87

break

end

i += 1

end

1

2

3

4

5

julia> for i = 1:1000

println(i)

if i >= 5

break

end

end

1

2

3

4

5

Without the break keyword, the above while loop would never terminate on its own, and the for loop would iterate

up to 1000. These loops are both exited early by using break.

Inothercircumstances, it ishandytobeable tostopan iterationandmoveontothenextone immediately. Thecontinue

keyword accomplishes this:

julia> for i = 1:10

if i % 3 != 0

continue

end

println(i)

end

3

6

9

This is a somewhat contrived example since we could produce the same behavior more clearly by negating the condi-

tion and placing the println call inside the if block. In realistic usage there is more code to be evaluated after the

continue, and often there aremultiple points fromwhich one calls continue.

Multiple nested for loops can be combined into a single outer loop, forming the cartesian product of its iterables:

julia> for i = 1:2, j = 3:4

println((i, j))

end

(1, 3)

(1, 4)

(2, 3)

(2, 4)

A break statement inside such a loop exits the entire nest of loops, not just the inner one.

88 CHAPTER 12. CONTROL FLOW

12.5 Exception Handling

Whenanunexpected condition occurs, a functionmaybeunable to return a reasonable value to its caller. In such cases,

it may be best for the exceptional condition to either terminate the program, printing a diagnostic error message, or if

the programmer has provided code to handle such exceptional circumstances, allow that code to take the appropriate

action.

Built-in Exceptions

Exceptions are thrown when an unexpected condition has occurred. The built-in Exceptions listed below all inter-

rupt the normal flow of control.

Exception

ArgumentError

BoundsError

CompositeException

DivideError

DomainError

EOFError

ErrorException

InexactError

InitError

InterruptException

InvalidStateException

KeyError

LoadError

OutOfMemoryError

ReadOnlyMemoryError

RemoteException

MethodError

OverflowError

ParseError

SystemError

TypeError

UndefRefError

UndefVarError

UnicodeError

For example, the sqrt() function throws a DomainError if applied to a negative real value:

julia> sqrt(-1)

ERROR: DomainError:

sqrt will only return a complex result if called with a complex argument. Try sqrt(complex(x)).

Stacktrace:

[1] sqrt(::Int64) at ./math.jl:434

Youmay define your own exceptions in the following way:

julia> struct MyCustomException <: Exception end

12.5. EXCEPTIONHANDLING 89

The throw() function

Exceptionscanbecreatedexplicitlywiththrow(). Forexample, a functiondefinedonly fornonnegativenumbers could

bewritten to throw() a DomainError if the argument is negative:

julia> f(x) = x>=0 ? exp(-x) : throw(DomainError())

f (generic function with 1 method)

julia> f(1)

0.36787944117144233

julia> f(-1)

ERROR: DomainError:

Stacktrace:

[1] f(::Int64) at ./none:1

Note thatDomainErrorwithoutparentheses is not anexception, but a typeof exception. It needs tobe called toobtain

an Exception object:

julia> typeof(DomainError()) <: Exception

true

julia> typeof(DomainError) <: Exception

false

Additionally, some exception types take one ormore arguments that are used for error reporting:

julia> throw(UndefVarError(:x))

ERROR: UndefVarError: x not defined

This mechanism can be implemented easily by custom exception types following the way UndefVarError is written:

julia> struct MyUndefVarError <: Exception

var::Symbol

end

julia> Base.showerror(io::IO, e::MyUndefVarError) = print(io, e.var, " not defined")

Note

When writing an error message, it is preferred to make the first word lowercase. For example, size(A)

== size(B) || throw(DimensionMismatch("size of A not equal to size of B"))

is preferred over

size(A) == size(B) || throw(DimensionMismatch("Size of A not equal to size of B")).

However, sometimes it makes sense to keep the uppercase first letter, for instance if an argument to

a function is a capital letter: size(A,1) == size(B,2) || throw(DimensionMismatch("A has

first dimension...")).

90 CHAPTER 12. CONTROL FLOW

Errors

The error() function is used to produce an ErrorException that interrupts the normal flow of control.

Suppose we want to stop execution immediately if the square root of a negative number is taken. To do this, we can

define a fussy version of the sqrt() function that raises an error if its argument is negative:

julia> fussy_sqrt(x) = x >= 0 ? sqrt(x) : error("negative x not allowed")

fussy_sqrt (generic function with 1 method)

julia> fussy_sqrt(2)

1.4142135623730951

julia> fussy_sqrt(-1)

ERROR: negative x not allowed

Stacktrace:

[1] fussy_sqrt(::Int64) at ./none:1

If fussy_sqrt is called with a negative value from another function, instead of trying to continue execution of the

calling function, it returns immediately, displaying the error message in the interactive session:

julia> function verbose_fussy_sqrt(x)

println("before fussy_sqrt")

r = fussy_sqrt(x)

println("after fussy_sqrt")

return r

end

verbose_fussy_sqrt (generic function with 1 method)

julia> verbose_fussy_sqrt(2)

before fussy_sqrt

after fussy_sqrt

1.4142135623730951

julia> verbose_fussy_sqrt(-1)

before fussy_sqrt

ERROR: negative x not allowed

Stacktrace:

[1] fussy_sqrt at ./none:1 [inlined]

[2] verbose_fussy_sqrt(::Int64) at ./none:3

Warnings and informational messages

Julia also provides other functions that write messages to the standard error I/O, but do not throw any Exceptions

and hence do not interrupt execution:

julia> info("Hi"); 1+1

INFO: Hi

2

julia> warn("Hi"); 1+1

WARNING: Hi

2

julia> error("Hi"); 1+1

ERROR: Hi

Stacktrace:

[1] error(::String) at ./error.jl:21

12.5. EXCEPTIONHANDLING 91

The try/catch statement

The try/catch statement allows for Exceptions to be tested for. For example, a customized square root function

can bewritten to automatically call either the real or complex square root method on demand using Exceptions :

julia> f(x) = try

sqrt(x)

catch

sqrt(complex(x, 0))

end

f (generic function with 1 method)

julia> f(1)

1.0

julia> f(-1)

0.0 + 1.0im

It is important to note that in real code computing this function, one would compare x to zero instead of catching an

exception. The exception is much slower than simply comparing and branching.

try/catch statements also allow the Exception to be saved in a variable. In this contrived example, the following

example calculates the square root of the second element of x if x is indexable, otherwise assumes x is a real number

and returns its square root:

julia> sqrt_second(x) = try

sqrt(x[2])

catch y

if isa(y, DomainError)

sqrt(complex(x[2], 0))

elseif isa(y, BoundsError)

sqrt(x)

end

end

sqrt_second (generic function with 1 method)

julia> sqrt_second([1 4])

2.0

julia> sqrt_second([1 -4])

0.0 + 2.0im

julia> sqrt_second(9)

3.0

julia> sqrt_second(-9)

ERROR: DomainError:

Stacktrace:

[1] sqrt_second(::Int64) at ./none:7

Note that the symbol following catchwill always be interpreted as a name for the exception, so care is needed when

writing try/catch expressions on a single line. The following code will notwork to return the value of x in case of an

error:

try bad() catch x end

92 CHAPTER 12. CONTROL FLOW

Instead, use a semicolon or insert a line break after catch:

try bad() catch; x end

try bad()

catch

x

end

The catch clause is not strictly necessary; when omitted, the default return value is nothing.

julia> try error() end # Returns nothing

The power of the try/catch construct lies in the ability to unwind a deeply nested computation immediately to a

much higher level in the stack of calling functions. There are situations where no error has occurred, but the ability

to unwind the stack and pass a value to a higher level is desirable. Julia provides the rethrow(), backtrace() and

catch_backtrace() functions for more advanced error handling.

finallyClauses

In code that performs state changes or uses resources like files, there is typically clean-up work (such as closing files)

that needs to be done when the code is finished. Exceptions potentially complicate this task, since they can cause a

block of code to exit before reaching its normal end. The finally keyword provides a way to run some code when a

given block of code exits, regardless of how it exits.

For example, here is howwe can guarantee that an opened file is closed:

f = open("file")

try

operate on file f

finally

close(f)

end

Whencontrol leaves thetryblock (for exampledue toareturn, or justfinishingnormally),close(f)will beexecuted.

If thetryblockexitsdue toanexception, theexceptionwill continuepropagating. Acatchblockmaybecombinedwith

try and finally as well. In this case the finally block will run after catch has handled the error.

12.6 Tasks (aka Coroutines)

Tasks are a control flow feature that allows computations to be suspended and resumed in a flexible manner. This fea-

ture is sometimes called by other names, such as symmetric coroutines, lightweight threads, cooperativemultitasking,

or one-shot continuations.

When a piece of computing work (in practice, executing a particular function) is designated as a Task, it becomes pos-

sible to interrupt it by switching to another Task. The original Task can later be resumed, at which point it will pick

up right where it left off. At first, this may seem similar to a function call. However there are two key differences. First,

switching tasks doesnot use any space, so anynumberof task switches canoccurwithout consuming the call stack. Sec-

ond, switching among tasks can occur in any order, unlike function calls, where the called functionmust finish executing

before control returns to the calling function.

This kind of control flow can make it much easier to solve certain problems. In some problems, the various pieces of

required work are not naturally related by function calls; there is no obvious "caller" or "callee" among the jobs that

12.6. TASKS (AKA COROUTINES) 93

need to be done. An example is the producer-consumer problem, where one complex procedure is generating values

andanother complexprocedure is consuming them. The consumer cannot simply call a producer function toget a value,

because the producer may have more values to generate and so might not yet be ready to return. With tasks, the pro-

ducer and consumer can both run as long as they need to, passing values back and forth as necessary.

Julia provides a Channelmechanism for solving this problem. A Channel is a waitable first-in first-out queue which

can havemultiple tasks reading from andwriting to it.

Let's define a producer task, which produces values via the put! call. To consume values, we need to schedule the

producer to run in a new task. A special Channel constructor which accepts a 1-arg function as an argument can be

used to run a task bound to a channel. We can then take!() values repeatedly from the channel object:

julia> function producer(c::Channel)

put!(c, "start")

for n=1:4

put!(c, 2n)

end

put!(c, "stop")

end;

julia> chnl = Channel(producer);

julia> take!(chnl)

"start"

julia> take!(chnl)

2

julia> take!(chnl)

4

julia> take!(chnl)

6

julia> take!(chnl)

8

julia> take!(chnl)

"stop"

One way to think of this behavior is that producer was able to return multiple times. Between calls to put!(), the

producer's execution is suspended and the consumer has control.

The returned Channel can be used as an iterable object in a for loop, in which case the loop variable takes on all the

produced values. The loop is terminated when the channel is closed.

julia> for x in Channel(producer)

println(x)

end

start

2

4

6

8

stop

94 CHAPTER 12. CONTROL FLOW

Notethatwedidnothavetoexplicitlyclose thechannel in theproducer. This isbecausetheactofbindingaChannel toa

Task()associates theopen lifetimeof a channelwith that of thebound task. The channel object is closedautomatically

when the task terminates. Multiple channels can be bound to a task, and vice-versa.

While the Task() constructor expects a 0-argument function, the Channel()methodwhich creates a channel bound

task expects a function that accepts a single argument of type Channel. A common pattern is for the producer to be

parameterized, in which case a partial function application is needed to create a 0 or 1 argument anonymous function.

For Task() objects this can be done either directly or by use of a conveniencemacro:

function mytask(myarg)

...

end

taskHdl = Task(() -> mytask(7))

or, equivalently

taskHdl = @task mytask(7)

To orchestrate more advanced work distribution patterns, bind() and schedule() can be used in conjunction with

Task() and Channel() constructors to explicitly link a set of channels with a set of producer/consumer tasks.

Note that currently Julia tasksarenot scheduled to runonseparateCPUcores. Truekernel threadsarediscussedunder

the topic of Parallel Computing.

Core task operations

Let us explore the low level construct yieldto() to underestand how task switchingworks. yieldto(task,value)

suspends the current task, switches to the specifiedtask, and causes that task's lastyieldto() call to return the spec-

ified value. Notice that yieldto() is the only operation required to use task-style control flow; instead of calling and

returningwe are always just switching to a different task. This is why this feature is also called "symmetric coroutines";

each task is switched to and from using the samemechanism.

yieldto() is powerful, butmost uses of tasks do not invoke it directly. Considerwhy thismight be. If you switch away

from the current task, you will probably want to switch back to it at some point, but knowing when to switch back,

and knowing which task has the responsibility of switching back, can require considerable coordination. For example,

put!()andtake!()areblockingoperations,which,whenused in the context of channelsmaintain state to remember

who the consumers are. Not needing tomanually keep track of the consuming task is whatmakes put!() easier to use

than the low-level yieldto().

In addition to yieldto(), a few other basic functions are needed to use tasks effectively.

• current_task() gets a reference to the currently-running task.

• istaskdone() queries whether a task has exited.

• istaskstarted() queries whether a task has run yet.

• task_local_storage()manipulates a key-value store specific to the current task.

Tasks and events

Most task switches occur as a result of waiting for events such as I/O requests, and are performed by a scheduler in-

cluded in the standard library. The scheduler maintains a queue of runnable tasks, and executes an event loop that

restarts tasks based on external events such asmessage arrival.

12.6. TASKS (AKA COROUTINES) 95

Thebasic function forwaiting for anevent iswait(). Several objects implementwait(); for example, givenaProcess

object,wait()willwait for it to exit. wait() is often implicit; for example, await() canhappen inside a call toread()

to wait for data to be available.

In all of these cases, wait() ultimately operates on a Condition object, which is in charge of queueing and restarting

tasks. When a task calls wait() on a Condition, the task is marked as non-runnable, added to the condition's queue,

and switches to the scheduler. The scheduler will then pick another task to run, or block waiting for external events.

If all goes well, eventually an event handler will call notify() on the condition, which causes tasks waiting for that

condition to become runnable again.

A taskcreatedexplicitlybycallingTask is initiallynotknownto thescheduler. This allowsyou tomanage tasksmanually

using yieldto() if you wish. However, when such a task waits for an event, it still gets restarted automatically when

the event happens, as you would expect. It is also possible to make the scheduler run a task whenever it can, without

necessarilywaiting for any events. This is doneby callingschedule(), or using the@scheduleor@asyncmacros (see

Parallel Computing for more details).

Task states

Tasks have a state field that describes their execution status. A Task state is one of the following symbols:

Symbol Meaning

:runnable Currently running, or available to be switched to

:waiting Blockedwaiting for a specific event

:queued In the scheduler's run queue about to be restarted

:done Successfully finished executing

:failed Finishedwith an uncaught exception

Chapter 13

Scope of Variables

The scope of a variable is the region of code within which a variable is visible. Variable scoping helps avoid variable

naming conflicts. The concept is intuitive: two functions canbothhave arguments calledxwithout the twox's referring

to the same thing. Similarly there aremany other cases where different blocks of code can use the same namewithout

referring to the same thing. The rules for when the same variable name does or doesn't refer to the same thing are

called scope rules; this section spells them out in detail.

Certain constructs in the language introduce scope blocks, which are regions of code that are eligible to be the scope

of some set of variables. The scope of a variable cannot be an arbitrary set of source lines; instead, it will always line

up with one of these blocks. There are two main types of scopes in Julia, global scope and local scope, the latter can be

nested. The constructs introducing scope blocks are:

Scope name block/construct introducing this kind of scope

Global Scope module, baremodule, at interactive prompt (REPL)

Local Scope Soft Local Scope: for, while, comprehensions, try-catch-finally, let

Local Scope Hard Local Scope: functions (either syntax, anonymous & do-blocks), struct, macro

Notablymissing from this table are begin blocks and if blocks, which do not introduce new scope blocks. All three types

of scopes follow somewhat different rules which will be explained below as well as some extra rules for certain blocks.

Julia uses lexical scoping, meaning that a function's scope does not inherit from its caller's scope, but from the scope in

which the function was defined. For example, in the following code the x inside foo refers to the x in the global scope

of its module Bar:

julia> module Bar

x = 1

foo() = x

end;

and not a x in the scopewhere foo is used:

julia> import .Bar

julia> x = -1;

julia> Bar.foo()

1

Thus lexical scopemeans that the scope of variables can be inferred from the source code alone.

97

https://en.wikipedia.org/wiki/Scope_%28computer_science%29#Lexical_scoping_vs._dynamic_scoping

98 CHAPTER 13. SCOPEOF VARIABLES

13.1 Global Scope

Eachmodule introducesanewglobal scope, separate fromtheglobal scopeofallothermodules; there isnoall-encompassing

global scope. Modulescan introducevariablesofothermodules into their scope through theusingor import statements

or throughqualifiedaccessusing thedot-notation, i.e. eachmodule is a so-callednamespace. Note thatvariablebindings

can only be changedwithin their global scope and not from an outsidemodule.

julia> module A

a = 1 # a global in A's scope

end;

julia> module B

module C

c = 2

end

b = C.c # can access the namespace of a nested global scope

through a qualified access

import ..A # makes module A available

d = A.a

end;

julia> module D

b = a # errors as D's global scope is separate from A's

end;

ERROR: UndefVarError: a not defined

julia> module E

import ..A # make module A available

A.a = 2 # throws below error

end;

ERROR: cannot assign variables in other modules

Note that the interactive prompt (aka REPL) is in the global scope of themodule Main.

13.2 Local Scope

A new local scope is introduced by most code-blocks, see above table for a complete list. A local scope usually inherits

all the variables from its parent scope, both for reading and writing. There are two subtypes of local scopes, hard and

soft, with slightly different rules concerning what variables are inherited. Unlike global scopes, local scopes are not

namespaces, thus variables in an inner scope cannot be retrieved from the parent scope through some sort of qualified

access.

The following rules andexamplespertain tobothhardand soft local scopes. Anewly introducedvariable in a local scope

does not back-propagate to its parent scope. For example, here the z is not introduced into the top-level scope:

julia> for i = 1:10

z = i

end

julia> z

ERROR: UndefVarError: z not defined

(Note, in this and all following examples it is assumed that their top-level is a global scope with a clean workspace, for

instance a newly started REPL.)

13.2. LOCAL SCOPE 99

Inside a local scope a variable can be forced to be a local variable using the local keyword:

julia> x = 0;

julia> for i = 1:10

local x

x = i + 1

end

julia> x

0

Inside a local scope a new global variable can be defined using the keyword global:

julia> for i = 1:10

global z

z = i

end

julia> z

10

The location of both the local and global keywords within the scope block is irrelevant. The following is equivalent

to the last example (although stylistically worse):

julia> for i = 1:10

z = i

global z

end

julia> z

10

Soft Local Scope

Ina soft local scope, all variablesare inherited from itsparent scopeunlessavariable is specificallymarked

with the keyword local.

Soft local scopes are introduced by for-loops, while-loops, comprehensions, try-catch-finally-blocks, and let-blocks.

There are some extra rules for Let Blocks and for For Loops and Comprehensions.

In the following example the x and y refer always to the same variables as the soft local scope inherits both read and

write variables:

julia> x, y = 0, 1;

julia> for i = 1:10

x = i + y + 1

end

julia> x

12

100 CHAPTER 13. SCOPEOF VARIABLES

Within soft scopes, the global keyword is never necessary, although allowed. The only case when it would change the

semantics is (currently) a syntax error:

julia> let

local j = 2

let

global j = 3

end

end

ERROR: syntax: `global j`: j is local variable in the enclosing scope

Hard Local Scope

Hard local scopes are introduced by function definitions (in all their forms), struct type definition blocks, and macro-

definitions.

In a hard local scope, all variables are inherited from its parent scope unless:

• an assignment would result in amodified global variable, or

• a variable is specifically markedwith the keyword local.

Thus global variables are only inherited for reading but not for writing:

julia> x, y = 1, 2;

julia> function foo()

x = 2 # assignment introduces a new local

return x + y # y refers to the global

end;

julia> foo()

4

julia> x

1

An explicit global is needed to assign to a global variable:

julia> x = 1;

julia> function foobar()

global x = 2

end;

julia> foobar();

julia> x

2

Note thatnested functions canbehavedifferently to functionsdefined in theglobal scopeas theycanmodify their parent

scope's local variables:

13.2. LOCAL SCOPE 101

julia> x, y = 1, 2;

julia> function baz()

x = 2 # introduces a new local

function bar()

x = 10 # modifies the parent's x

return x + y # y is global

end

return bar() + x # 12 + 10 (x is modified in call of bar())

end;

julia> baz()

22

julia> x, y

(1, 2)

Thedistinctionbetween inheritingglobal and local variables forassignmentcan lead tosomeslightdifferencesbetween

functions defined in local vs. global scopes. Consider the modification of the last example by moving bar to the global

scope:

julia> x, y = 1, 2;

julia> function bar()

x = 10 # local

return x + y

end;

julia> function quz()

x = 2 # local

return bar() + x # 12 + 2 (x is not modified)

end;

julia> quz()

14

julia> x, y

(1, 2)

Note that above subtlety does not pertain to type and macro definitions as they can only appear at the global scope.

There are special scoping rules concerning the evaluation of default and keyword function arguments which are de-

scribed in the Function section.

An assignment introducing a variable used inside a function, type or macro definition need not come before its inner

usage:

julia> f = y -> y + a

(::#1) (generic function with 1 method)

julia> f(3)

ERROR: UndefVarError: a not defined

Stacktrace:

[1] (::##1#2)(::Int64) at ./none:1

102 CHAPTER 13. SCOPEOF VARIABLES

julia> a = 1

1

julia> f(3)

4

This behaviormay seem slightly odd for a normal variable, but allows for named functions –which are just normal vari-

ables holding function objects – to be used before they are defined. This allows functions to be defined in whatever

order is intuitive and convenient, rather than forcing bottom up ordering or requiring forward declarations, as long as

they are defined by the time they are actually called. As an example, here is an inefficient, mutually recursive way to

test if positive integers are even or odd:

julia> even(n) = n == 0 ? true : odd(n-1);

julia> odd(n) = n == 0 ? false : even(n-1);

julia> even(3)

false

julia> odd(3)

true

Julia provides built-in, efficient functions to test for oddness and evenness callediseven() andisodd() so the above

definitions should only be taken as examples.

Hard vs. Soft Local Scope

Blocks which introduce a soft local scope, such as loops, are generally used to manipulate the variables in their parent

scope. Thus their default is to fully access all variables in their parent scope.

Conversely, the code inside blocks which introduce a hard local scope (function, type, and macro definitions) can be

executed at any place in a program. Remotely changing the state of global variables in other modules should be done

with care and thus this is an opt-in feature requiring the global keyword.

The reason toallowmodifying localvariablesof parent scopes innested functions is to allowconstructing closureswhich

have a private state, for instance the state variable in the following example:

julia> let

state = 0

global counter

counter() = state += 1

end;

julia> counter()

1

julia> counter()

2

See also the closures in the examples in the next two sections.

https://en.wikipedia.org/wiki/Closure_%28computer_programming%29

13.2. LOCAL SCOPE 103

Let Blocks

Unlikeassignments to local variables,let statements allocatenewvariablebindings each time they run. Anassignment

modifies an existing value location, and let creates new locations. This difference is usually not important, and is only

detectable in the case of variables that outlive their scope via closures. The let syntax accepts a comma-separated

series of assignments and variable names:

julia> x, y, z = -1, -1, -1;

julia> let x = 1, z

println("x: $x, y: $y") # x is local variable, y the global

println("z: $z") # errors as z has not been assigned yet but is local

end

x: 1, y: -1

ERROR: UndefVarError: z not defined

The assignments are evaluated in order, with each right-hand side evaluated in the scope before the new variable on

the left-hand side has been introduced. Therefore it makes sense to write something like let x = x since the two x

variables are distinct and have separate storage. Here is an example where the behavior of let is needed:

julia> Fs = Array{Any}(2); i = 1;

julia> while i <= 2

Fs[i] = ()->i

i += 1

end

julia> Fs[1]()

3

julia> Fs[2]()

3

Here we create and store two closures that return variable i. However, it is always the same variable i, so the two

closures behave identically. We can use let to create a new binding for i:

julia> Fs = Array{Any}(2); i = 1;

julia> while i <= 2

let i = i

Fs[i] = ()->i

end

i += 1

end

julia> Fs[1]()

1

julia> Fs[2]()

2

Since thebegin construct doesnot introduceanewscope, it canbeuseful touse a zero-argumentlet to just introduce

a new scope block without creating any new bindings:

104 CHAPTER 13. SCOPEOF VARIABLES

julia> let

local x = 1

let

local x = 2

end

x

end

1

Since let introduces a new scope block, the inner local x is a different variable than the outer local x.

For Loops and Comprehensions

for loops and Comprehensions have the following behavior: any new variables introduced in their body scopes are

freshly allocated for each loop iteration. This is in contrast to while loops which reuse the variables for all iterations.

Therefore these constructs are similar to while loops with let blocks inside:

julia> Fs = Array{Any}(2);

julia> for j = 1:2

Fs[j] = ()->j

end

julia> Fs[1]()

1

julia> Fs[2]()

2

for loops will reuse existing variables for its iteration variable:

julia> i = 0;

julia> for i = 1:3

end

julia> i

3

However, comprehensions do not do this, and always freshly allocate their iteration variables:

julia> x = 0;

julia> [x for x = 1:3];

julia> x

0

13.3 Constants

A common use of variables is giving names to specific, unchanging values. Such variables are only assigned once. This

intent can be conveyed to the compiler using the const keyword:

13.3. CONSTANTS 105

julia> const e = 2.71828182845904523536;

julia> const pi = 3.14159265358979323846;

The const declaration is allowed on both global and local variables, but is especially useful for globals. It is difficult for

the compiler to optimize code involving global variables, since their values (or even their types)might change at almost

any time. If a global variable will not change, adding a const declaration solves this performance problem.

Local constants are quite different. The compiler is able to determine automatically when a local variable is constant,

so local constant declarations are not necessary for performance purposes.

Special top-level assignments, such as those performed by the function and struct keywords, are constant by de-

fault.

Note thatconstonly affects the variable binding; the variablemaybebound to amutable object (such as an array), and

that object may still bemodified.

Chapter 14

Types

Type systems have traditionally fallen into two quite different camps: static type systems, where every program ex-

pressionmust have a type computable before the execution of the program, and dynamic type systems, where nothing

is known about types until run time, when the actual values manipulated by the program are available. Object orienta-

tion allows some flexibility in statically typed languages by letting code be written without the precise types of values

being known at compile time. The ability to write code that can operate on different types is called polymorphism. All

code in classic dynamically typed languages is polymorphic: only by explicitly checking types, or when objects fail to

support operations at run-time, are the types of any values ever restricted.

Julia's type system is dynamic, but gains some of the advantages of static type systems bymaking it possible to indicate

that certain values are of specific types. This can be of great assistance in generating efficient code, but even more

significantly, it allows method dispatch on the types of function arguments to be deeply integrated with the language.

Method dispatch is explored in detail inMethods, but is rooted in the type system presented here.

Thedefault behavior in Juliawhen typesareomitted is toallowvalues tobeof any type. Thus, onecanwritemanyuseful

Julia programs without ever explicitly using types. When additional expressiveness is needed, however, it is easy to

gradually introduce explicit type annotations into previously "untyped" code. Doing so will typically increase both the

performance and robustness of these systems, and perhaps somewhat counterintuitively, often significantly simplify

them.

Describing Julia in the lingo of type systems, it is: dynamic, nominative and parametric. Generic types can be param-

eterized, and the hierarchical relationships between types are explicitly declared, rather than implied by compatible

structure. One particularly distinctive feature of Julia's type system is that concrete typesmay not subtype each other:

all concrete types are final andmay only have abstract types as their supertypes. While this might at first seem unduly

restrictive, it hasmany beneficial consequences with surprisingly few drawbacks. It turns out that being able to inherit

behavior is muchmore important than being able to inherit structure, and inheriting both causes significant difficulties

in traditional object-oriented languages. Other high-level aspects of Julia's type system that should be mentioned up

front are:

• There is no division between object and non-object values: all values in Julia are true objects having a type that

belongs to a single, fully connected type graph, all nodes of which are equally first-class as types.

• There is no meaningful concept of a "compile-time type": the only type a value has is its actual type when the

program is running. This is called a "run-time type" in object-oriented languageswhere the combination of static

compilation with polymorphismmakes this distinction significant.

• Only values, not variables, have types – variables are simply names bound to values.

• Both abstract and concrete types can be parameterized by other types. They can also be parameterized by sym-

bols, by values of any type for which isbits() returns true (essentially, things like numbers and bools that are

107

https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Nominal_type_system
https://en.wikipedia.org/wiki/Structural_type_system
https://en.wikipedia.org/wiki/Structural_type_system

108 CHAPTER 14. TYPES

stored likeC types or structswith no pointers to other objects), and also by tuples thereof. Type parametersmay

be omitted when they do not need to be referenced or restricted.

Julia's type system is designed to be powerful and expressive, yet clear, intuitive and unobtrusive. Many Julia program-

mers may never feel the need to write code that explicitly uses types. Some kinds of programming, however, become

clearer, simpler, faster andmore robust with declared types.

14.1 TypeDeclarations

The :: operator can be used to attach type annotations to expressions and variables in programs. There are two pri-

mary reasons to do this:

1. As an assertion to help confirm that your programworks the way you expect,

2. To provide extra type information to the compiler, which can then improve performance in some cases

When appended to an expression computing a value, the :: operator is read as "is an instance of". It can be used any-

where to assert that the value of the expression on the left is an instance of the type on the right. When the type on the

right is concrete, the value on the leftmust have that type as its implementation – recall that all concrete types are final,

so no implementation is a subtype of any other. When the type is abstract, it suffices for the value to be implementedby

a concrete type that is a subtypeof the abstract type. If the type assertion is not true, an exception is thrown, otherwise,

the left-hand value is returned:

julia> (1+2)::AbstractFloat

ERROR: TypeError: typeassert: expected AbstractFloat, got Int64

julia> (1+2)::Int

3

This allows a type assertion to be attached to any expression in-place.

When appended to a variable on the left-hand side of an assignment, or as part of a local declaration, the :: operator

means something a bit different: it declares the variable to always have the specified type, like a type declaration in a

statically-typed language such as C. Every value assigned to the variable will be converted to the declared type using

convert():

julia> function foo()

x::Int8 = 100

x

end

foo (generic function with 1 method)

julia> foo()

100

julia> typeof(ans)

Int8

This feature isuseful foravoidingperformance"gotchas" thatcouldoccur ifoneof theassignments toavariablechanged

its type unexpectedly.

This "declaration" behavior only occurs in specific contexts:

14.2. ABSTRACT TYPES 109

local x::Int8 # in a local declaration

x::Int8 = 10 # as the left-hand side of an assignment

and applies to the whole current scope, even before the declaration. Currently, type declarations cannot be used in

global scope, e.g. in the REPL, since Julia does not yet have constant-type globals.

Declarations can also be attached to function definitions:

function sinc(x)::Float64

if x == 0

return 1

end

return sin(pi*x)/(pi*x)

end

Returning from this function behaves just like an assignment to a variable with a declared type: the value is always

converted to Float64.

14.2 Abstract Types

Abstract types cannot be instantiated, and serve only as nodes in the type graph, thereby describing sets of related

concrete types: those concrete types which are their descendants. We begin with abstract types even though they

have no instantiation because they are the backbone of the type system: they form the conceptual hierarchy which

makes Julia's type systemmore than just a collection of object implementations.

Recall that in Integers and Floating-PointNumbers, we introduced a variety of concrete types of numeric values: Int8,

UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128, Float16, Float32, and Float64. Al-

though they have different representation sizes, Int8, Int16, Int32, Int64 andInt128 all have in common that they

are signed integer types. Likewise UInt8, UInt16, UInt32, UInt64 and UInt128 are all unsigned integer types, while

Float16,Float32 andFloat64 aredistinct in beingfloating-point types rather than integers. It is common for apiece

of code tomake sense, for example, only if its arguments are some kind of integer, but not really depend onwhat partic-

ular kind of integer. For example, the greatest common denominator algorithm works for all kinds of integers, but will

not work for floating-point numbers. Abstract types allow the construction of a hierarchy of types, providing a context

into which concrete types can fit. This allows you, for example, to easily program to any type that is an integer, without

restricting an algorithm to a specific type of integer.

Abstract types are declared using the abstract type keyword. The general syntaxes for declaring an abstract type

are:

abstract type «name» end

abstract type «name» <: «supertype» end

The abstract type keyword introduces a new abstract type, whose name is given by «name». This name can be op-

tionally followed by <: and an already-existing type, indicating that the newly declared abstract type is a subtype of

this "parent" type.

When no supertype is given, the default supertype is Any – a predefined abstract type that all objects are instances of

and all types are subtypes of. In type theory, Any is commonly called "top" because it is at the apex of the type graph.

Julia also has a predefined abstract "bottom" type, at the nadir of the type graph, which is written as Union{}. It is the

exact opposite of Any: no object is an instance of Union{} and all types are supertypes of Union{}.

Let's consider some of the abstract types that make up Julia's numerical hierarchy:

110 CHAPTER 14. TYPES

abstract type Number end

abstract type Real <: Number end

abstract type AbstractFloat <: Real end

abstract type Integer <: Real end

abstract type Signed <: Integer end

abstract type Unsigned <: Integer end

The Number type is a direct child type of Any, and Real is its child. In turn, Real has two children (it hasmore, but only

two are shown here; we'll get to the others later): Integer and AbstractFloat, separating the world into represen-

tations of integers and representations of real numbers. Representations of real numbers include, of course, floating-

point types, but also includeother types, such as rationals. Hence,AbstractFloat is a proper subtypeofReal, includ-

ing only floating-point representations of real numbers. Integers are further subdivided into Signed and Unsigned

varieties.

The <: operator in general means "is a subtype of", and, used in declarations like this, declares the right-hand type to

be an immediate supertype of the newly declared type. It can also be used in expressions as a subtype operator which

returns truewhen its left operand is a subtype of its right operand:

julia> Integer <: Number

true

julia> Integer <: AbstractFloat

false

An important use of abstract types is to provide default implementations for concrete types. To give a simple example,

consider:

function myplus(x,y)

x+y

end

The first thing to note is that the above argument declarations are equivalent to x::Any and y::Any. When this func-

tion is invoked, say asmyplus(2,5), thedispatcher chooses themost specificmethodnamedmyplus thatmatches the

given arguments. (SeeMethods for more information onmultiple dispatch.)

Assuming no method more specific than the above is found, Julia next internally defines and compiles a method called

myplus specifically for twoInt arguments based on the generic function given above, i.e., it implicitly defines and com-

piles:

function myplus(x::Int,y::Int)

x+y

end

and finally, it invokes this specificmethod.

Thus, abstract typesallowprogrammers towrite generic functions that can laterbeusedas thedefaultmethodbymany

combinations of concrete types. Thanks tomultiple dispatch, the programmer has full control overwhether the default

or more specificmethod is used.

An important point to note is that there is no loss in performance if the programmer relies on a function whose argu-

ments are abstract types, because it is recompiled for each tuple of argument concrete types with which it is invoked.

(There may be a performance issue, however, in the case of function arguments that are containers of abstract types;

see Performance Tips.)

14.3. PRIMITIVE TYPES 111

14.3 Primitive Types

Aprimitive type is a concrete typewhose data consists of plain old bits. Classic examples of primitive types are integers

and floating-point values. Unlikemost languages, Julia lets you declare your own primitive types, rather than providing

only a fixed set of built-in ones. In fact, the standard primitive types are all defined in the language itself:

primitive type Float16 <: AbstractFloat 16 end

primitive type Float32 <: AbstractFloat 32 end

primitive type Float64 <: AbstractFloat 64 end

primitive type Bool <: Integer 8 end

primitive type Char 32 end

primitive type Int8 <: Signed 8 end

primitive type UInt8 <: Unsigned 8 end

primitive type Int16 <: Signed 16 end

primitive type UInt16 <: Unsigned 16 end

primitive type Int32 <: Signed 32 end

primitive type UInt32 <: Unsigned 32 end

primitive type Int64 <: Signed 64 end

primitive type UInt64 <: Unsigned 64 end

primitive type Int128 <: Signed 128 end

primitive type UInt128 <: Unsigned 128 end

The general syntaxes for declaring a primitive type are:

primitive type «name» «bits» end

primitive type «name» <: «supertype» «bits» end

The number of bits indicates howmuch storage the type requires and the name gives the new type a name. A primitive

type can optionally be declared to be a subtype of some supertype. If a supertype is omitted, then the type defaults

to having Any as its immediate supertype. The declaration of Bool above therefore means that a boolean value takes

eight bits to store, and has Integer as its immediate supertype. Currently, only sizes that are multiples of 8 bits are

supported. Therefore, boolean values, although they really need just a single bit, cannot be declared to be any smaller

than eight bits.

The types Bool, Int8 and UInt8 all have identical representations: they are eight-bit chunks of memory. Since Julia's

type system is nominative, however, they are not interchangeable despite having identical structure. A fundamental

differencebetween them is that theyhavedifferent supertypes: Bool's direct supertype isInteger,Int8's isSigned,

and UInt8's is Unsigned. All other differences between Bool, Int8, and UInt8 are matters of behavior – the way

functions are defined to act when given objects of these types as arguments. This is why a nominative type system is

necessary: if structure determined type, which in turn dictates behavior, then it would be impossible to make Bool

behave any differently than Int8 or UInt8.

14.4 Composite Types

Composite types are called records, structs, or objects in various languages. A composite type is a collection of named

fields, an instance of which can be treated as a single value. In many languages, composite types are the only kind of

user-definable type, and they are by far themost commonly used user-defined type in Julia as well.

In mainstream object oriented languages, such as C++, Java, Python and Ruby, composite types also have named func-

tions associatedwith them, and the combination is called an "object". In purer object-oriented languages, such as Ruby

or Smalltalk, all values are objectswhether they are composites or not. In less pure object oriented languages, including

C++ and Java, some values, such as integers and floating-point values, are not objects, while instances of user-defined

https://en.wikipedia.org/wiki/Composite_data_type

112 CHAPTER 14. TYPES

composite types are true objectswith associatedmethods. In Julia, all values are objects, but functions are not bundled

with the objects they operate on. This is necessary since Julia chooses which method of a function to use by multiple

dispatch, meaning that the types of all of a function's arguments are considered when selecting a method, rather than

just the first one (see Methods for more information on methods and dispatch). Thus, it would be inappropriate for

functions to "belong" to only their first argument. Organizingmethods into function objects rather than having named

bags of methods "inside" each object ends up being a highly beneficial aspect of the language design.

Composite types are introduced with the struct keyword followed by a block of field names, optionally annotated

with types using the :: operator:

julia> struct Foo

bar

baz::Int

qux::Float64

end

Fields with no type annotation default to Any, and can accordingly hold any type of value.

New objects of type Foo are created by applying the Foo type object like a function to values for its fields:

julia> foo = Foo("Hello, world.", 23, 1.5)

Foo("Hello, world.", 23, 1.5)

julia> typeof(foo)

Foo

When a type is applied like a function it is called a constructor. Two constructors are generated automatically (these are

called default constructors). One accepts any arguments and calls convert() to convert them to the types of the fields,

and the other accepts arguments thatmatch the field types exactly. The reason both of these are generated is that this

makes it easier to add new definitions without inadvertently replacing a default constructor.

Since the bar field is unconstrained in type, any value will do. However, the value for bazmust be convertible to Int:

julia> Foo((), 23.5, 1)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Int64}, ::Float64) at ./float.jl:679

[2] Foo(::Tuple{}, ::Float64, ::Int64) at ./none:2

Youmay find a list of field names using the fieldnames function.

julia> fieldnames(foo)

3-element Array{Symbol,1}:

:bar

:baz

:qux

You can access the field values of a composite object using the traditional foo.bar notation:

julia> foo.bar

"Hello, world."

julia> foo.baz

23

julia> foo.qux

1.5

14.5. MUTABLE COMPOSITE TYPES 113

Composite objects declared with struct are immutable; they cannot be modified after construction. This may seem

odd at first, but it has several advantages:

• It can bemore efficient. Some structs can bepacked efficiently into arrays, and in some cases the compiler is able

to avoid allocating immutable objects entirely.

• It is not possible to violate the invariants provided by the type's constructors.

• Code using immutable objects can be easier to reason about.

An immutable object might contain mutable objects, such as arrays, as fields. Those contained objects will remain mu-

table; only the fields of the immutable object itself cannot be changed to point to different objects.

Where required, mutable composite objects can be declared with the keyword mutable struct, to be discussed in

the next section.

Composite types with no fields are singletons; there can be only one instance of such types:

julia> struct NoFields

end

julia> NoFields() === NoFields()

true

The === function confirms that the "two" constructed instances of NoFields are actually one and the same. Singleton

types are described in further detail below.

There is much more to say about how instances of composite types are created, but that discussion depends on both

Parametric Types and onMethods, and is sufficiently important to be addressed in its own section: Constructors.

14.5 Mutable Composite Types

If a composite type is declared with mutable struct instead of struct, then instances of it can bemodified:

julia> mutable struct Bar

baz

qux::Float64

end

julia> bar = Bar("Hello", 1.5);

julia> bar.qux = 2.0

2.0

julia> bar.baz = 1//2

1//2

In order to support mutation, such objects are generally allocated on the heap, and have stable memory addresses. A

mutable object is like a little container that might hold different values over time, and so can only be reliably identified

with its address. In contrast, an instance of an immutable type is associated with specific field values –- the field values

alone tell you everything about theobject. In decidingwhether tomakea typemutable, askwhether two instanceswith

the same field values would be considered identical, or if they might need to change independently over time. If they

would be considered identical, the type should probably be immutable.

To recap, two essential properties define immutability in Julia:

114 CHAPTER 14. TYPES

• Anobjectwithan immutable type is passedaround (both in assignment statements and in function calls) by copy-

ing, whereas amutable type is passed around by reference.

• It is not permitted tomodify the fields of a composite immutable type.

It is instructive, particularly for readers whose background is C/C++, to consider why these two properties go hand

in hand. If they were separated, i.e., if the fields of objects passed around by copying could be modified, then it would

becomemore difficult to reason about certain instances of generic code. For example, supposex is a function argument

of an abstract type, and suppose that the function changes a field: x.isprocessed = true. Depending on whether

x is passed by copying or by reference, this statement may or may not alter the actual argument in the calling routine.

Julia sidesteps the possibility of creating functions with unknown effects in this scenario by forbidding modification of

fields of objects passed around by copying.

14.6 Declared Types

The three kinds of types discussed in the previous three sections are actually all closely related. They share the same

key properties:

• They are explicitly declared.

• They have names.

• They have explicitly declared supertypes.

• Theymay have parameters.

Becauseof thesesharedproperties, these typesare internally representedas instancesof thesameconcept,DataType,

which is the type of any of these types:

julia> typeof(Real)

DataType

julia> typeof(Int)

DataType

A DataTypemay be abstract or concrete. If it is concrete, it has a specified size, storage layout, and (optionally) field

names. Thus a bits type is a DataTypewith nonzero size, but no field names. A composite type is a DataType that has

field names or is empty (zero size).

Every concrete value in the system is an instance of some DataType.

14.7 Type Unions

A type union is a special abstract type which includes as objects all instances of any of its argument types, constructed

using the special Union function:

julia> IntOrString = Union{Int,AbstractString}

Union{AbstractString, Int64}

julia> 1 :: IntOrString

1

14.8. PARAMETRIC TYPES 115

julia> "Hello!" :: IntOrString

"Hello!"

julia> 1.0 :: IntOrString

ERROR: TypeError: typeassert: expected Union{AbstractString, Int64}, got Float64

The compilers for many languages have an internal union construct for reasoning about types; Julia simply exposes it

to the programmer.

14.8 Parametric Types

An important andpowerful featureof Julia's type system is that it is parametric: types can takeparameters, so that type

declarations actually introduce a whole family of new types – one for each possible combination of parameter values.

There aremany languages that support some version of generic programming, wherein data structures and algorithms

to manipulate them may be specified without specifying the exact types involved. For example, some form of generic

programming exists inML,Haskell, Ada, Eiffel, C++, Java, C#, F#, and Scala, just to name a few. Someof these languages

support true parametric polymorphism (e.g. ML, Haskell, Scala), while others support ad-hoc, template-based styles of

generic programming (e.g. C++, Java). With so many different varieties of generic programming and parametric types

in various languages, we won't even attempt to compare Julia's parametric types to other languages, but will instead

focus on explaining Julia's system in its own right. We will note, however, that because Julia is a dynamically typed

language anddoesn't need tomake all type decisions at compile time,many traditional difficulties encountered in static

parametric type systems can be relatively easily handled.

All declared types (the DataType variety) can be parameterized, with the same syntax in each case. We will discuss

them in the following order: first, parametric composite types, then parametric abstract types, and finally parametric

bits types.

Parametric Composite Types

Type parameters are introduced immediately after the type name, surrounded by curly braces:

julia> struct Point{T}

x::T

y::T

end

Thisdeclarationdefinesanewparametric type,Point{T}, holding two"coordinates"of typeT.What, onemayask, isT?

Well, that's precisely thepoint of parametric types: it canbe any type at all (or a valueof anybits type, actually, although

here it's clearly used as a type). Point{Float64} is a concrete type equivalent to the type defined by replacing T in

the definition of Point with Float64. Thus, this single declaration actually declares an unlimited number of types:

Point{Float64}, Point{AbstractString}, Point{Int64}, etc. Each of these is now a usable concrete type:

julia> Point{Float64}

Point{Float64}

julia> Point{AbstractString}

Point{AbstractString}

ThetypePoint{Float64} is apointwhosecoordinatesare64-bitfloating-pointvalues,while thetypePoint{AbstractString}

is a "point" whose "coordinates" are string objects (see Strings).

Point itself is also a valid type object, containing all instances Point{Float64}, Point{AbstractString}, etc. as

subtypes:

https://en.wikipedia.org/wiki/Generic_programming

116 CHAPTER 14. TYPES

julia> Point{Float64} <: Point

true

julia> Point{AbstractString} <: Point

true

Other types, of course, are not subtypes of it:

julia> Float64 <: Point

false

julia> AbstractString <: Point

false

Concrete Point types with different values of T are never subtypes of each other:

julia> Point{Float64} <: Point{Int64}

false

julia> Point{Float64} <: Point{Real}

false

Warning

This last point is very important: even though Float64 <: Real we DO NOT have Point{Float64}

<: Point{Real}.

In other words, in the parlance of type theory, Julia's type parameters are invariant, rather than being covariant (or

even contravariant). This is for practical reasons: while any instance of Point{Float64}may conceptually be like an

instance of Point{Real} as well, the two types have different representations in memory:

• An instance of Point{Float64} can be represented compactly and efficiently as an immediate pair of 64-bit

values;

• An instance ofPoint{Real}must be able to hold any pair of instances ofReal. Since objects that are instances

of Real can be of arbitrary size and structure, in practice an instance of Point{Real}must be represented as

a pair of pointers to individually allocated Real objects.

The efficiency gained by being able to store Point{Float64} objects with immediate values is magnified enormously

in the case of arrays: an Array{Float64} can be stored as a contiguous memory block of 64-bit floating-point val-

ues, whereas an Array{Real}must be an array of pointers to individually allocated Real objects –whichmaywell be

boxed 64-bit floating-point values, but alsomight be arbitrarily large, complex objects, which are declared to be imple-

mentations of the Real abstract type.

Since Point{Float64} is not a subtype of Point{Real}, the followingmethod can't be applied to arguments of type

Point{Float64}:

function norm(p::Point{Real})

sqrt(p.x^2 + p.y^2)

end

A correct way to define amethod that accepts all arguments of type Point{T}where T is a subtype of Real is:

https://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
https://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
https://en.wikipedia.org/wiki/Object_type_%28object-oriented_programming%29#Boxing

14.8. PARAMETRIC TYPES 117

function norm(p::Point{<:Real})

sqrt(p.x^2 + p.y^2)

end

(Equivalently, onecoulddefinefunction norm{T<:Real}(p::Point{T})orfunction norm(p::Point{T} where

T<:Real); see UnionAll Types.)

More examples will be discussed later inMethods.

How does one construct a Point object? It is possible to define custom constructors for composite types, which will

be discussed in detail in Constructors, but in the absence of any special constructor declarations, there are two default

ways of creating new composite objects, one in which the type parameters are explicitly given and the other in which

they are implied by the arguments to the object constructor.

Since the type Point{Float64} is a concrete type equivalent to Point declaredwith Float64 in place of T, it can be

applied as a constructor accordingly:

julia> Point{Float64}(1.0, 2.0)

Point{Float64}(1.0, 2.0)

julia> typeof(ans)

Point{Float64}

For the default constructor, exactly one argumentmust be supplied for each field:

julia> Point{Float64}(1.0)

ERROR: MethodError: Cannot `convert` an object of type Float64 to an object of type Point{Float64

}

This may have arisen from a call to the constructor Point{Float64}(...),

since type constructors fall back to convert methods.

Stacktrace:

[1] Point{Float64}(::Float64) at ./sysimg.jl:77

julia> Point{Float64}(1.0,2.0,3.0)

ERROR: MethodError: no method matching Point{Float64}(::Float64, ::Float64, ::Float64)

Only one default constructor is generated for parametric types, since overriding it is not possible. This constructor

accepts any arguments and converts them to the field types.

Inmany cases, it is redundant to provide the type of Point object onewants to construct, since the types of arguments

to the constructor call already implicitly provide type information. For that reason, you can also apply Point itself as a

constructor, provided that the implied value of the parameter type T is unambiguous:

julia> Point(1.0,2.0)

Point{Float64}(1.0, 2.0)

julia> typeof(ans)

Point{Float64}

julia> Point(1,2)

Point{Int64}(1, 2)

julia> typeof(ans)

Point{Int64}

In the case of Point, the type of T is unambiguously implied if and only if the two arguments to Point have the same

type. When this isn't the case, the constructor will fail with a MethodError:

118 CHAPTER 14. TYPES

julia> Point(1,2.5)

ERROR: MethodError: no method matching Point(::Int64, ::Float64)

Closest candidates are:

Point(::T, !Matched::T) where T at none:2

Constructormethods to appropriately handle suchmixed cases can be defined, but thatwill not be discussed until later

on in Constructors.

Parametric Abstract Types

Parametric abstract type declarations declare a collection of abstract types, in much the sameway:

julia> abstract type Pointy{T} end

With this declaration, Pointy{T} is a distinct abstract type for each type or integer value of T. As with parametric

composite types, each such instance is a subtype of Pointy:

julia> Pointy{Int64} <: Pointy

true

julia> Pointy{1} <: Pointy

true

Parametric abstract types are invariant, much as parametric composite types are:

julia> Pointy{Float64} <: Pointy{Real}

false

julia> Pointy{Real} <: Pointy{Float64}

false

The notation Pointy{<:Real} can be used to express the Julia analogue of a covariant type, while Pointy{>:Int}

the analogue of a contravariant type, but technically these represent sets of types (see UnionAll Types).

julia> Pointy{Float64} <: Pointy{<:Real}

true

julia> Pointy{Real} <: Pointy{>:Int}

true

Much as plain old abstract types serve to create a useful hierarchy of types over concrete types, parametric abstract

typesservethesamepurposewithrespect toparametriccomposite types. Wecould, forexample, havedeclaredPoint{T}

to be a subtype of Pointy{T} as follows:

julia> struct Point{T} <: Pointy{T}

x::T

y::T

end

Given such a declaration, for each choice of T, we have Point{T} as a subtype of Pointy{T}:

julia> Point{Float64} <: Pointy{Float64}

true

julia> Point{Real} <: Pointy{Real}

true

julia> Point{AbstractString} <: Pointy{AbstractString}

true

14.8. PARAMETRIC TYPES 119

This relationship is also invariant:

julia> Point{Float64} <: Pointy{Real}

false

julia> Point{Float64} <: Pointy{<:Real}

true

What purpose do parametric abstract types like Pointy serve? Consider if we create a point-like implementation that

only requires a single coordinate because the point is on the diagonal line x = y:

julia> struct DiagPoint{T} <: Pointy{T}

x::T

end

Nowboth Point{Float64} and DiagPoint{Float64} are implementations of the Pointy{Float64} abstraction,

and similarly for every other possible choice of type T. This allows programming to a common interface shared by all

Pointy objects, implemented for both Point and DiagPoint. This cannot be fully demonstrated, however, until we

have introducedmethods and dispatch in the next section, Methods.

There are situations where it may not make sense for type parameters to range freely over all possible types. In such

situations, one can constrain the range of T like so:

julia> abstract type Pointy{T<:Real} end

With such a declaration, it is acceptable to use any type that is a subtype ofReal in place ofT, but not types that are not

subtypes of Real:

julia> Pointy{Float64}

Pointy{Float64}

julia> Pointy{Real}

Pointy{Real}

julia> Pointy{AbstractString}

ERROR: TypeError: Pointy: in T, expected T<:Real, got Type{AbstractString}

julia> Pointy{1}

ERROR: TypeError: Pointy: in T, expected T<:Real, got Int64

Type parameters for parametric composite types can be restricted in the samemanner:

struct Point{T<:Real} <: Pointy{T}

x::T

y::T

end

To give a real-world example of how all this parametric type machinery can be useful, here is the actual definition of

Julia's Rational immutable type (except that we omit the constructor here for simplicity), representing an exact ratio

of integers:

struct Rational{T<:Integer} <: Real

num::T

den::T

end

120 CHAPTER 14. TYPES

It onlymakes sense to take ratios of integer values, so the parameter typeT is restricted to being a subtype ofInteger,

and a ratio of integers represents a value on the real number line, so any Rational is an instance of the Real abstrac-

tion.

Tuple Types

Tuples are an abstraction of the arguments of a function –without the function itself. The salient aspects of a function's

arguments are their order and their types. Therefore a tuple type is similar to a parameterized immutable type where

each parameter is the type of one field. For example, a 2-element tuple type resembles the following immutable type:

struct Tuple2{A,B}

a::A

b::B

end

However, there are three key differences:

• Tuple typesmay have any number of parameters.

• Tuple typesare covariant in theirparameters: Tuple{Int} is a subtypeofTuple{Any}. ThereforeTuple{Any}

is considered an abstract type, and tuple types are only concrete if their parameters are.

• Tuples do not have field names; fields are only accessed by index.

Tuple values are written with parentheses and commas. When a tuple is constructed, an appropriate tuple type is gen-

erated on demand:

julia> typeof((1,"foo",2.5))

Tuple{Int64,String,Float64}

Note the implications of covariance:

julia> Tuple{Int,AbstractString} <: Tuple{Real,Any}

true

julia> Tuple{Int,AbstractString} <: Tuple{Real,Real}

false

julia> Tuple{Int,AbstractString} <: Tuple{Real,}

false

Intuitively, this corresponds to the type of a function's arguments being a subtype of the function's signature (when the

signaturematches).

Vararg Tuple Types

The last parameter of a tuple type can be the special type Vararg, which denotes any number of trailing elements:

14.8. PARAMETRIC TYPES 121

julia> mytupletype = Tuple{AbstractString,Vararg{Int}}

Tuple{AbstractString,Vararg{Int64,N} where N}

julia> isa(("1",), mytupletype)

true

julia> isa(("1",1), mytupletype)

true

julia> isa(("1",1,2), mytupletype)

true

julia> isa(("1",1,2,3.0), mytupletype)

false

Notice that Vararg{T} corresponds to zero or more elements of type T. Vararg tuple types are used to represent the

arguments accepted by varargs methods (see Varargs Functions).

ThetypeVararg{T,N}correspondstoexactlyNelementsof typeT.NTuple{N,T} is aconvenientalias forTuple{Vararg{T,N}},

i.e. a tuple type containing exactly N elements of type T.

Singleton Types

There is a special kind of abstract parametric type that must be mentioned here: singleton types. For each type, T, the

"singleton type" Type{T} is an abstract type whose only instance is the object T. Since the definition is a little difficult

to parse, let's look at some examples:

julia> isa(Float64, Type{Float64})

true

julia> isa(Real, Type{Float64})

false

julia> isa(Real, Type{Real})

true

julia> isa(Float64, Type{Real})

false

In other words, isa(A,Type{B}) is true if and only if A and B are the same object and that object is a type. Without

the parameter, Type is simply an abstract typewhich has all type objects as its instances, including, of course, singleton

types:

julia> isa(Type{Float64}, Type)

true

julia> isa(Float64, Type)

true

julia> isa(Real, Type)

true

Any object that is not a type is not an instance of Type:

122 CHAPTER 14. TYPES

julia> isa(1, Type)

false

julia> isa("foo", Type)

false

Until we discuss ParametricMethods and conversions, it is difficult to explain the utility of the singleton type construct,

but in short, it allows one to specialize function behavior on specific type values. This is useful for writing methods

(especially parametric ones)whose behavior depends on a type that is given as an explicit argument rather than implied

by the type of one of its arguments.

A few popular languages have singleton types, including Haskell, Scala and Ruby. In general usage, the term "singleton

type" refers to a typewhose only instance is a single value. Thismeaning applies to Julia's singleton types, butwith that

caveat that only type objects have singleton types.

Parametric Primitive Types

Primitive types can also be declared parametrically. For example, pointers are represented as primitive types which

would be declared in Julia like this:

32-bit system:

primitive type Ptr{T} 32 end

64-bit system:

primitive type Ptr{T} 64 end

The slightly odd feature of these declarations as compared to typical parametric composite types, is that the type pa-

rameter T is not used in the definition of the type itself – it is just an abstract tag, essentially defining an entire family of

typeswith identical structure, differentiated only by their type parameter. Thus, Ptr{Float64} and Ptr{Int64} are

distinct types, even though they have identical representations. And of course, all specific pointer types are subtypes

of the umbrella Ptr type:

julia> Ptr{Float64} <: Ptr

true

julia> Ptr{Int64} <: Ptr

true

14.9 UnionAll Types

We have said that a parametric type like Ptr acts as a supertype of all its instances (Ptr{Int64} etc.). How does this

work? Ptr itself cannot be a normal data type, since without knowing the type of the referenced data the type clearly

cannot beused formemoryoperations. The answer is thatPtr (or other parametric types likeArray) is a different kind

of type called a UnionAll type. Such a type expresses the iterated union of types for all values of some parameter.

UnionAll types are usually written using the keyword where. For example Ptr could be more accurately written as

Ptr{T} where T, meaning all valueswhose type isPtr{T} for some value ofT. In this context, the parameterT is also

often called a "type variable" since it is like a variable that ranges over types. Each where introduces a single type vari-

able, so these expressions are nested for types with multiple parameters, for example Array{T,N} where N where

T.

14.10. TYPE ALIASES 123

The type application syntax A{B,C} requires A to be a UnionAll type, and first substitutes B for the outermost type

variable in A. The result is expected to be another UnionAll type, intowhich C is then substituted. So A{B,C} is equiv-

alent toA{B}{C}. This explainswhy it is possible to partially instantiate a type, as inArray{Float64}: thefirst param-

eter value has been fixed, but the second still ranges over all possible values. Using explicit where syntax, any subset of

parameters can be fixed. For example, the type of all 1-dimensional arrays can bewritten as Array{T,1} where T.

Type variables can be restrictedwith subtype relations. Array{T} where T<:Integer refers to all arrays whose el-

ement type is somekindofInteger. The syntaxArray{<:Integer} is a convenient shorthand forArray{T} where

T<:Integer. Type variables can have both lower and upper bounds. Array{T} where Int<:T<:Number refers to

all arrays of Numbers that are able to contain Ints (since Tmust be at least as big as Int). The syntax where T>:Int

also works to specify only the lower bound of a type variable, and Array{>:Int} is equivalent to Array{T} where

T>:Int.

Sincewhereexpressionsnest, typevariableboundscanrefer toouter typevariables. ForexampleTuple{T,Array{S}}

where S<:AbstractArray{T} where T<:Real refers to 2-tuples whose first element is some Real, and whose

second element is an Array of any kind of array whose element type contains the type of the first tuple element.

Thewherekeyword itself canbenested insideamorecomplexdeclaration. Forexample, consider the twotypescreated

by the following declarations:

julia> const T1 = Array{Array{T,1} where T, 1}

Array{Array{T,1} where T,1}

julia> const T2 = Array{Array{T,1}, 1} where T

Array{Array{T,1},1} where T

Type T1 defines a 1-dimensional array of 1-dimensional arrays; each of the inner arrays consists of objects of the same

type, but this type may vary from one inner array to the next. On the other hand, type T2 defines a 1-dimensional ar-

ray of 1-dimensional arrays all of whose inner arrays must have the same type. Note that T2 is an abstract type, e.g.,

Array{Array{Int,1},1} <: T2, whereas T1 is a concrete type. As a consequence, T1 can be constructed with a

zero-argument constructor a=T1() but T2 cannot.

There is a convenient syntax for naming such types, similar to the short form of function definition syntax:

Vector{T} = Array{T,1}

This is equivalent to const Vector = Array{T,1} where T. Writing Vector{Float64} is equivalent to writing

Array{Float64,1}, and the umbrella type Vector has as instances all Array objects where the second parameter

– the number of array dimensions – is 1, regardless of what the element type is. In languages where parametric types

must always be specified in full, this is not especially helpful, but in Julia, this allows one to write just Vector for the

abstract type including all one-dimensional dense arrays of any element type.

14.10 Type Aliases

Sometimes it is convenient to introduce a new name for an already expressible type. This can be done with a simple

assignmentstatement. Forexample,UInt is aliasedtoeitherUInt32orUInt64as isappropriate for thesizeofpointers

on the system:

32-bit system:

julia> UInt

UInt32

64-bit system:

124 CHAPTER 14. TYPES

julia> UInt

UInt64

This is accomplished via the following code in base/boot.jl:

if Int === Int64

const UInt = UInt64

else

const UInt = UInt32

end

Ofcourse, this dependsonwhatInt is aliased to–but that is predefined tobe thecorrect type–eitherInt32orInt64.

(Note that unlike Int, Float does not exist as a type alias for a specific sized AbstractFloat. Unlike with integer

registers, the floating point register sizes are specified by the IEEE-754 standard. Whereas the size of Int reflects the

size of a native pointer on that machine.)

14.11 Operations on Types

Since types in Julia are themselves objects, ordinary functions can operate on them. Some functions that are particu-

larly useful for workingwith or exploring types have already been introduced, such as the <: operator, which indicates

whether its left hand operand is a subtype of its right hand operand.

The isa function tests if an object is of a given type and returns true or false:

julia> isa(1, Int)

true

julia> isa(1, AbstractFloat)

false

The typeof() function, already used throughout the manual in examples, returns the type of its argument. Since, as

noted above, types are objects, they also have types, andwe can ask what their types are:

julia> typeof(Rational{Int})

DataType

julia> typeof(Union{Real,Float64,Rational})

DataType

julia> typeof(Union{Real,String})

Union

What if we repeat the process? What is the type of a type of a type? As it happens, types are all composite values and

thus all have a type of DataType:

julia> typeof(DataType)

DataType

julia> typeof(Union)

DataType

14.12. CUSTOMPRETTY-PRINTING 125

DataType is its own type.

Another operation that applies to some types is supertype(), which reveals a type's supertype. Only declared types

(DataType) have unambiguous supertypes:

julia> supertype(Float64)

AbstractFloat

julia> supertype(Number)

Any

julia> supertype(AbstractString)

Any

julia> supertype(Any)

Any

If you apply supertype() to other type objects (or non-type objects), a MethodError is raised:

julia> supertype(Union{Float64,Int64})

ERROR: MethodError: no method matching supertype(::Type{Union{Float64, Int64}})

Closest candidates are:

supertype(!Matched::DataType) at operators.jl:41

supertype(!Matched::UnionAll) at operators.jl:46

14.12 Custom pretty-printing

Often, one wants to customize how instances of a type are displayed. This is accomplished by overloading the show()

function. For example, suppose we define a type to represent complex numbers in polar form:

julia> struct Polar{T<:Real} <: Number

r::T

Θ::T

end

julia> Polar(r::RealΘ,::Real) = Polar(promote(rΘ,)...)

Polar

Here, we've added a custom constructor function so that it can take arguments of different Real types and promote

them to a common type (see Constructors and Conversion and Promotion). (Of course, wewould have to define lots of

othermethods, too, tomake it act like aNumber, e.g. +,*,one,zero, promotion rules and soon.) Bydefault, instances of

this typedisplayrathersimply,with informationabout thetypenameandthefieldvalues, ase.g. Polar{Float64}(3.0,4.0).

If we want it to display instead as 3.0 * exp(4.0im), we would define the following method to print the object to a

given output object io (representing a file, terminal, buffer, etcetera; see Networking and Streams):

julia> Base.show(io::IO, z::Polar) = print(io, z.r, " * exp(", zΘ., "im)")

More fine-grained control over display of Polar objects is possible. In particular, sometimes onewants both a verbose

multi-line printing format, used for displaying a single object in theREPL andother interactive environments, and also a

morecompact single-line formatused forprint()or fordisplaying theobjectaspartofanotherobject (e.g. inanarray).

Although by default the show(io, z) function is called in both cases, you can define a differentmulti-line format for

displayinganobjectbyoverloadinga three-argument formofshow that takes thetext/plainMIMEtypeas its second

argument (seeMultimedia I/O), for example:

126 CHAPTER 14. TYPES

julia> Base.show{T}(io::IO, ::MIME"text/plain", z::Polar{T}) =

print(io, "Polar{$T} complex number:\n ", z)

(Note that print(..., z) here will call the 2-argument show(io, z)method.) This results in:

julia> Polar(3, 4.0)

Polar{Float64} complex number:

3.0 * exp(4.0im)

julia> [Polar(3, 4.0), Polar(4.0,5.3)]

2-element Array{Polar{Float64},1}:

3.0 * exp(4.0im)

4.0 * exp(5.3im)

wherethesingle-lineshow(io, z) formisstill usedforanarrayofPolarvalues. Technically, theREPLcallsdisplay(z)

to display the result of executing a line, which defaults to show(STDOUT, MIME("text/plain"), z), which in turn

defaults toshow(STDOUT, z), but you should not define newdisplay()methods unless you are defining a newmul-

timedia display handler (seeMultimedia I/O).

Moreover, you can also define showmethods for other MIME types in order to enable richer display (HTML, images,

etcetera) of objects in environments that support this (e.g. IJulia). For example, we can define formattedHTML display

of Polar objects, with superscripts and italics, via:

julia> Base.show{T}(io::IO, ::MIME"text/html", z::Polar{T}) =

println(io, "<code>Polar{$T}</code> complex number: ",

z.r, " <i>e</i>^{", zΘ., " <i>i</i>}")

A Polar objectwill then display automatically usingHTML in an environment that supportsHTMLdisplay, but you can

call showmanually to get HTML output if youwant:

julia> show(STDOUT, "text/html", Polar(3.0,4.0))

<code>Polar{Float64}</code> complex number: 3.0 <i>e</i>^{4.0 <i>i</i>}

14.13 "Value types"

In Julia, you can't dispatch on a value such as true or false. However, you can dispatch on parametric types, and

Julia allows you to include "plain bits" values (Types, Symbols, Integers, floating-point numbers, tuples, etc.) as type

parameters. A common example is the dimensionality parameter in Array{T,N}, where T is a type (e.g., Float64) but

N is just an Int.

Youcancreateyourowncustomtypes that takevaluesasparameters, anduse themtocontroldispatchof customtypes.

Byway of illustration of this idea, let's introduce a parametric type,Val{T}, which serves as a customaryway to exploit

this technique for cases where you don't need amore elaborate hierarchy.

Val is defined as:

julia> struct Val{T}

end

There is nomore to the implementation of Val than this. Some functions in Julia's standard library accept Val types as

arguments, and you can also use it to write your own functions. For example:

julia> firstlast(::Type{Val{true}}) = "First"

firstlast (generic function with 1 method)

julia> firstlast(::Type{Val{false}}) = "Last"

firstlast (generic function with 2 methods)

14.14. NULLABLE TYPES: REPRESENTINGMISSING VALUES 127

julia> firstlast(Val{true})

"First"

julia> firstlast(Val{false})

"Last"

ForconsistencyacrossJulia, thecall siteshouldalwayspassaValtype rather thancreatingan instance, i.e., usefoo(Val{:bar})

rather than foo(Val{:bar}()).

It's worth noting that it's extremely easy to mis-use parametric "value" types, including Val; in unfavorable cases, you

can easily end upmaking the performance of your codemuchworse. In particular, youwould neverwant towrite actual

code as illustrated above. For more information about the proper (and improper) uses of Val, please read the more

extensive discussion in the performance tips.

14.14 Nullable Types: RepresentingMissing Values

In many settings, you need to interact with a value of type T that may or may not exist. To handle these settings, Julia

provides a parametric type called Nullable{T}, which can be thought of as a specialized container type that can con-

tain either zero or one values. Nullable{T} provides a minimal interface designed to ensure that interactions with

missing values are safe. At present, the interface consists of several possible interactions:

• Construct a Nullable object.

• Check if a Nullable object has amissing value.

• Access the value of a Nullable object with a guarantee that a NullException will be thrown if the object's

value is missing.

• Access the value of a Nullable object with a guarantee that a default value of type T will be returned if the

object's value is missing.

• Perform an operation on the value (if it exists) of a Nullable object, getting a Nullable result. The result will

bemissing if the original value wasmissing.

• Performing a test on the value (if it exists) of a Nullable object, getting a result that is missing if either the

Nullable itself wasmissing, or the test failed.

• Perform general operations on single Nullable objects, propagating themissing data.

Constructing Nullable objects

To construct an object representing amissing value of type T, use the Nullable{T}() function:

julia> x1 = Nullable{Int64}()

Nullable{Int64}()

julia> x2 = Nullable{Float64}()

Nullable{Float64}()

julia> x3 = Nullable{Vector{Int64}}()

Nullable{Array{Int64,1}}()

To construct an object representing a non-missing value of type T, use the Nullable(x::T) function:

128 CHAPTER 14. TYPES

julia> x1 = Nullable(1)

Nullable{Int64}(1)

julia> x2 = Nullable(1.0)

Nullable{Float64}(1.0)

julia> x3 = Nullable([1, 2, 3])

Nullable{Array{Int64,1}}([1, 2, 3])

Note the core distinction between these twoways of constructing a Nullable object: in one style, you provide a type,

T, as a function parameter; in the other style, you provide a single value of type T as an argument.

Checking if a Nullable object has a value

You can check if a Nullable object has any value using isnull():

julia> isnull(Nullable{Float64}())

true

julia> isnull(Nullable(0.0))

false

Safely accessing the value of a Nullable object

You can safely access the value of a Nullable object using get():

julia> get(Nullable{Float64}())

ERROR: NullException()

Stacktrace:

[1] get(::Nullable{Float64}) at ./nullable.jl:92

julia> get(Nullable(1.0))

1.0

If the value is not present, as it would be for Nullable{Float64}, a NullException errorwill be thrown. The error-

throwing nature of the get() function ensures that any attempt to access amissing value immediately fails.

In cases for which a reasonable default value exists that could be usedwhen a Nullable object's value turns out to be

missing, you can provide this default value as a second argument to get():

julia> get(Nullable{Float64}(), 0.0)

0.0

julia> get(Nullable(1.0), 0.0)

1.0

Tip

Make sure the type of the default value passed to get() and that of the Nullable objectmatch to avoid

type instability, which could hurt performance. Use convert()manually if needed.

14.14. NULLABLE TYPES: REPRESENTINGMISSING VALUES 129

Performing operations on Nullable objects

Nullable objects represent values that are possibly missing, and it is possible to write all code using these objects by

first testing to see if thevalue ismissingwithisnull(), and thendoinganappropriateaction. However, thereare some

common use cases where the code could bemore concise or clear by using a higher-order function.

The map function takes as arguments a function f and a Nullable value x. It produces a Nullable:

• If x is a missing value, then it produces amissing value;

• If x has a value, then it produces a Nullable containing f(get(x)) as value.

This is useful for performing simple operations on values that might be missing if the desired behaviour is to simply

propagate themissing values forward.

Thefilter function takes as arguments apredicate functionp (that is, a function returning aboolean) andaNullable

value x. It produces a Nullable value:

• If x is a missing value, then it produces amissing value;

• If p(get(x)) is true, then it produces the original value x;

• If p(get(x)) is false, then it produces amissing value.

In thisway,filter canbe thoughtof as selectingonly allowablevalues, andconvertingnon-allowablevalues tomissing

values.

While map and filter are useful in specific cases, by far the most useful higher-order function is broadcast, which

can handle a wide variety of cases, including making existing operations work and propagate Nullables. An example

will motivate the need for broadcast. Suppose we have a function that computes the greater of two real roots of a

quadratic equation, using the quadratic formula:

julia> root(a::Real, b::Real, c::Real) = (-b + √(b^2 - 4a*c)) / 2a

root (generic function with 1 method)

Wemay verify that the result of root(1, -9, 20) is 5.0, as we expect, since 5.0 is the greater of two real roots of

the quadratic equation.

Supposenowthatwewant tofindthegreatest real rootofaquadraticequationswhere thecoefficientsmightbemissing

values. Havingmissing values in datasets is a commonoccurrence in real-world data, and so it is important to be able to

deal with them. But we cannot find the roots of an equation if we do not know all the coefficients. The best solution to

thiswill dependon theparticularusecase; perhapsweshould throwanerror. However, for this example,wewill assume

that the best solution is to propagate the missing values forward; that is, if any input is missing, we simply produce a

missing output.

The broadcast() functionmakes this task easy; we can simply pass the root function wewrote to broadcast:

julia> broadcast(root, Nullable(1), Nullable(-9), Nullable(20))

Nullable{Float64}(5.0)

julia> broadcast(root, Nullable(1), Nullable{Int}(), Nullable{Int}())

Nullable{Float64}()

julia> broadcast(root, Nullable{Int}(), Nullable(-9), Nullable(20))

Nullable{Float64}()

130 CHAPTER 14. TYPES

If one ormore of the inputs is missing, then the output of broadcast()will bemissing.

There exists special syntactic sugar for the broadcast() function using a dot notation:

julia> root.(Nullable(1), Nullable(-9), Nullable(20))

Nullable{Float64}(5.0)

In particular, the regular arithmetic operators can be broadcast() conveniently using .-prefixed operators:

julia> Nullable(2) ./ Nullable(3) .+ Nullable(1.0)

Nullable{Float64}(1.66667)

Chapter 15

Methods

Recall from Functions that a function is an object that maps a tuple of arguments to a return value, or throws an ex-

ception if no appropriate value can be returned. It is common for the same conceptual function or operation to be

implemented quite differently for different types of arguments: adding two integers is very different from adding two

floating-point numbers, both of which are distinct from adding an integer to a floating-point number. Despite their im-

plementation differences, these operations all fall under the general concept of "addition". Accordingly, in Julia, these

behaviors all belong to a single object: the + function.

To facilitate using many different implementations of the same concept smoothly, functions need not be defined all at

once, but can rather be defined piecewise by providing specific behaviors for certain combinations of argument types

and counts. A definition of one possible behavior for a function is called a method. Thus far, we have presented only

examples of functions defined with a single method, applicable to all types of arguments. However, the signatures of

method definitions can be annotated to indicate the types of arguments in addition to their number, and more than

a single method definition may be provided. When a function is applied to a particular tuple of arguments, the most

specificmethod applicable to those arguments is applied. Thus, the overall behavior of a function is a patchwork of the

behaviors of its various method definitions. If the patchwork is well designed, even though the implementations of the

methodsmay be quite different, the outward behavior of the function will appear seamless and consistent.

The choice of which method to execute when a function is applied is called dispatch. Julia allows the dispatch process

to choose which of a function's methods to call based on the number of arguments given, and on the types of all of the

function's arguments. This is different than traditional object-oriented languages, where dispatch occurs basedonly on

the first argument, which often has a special argument syntax, and is sometimes implied rather than explicitly written

as an argument. 1 Using all of a function's arguments to choose which method should be invoked, rather than just the

first, is known asmultiple dispatch. Multiple dispatch is particularly useful formathematical code, where it makes little

sense to artificially deem the operations to "belong" to one argument more than any of the others: does the addition

operation in x + y belong to x any more than it does to y? The implementation of a mathematical operator generally

depends on the types of all of its arguments. Even beyond mathematical operations, however, multiple dispatch ends

up being a powerful and convenient paradigm for structuring and organizing programs.

15.1 DefiningMethods

Until now,wehave, in our examples, definedonly functionswith a singlemethodhaving unconstrained argument types.

Such functions behave just like theywould in traditional dynamically typed languages. Nevertheless, wehaveusedmul-

tiple dispatch andmethods almost continuallywithout being aware of it: all of Julia's standard functions and operators,

1In C++ or Java, for example, in a method call like obj.meth(arg1,arg2), the object obj "receives" themethod call and is implicitly passed to

themethod via the this keyword, rather than as an explicit method argument. When the current this object is the receiver of a method call, it can

be omitted altogether, writing just meth(arg1,arg2), with this implied as the receiving object.

131

https://en.wikipedia.org/wiki/Multiple_dispatch

132 CHAPTER 15. METHODS

like the aforementioned + function, have manymethods defining their behavior over various possible combinations of

argument type and count.

When defining a function, one can optionally constrain the types of parameters it is applicable to, using the :: type-

assertion operator, introduced in the section on Composite Types:

julia> f(x::Float64, y::Float64) = 2x + y

f (generic function with 1 method)

This function definition applies only to calls where x and y are both values of type Float64:

julia> f(2.0, 3.0)

7.0

Applying it to any other types of arguments will result in a MethodError:

julia> f(2.0, 3)

ERROR: MethodError: no method matching f(::Float64, ::Int64)

Closest candidates are:

f(::Float64, !Matched::Float64) at none:1

julia> f(Float32(2.0), 3.0)

ERROR: MethodError: no method matching f(::Float32, ::Float64)

Closest candidates are:

f(!Matched::Float64, ::Float64) at none:1

julia> f(2.0, "3.0")

ERROR: MethodError: no method matching f(::Float64, ::String)

Closest candidates are:

f(::Float64, !Matched::Float64) at none:1

julia> f("2.0", "3.0")

ERROR: MethodError: no method matching f(::String, ::String)

As you can see, the arguments must be precisely of type Float64. Other numeric types, such as integers or 32-bit

floating-point values, are not automatically converted to 64-bit floating-point, nor are strings parsed as numbers. Be-

causeFloat64 is a concrete type and concrete types cannot be subclassed in Julia, such adefinition canonly be applied

to arguments that are exactly of type Float64. It may often be useful, however, to writemore general methodswhere

the declared parameter types are abstract:

julia> f(x::Number, y::Number) = 2x - y

f (generic function with 2 methods)

julia> f(2.0, 3)

1.0

This method definition applies to any pair of arguments that are instances of Number. They need not be of the same

type, so long as they are each numeric values. The problem of handling disparate numeric types is delegated to the

arithmetic operations in the expression 2x - y.

To define a functionwithmultiplemethods, one simply defines the functionmultiple times, with different numbers and

types of arguments. The first method definition for a function creates the function object, and subsequent method

definitions add newmethods to the existing function object. Themost specificmethod definitionmatching the number

and types of the arguments will be executed when the function is applied. Thus, the two method definitions above,

taken together, define the behavior for f over all pairs of instances of the abstract type Number – but with a different

behavior specific to pairs of Float64 values. If one of the arguments is a 64-bit float but the other one is not, then the

f(Float64,Float64)method cannot be called and themore general f(Number,Number)methodmust be used:

15.1. DEFININGMETHODS 133

julia> f(2.0, 3.0)

7.0

julia> f(2, 3.0)

1.0

julia> f(2.0, 3)

1.0

julia> f(2, 3)

1

The 2x + y definition is only used in the first case, while the 2x - y definition is used in the others. No automatic

casting or conversion of function arguments is ever performed: all conversion in Julia is non-magical and completely

explicit. Conversion andPromotion, however, shows how clever application of sufficiently advanced technology can be

indistinguishable frommagic. 2

For non-numeric values, and for fewer or more than two arguments, the function f remains undefined, and applying it

will still result in a MethodError:

julia> f("foo", 3)

ERROR: MethodError: no method matching f(::String, ::Int64)

Closest candidates are:

f(!Matched::Number, ::Number) at none:1

julia> f()

ERROR: MethodError: no method matching f()

Closest candidates are:

f(!Matched::Float64, !Matched::Float64) at none:1

f(!Matched::Number, !Matched::Number) at none:1

You can easily see whichmethods exist for a function by entering the function object itself in an interactive session:

julia> f

f (generic function with 2 methods)

This output tells us that f is a function object with twomethods. To find out what the signatures of thosemethods are,

use the methods() function:

julia> methods(f)

2 methods for generic function "f":

f(x::Float64, y::Float64) in Main at none:1

f(x::Number, y::Number) in Main at none:1

which shows that f has two methods, one taking two Float64 arguments and one taking arguments of type Number.

It also indicates the file and line number where themethodswere defined: because thesemethodswere defined at the

REPL, we get the apparent line number none:1.

In the absence of a type declarationwith::, the type of amethod parameter isAny by default, meaning that it is uncon-

strained since all values in Julia are instances of the abstract type Any. Thus, we can define a catch-all method for f like

so:

julia> f(x,y) = println("Whoa there, Nelly.")

f (generic function with 3 methods)

julia> f("foo", 1)

Whoa there, Nelly.

134 CHAPTER 15. METHODS

This catch-all is less specific than any other possible method definition for a pair of parameter values, so it will only be

called on pairs of arguments to which no other method definition applies.

Although it seems a simple concept, multiple dispatch on the types of values is perhaps the single most powerful and

central feature of the Julia language. Core operations typically have dozens of methods:

julia> methods(+)

180 methods for generic function "+":

+(x::Bool, z::Complex{Bool}) in Base at complex.jl:224

+(x::Bool, y::Bool) in Base at bool.jl:89

+(x::Bool) in Base at bool.jl:86

+(x::Bool, y::T) where T<:AbstractFloat in Base at bool.jl:96

+(x::Bool, z::Complex) in Base at complex.jl:231

+(a::Float16, b::Float16) in Base at float.jl:372

+(x::Float32, y::Float32) in Base at float.jl:374

+(x::Float64, y::Float64) in Base at float.jl:375

+(z::Complex{Bool}, x::Bool) in Base at complex.jl:225

+(z::Complex{Bool}, x::Real) in Base at complex.jl:239

+(x::Char, y::Integer) in Base at char.jl:40

+(c::BigInt, x::BigFloat) in Base.MPFR at mpfr.jl:303

+(a::BigInt, b::BigInt, c::BigInt, d::BigInt, e::BigInt) in Base.GMP at gmp.jl:303

+(a::BigInt, b::BigInt, c::BigInt, d::BigInt) in Base.GMP at gmp.jl:296

+(a::BigInt, b::BigInt, c::BigInt) in Base.GMP at gmp.jl:290

+(x::BigInt, y::BigInt) in Base.GMP at gmp.jl:258

+(x::BigInt, c::Union{UInt16, UInt32, UInt64, UInt8}) in Base.GMP at gmp.jl:315

...

+(a, b, c, xs...) at operators.jl:119

Multiple dispatch togetherwith the flexible parametric type systemgive Julia its ability to abstractly express high-level

algorithms decoupled from implementation details, yet generate efficient, specialized code to handle each case at run

time.

15.2 Method Ambiguities

It is possible to define a set of function methods such that there is no unique most specific method applicable to some

combinations of arguments:

julia> g(x::Float64, y) = 2x + y

g (generic function with 1 method)

julia> g(x, y::Float64) = x + 2y

g (generic function with 2 methods)

julia> g(2.0, 3)

7.0

julia> g(2, 3.0)

8.0

julia> g(2.0, 3.0)

ERROR: MethodError: g(::Float64, ::Float64) is ambiguous.

[...]

Here the call g(2.0, 3.0) could be handled by either the g(Float64, Any) or the g(Any, Float64) method,

and neither is more specific than the other. In such cases, Julia raises a MethodError rather than arbitrarily picking a

method. You can avoidmethod ambiguities by specifying an appropriate method for the intersection case:

15.3. PARAMETRICMETHODS 135

julia> g(x::Float64, y::Float64) = 2x + 2y

g (generic function with 3 methods)

julia> g(2.0, 3)

7.0

julia> g(2, 3.0)

8.0

julia> g(2.0, 3.0)

10.0

It is recommended that the disambiguatingmethod be defined first, since otherwise the ambiguity exists, if transiently,

until themore specificmethod is defined.

Inmore complex cases, resolvingmethod ambiguities involves a certain element of design; this topic is explored further

below.

15.3 ParametricMethods

Method definitions can optionally have type parameters qualifying the signature:

julia> same_type(x::T, y::T) where {T} = true

same_type (generic function with 1 method)

julia> same_type(x,y) = false

same_type (generic function with 2 methods)

Thefirstmethod applieswhenever both arguments are of the same concrete type, regardless ofwhat type that is, while

the secondmethod acts as a catch-all, covering all other cases. Thus, overall, this defines a boolean function that checks

whether its two arguments are of the same type:

julia> same_type(1, 2)

true

julia> same_type(1, 2.0)

false

julia> same_type(1.0, 2.0)

true

julia> same_type("foo", 2.0)

false

julia> same_type("foo", "bar")

true

julia> same_type(Int32(1), Int64(2))

false

Such definitions correspond tomethods whose type signatures are UnionAll types (see UnionAll Types).

This kind of definition of function behavior by dispatch is quite common – idiomatic, even – in Julia. Method type pa-

rameters are not restricted to being used as the types of arguments: they can be used anywhere a valuewould be in the

signature of the function or body of the function. Here's an examplewhere themethod type parameter T is used as the

type parameter to the parametric type Vector{T} in themethod signature:

136 CHAPTER 15. METHODS

julia> myappend(v::Vector{T}, x::T) where {T} = [v..., x]

myappend (generic function with 1 method)

julia> myappend([1,2,3],4)

4-element Array{Int64,1}:

1

2

3

4

julia> myappend([1,2,3],2.5)

ERROR: MethodError: no method matching myappend(::Array{Int64,1}, ::Float64)

Closest candidates are:

myappend(::Array{T,1}, !Matched::T) where T at none:1

julia> myappend([1.0,2.0,3.0],4.0)

4-element Array{Float64,1}:

1.0

2.0

3.0

4.0

julia> myappend([1.0,2.0,3.0],4)

ERROR: MethodError: no method matching myappend(::Array{Float64,1}, ::Int64)

Closest candidates are:

myappend(::Array{T,1}, !Matched::T) where T at none:1

As you can see, the type of the appended element must match the element type of the vector it is appended to, or else

a MethodError is raised. In the following example, themethod type parameter T is used as the return value:

julia> mytypeof(x::T) where {T} = T

mytypeof (generic function with 1 method)

julia> mytypeof(1)

Int64

julia> mytypeof(1.0)

Float64

Just as you can put subtype constraints on type parameters in type declarations (see Parametric Types), you can also

constrain type parameters of methods:

julia> same_type_numeric(x::T, y::T) where {T<:Number} = true

same_type_numeric (generic function with 1 method)

julia> same_type_numeric(x::Number, y::Number) = false

same_type_numeric (generic function with 2 methods)

julia> same_type_numeric(1, 2)

true

julia> same_type_numeric(1, 2.0)

false

15.4. REDEFININGMETHODS 137

julia> same_type_numeric(1.0, 2.0)

true

julia> same_type_numeric("foo", 2.0)

ERROR: MethodError: no method matching same_type_numeric(::String, ::Float64)

Closest candidates are:

same_type_numeric(!Matched::T<:Number, ::T<:Number) where T<:Number at none:1

same_type_numeric(!Matched::Number, ::Number) at none:1

julia> same_type_numeric("foo", "bar")

ERROR: MethodError: no method matching same_type_numeric(::String, ::String)

julia> same_type_numeric(Int32(1), Int64(2))

false

The same_type_numeric function behaves much like the same_type function defined above, but is only defined for

pairs of numbers.

Parametric methods allow the same syntax as where expressions used to write types (see UnionAll Types). If there is

only a single parameter, the enclosing curly braces (in where {T}) can be omitted, but are often preferred for clarity.

Multiple parameters can be separated with commas, e.g. where {T, S<:Real}, or written using nested where, e.g.

where S<:Real where T.

15.4 RedefiningMethods

When redefining a method or adding new methods, it is important to realize that these changes don't take effect im-

mediately. This is key to Julia's ability to statically infer and compile code to run fast, without the usual JIT tricks and

overhead. Indeed, any newmethod definitionwon't be visible to the current runtime environment, including Tasks and

Threads (and any previously defined @generated functions). Let's start with an example to see what this means:

julia> function tryeval()

@eval newfun() = 1

newfun()

end

tryeval (generic function with 1 method)

julia> tryeval()

ERROR: MethodError: no method matching newfun()

The applicable method may be too new: running in world age xxxx1, while current world is xxxx2.

Closest candidates are:

newfun() at none:1 (method too new to be called from this world context.)

in tryeval() at none:1

...

julia> newfun()

1

In this example, observe that the newdefinition fornewfun has been created, but can't be immediately called. The new

global is immediately visible to the tryeval function, so you could write return newfun (without parentheses). But

neither you, nor any of your callers, nor the functions they call, or etc. can call this newmethod definition!

But there's an exception: future calls tonewfun from the REPLwork as expected, being able to both see and call the new

definition of newfun.

138 CHAPTER 15. METHODS

However, future calls to tryevalwill continue to see the definition of newfun as it was at the previous statement at the

REPL, and thus before that call to tryeval.

Youmaywant to try this for yourself to see how it works.

The implementation of this behavior is a "world age counter". This monotonically increasing value tracks eachmethod

definition operation. This allows describing "the set of method definitions visible to a given runtime environment" as

a single number, or "world age". It also allows comparing the methods available in two worlds just by comparing their

ordinal value. In the example above, we see that the "current world" (in which the method newfun() exists), is one

greater than the task-local "runtimeworld" that was fixedwhen the execution of tryeval started.

Sometimes it is necessary to get around this (for example, if you are implementing the above REPL). Fortunately, there

is an easy solution: call the function using Base.invokelatest:

julia> function tryeval2()

@eval newfun2() = 2

Base.invokelatest(newfun2)

end

tryeval2 (generic function with 1 method)

julia> tryeval2()

2

Finally, let's take a look at somemore complex exampleswhere this rule comes into play. Define a function f(x), which

initially has onemethod:

julia> f(x) = "original definition"

f (generic function with 1 method)

Start some other operations that use f(x):

julia> g(x) = f(x)

g (generic function with 1 method)

julia> t = @async f(wait()); yield();

Nowwe add some newmethods to f(x):

julia> f(x::Int) = "definition for Int"

f (generic function with 2 methods)

julia> f(x::Type{Int}) = "definition for Type{Int}"

f (generic function with 3 methods)

Compare how these results differ:

julia> f(1)

"definition for Int"

julia> g(1)

"definition for Int"

julia> wait(schedule(t, 1))

"original definition"

julia> t = @async f(wait()); yield();

julia> wait(schedule(t, 1))

"definition for Int"

15.5. PARAMETRICALLY-CONSTRAINED VARARGSMETHODS 139

15.5 Parametrically-constrained Varargsmethods

Functionparameterscanalsobeusedtoconstrain thenumberofarguments thatmaybesupplied toa"varargs" function

(Varargs Functions). The notation Vararg{T,N} is used to indicate such a constraint. For example:

julia> bar(a,b,x::Vararg{Any,2}) = (a,b,x)

bar (generic function with 1 method)

julia> bar(1,2,3)

ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64)

Closest candidates are:

bar(::Any, ::Any, ::Any, !Matched::Any) at none:1

julia> bar(1,2,3,4)

(1, 2, (3, 4))

julia> bar(1,2,3,4,5)

ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64, ::Int64, ::Int64)

Closest candidates are:

bar(::Any, ::Any, ::Any, ::Any) at none:1

More usefully, it is possible to constrain varargs methods by a parameter. For example:

function getindex(A::AbstractArray{T,N}, indexes::Vararg{Number,N}) where {T,N}

would be called only when the number of indexesmatches the dimensionality of the array.

15.6 Note onOptional and keyword Arguments

Asmentioned briefly in Functions, optional arguments are implemented as syntax for multiple method definitions. For

example, this definition:

f(a=1,b=2) = a+2b

translates to the following threemethods:

f(a,b) = a+2b

f(a) = f(a,2)

f() = f(1,2)

Thismeans that callingf() is equivalent to callingf(1,2). In this case the result is5, becausef(1,2) invokes the first

method of f above. However, this need not always be the case. If you define a fourth method that is more specialized

for integers:

f(a::Int,b::Int) = a-2b

then the result of both f() and f(1,2) is -3. In other words, optional arguments are tied to a function, not to any

specific method of that function. It depends on the types of the optional arguments which method is invoked. When

optional arguments are defined in terms of a global variable, the type of the optional argument may even change at

run-time.

Keyword arguments behave quite differently fromordinary positional arguments. In particular, they do not participate

in method dispatch. Methods are dispatched based only on positional arguments, with keyword arguments processed

after thematchingmethod is identified.

140 CHAPTER 15. METHODS

15.7 Function-like objects

Methods are associated with types, so it is possible to make any arbitrary Julia object "callable" by adding methods to

its type. (Such "callable" objects are sometimes called "functors.")

For example, you can define a type that stores the coefficients of a polynomial, but behaves like a function evaluating

the polynomial:

julia> struct Polynomial{R}

coeffs::Vector{R}

end

julia> function (p::Polynomial)(x)

v = p.coeffs[end]

for i = (length(p.coeffs)-1):-1:1

v = v*x + p.coeffs[i]

end

return v

end

Notice that the function is specified by type instead of by name. In the function body, pwill refer to the object that was

called. A Polynomial can be used as follows:

julia> p = Polynomial([1,10,100])

Polynomial{Int64}([1, 10, 100])

julia> p(3)

931

This mechanism is also the key to how type constructors and closures (inner functions that refer to their surrounding

environment) work in Julia, discussed later in themanual.

15.8 Empty generic functions

Occasionally it is useful to introduce a generic function without yet adding methods. This can be used to separate in-

terface definitions from implementations. It might also be done for the purpose of documentation or code readability.

The syntax for this is an empty function block without a tuple of arguments:

function emptyfunc

end

15.9 Method design and the avoidance of ambiguities

Julia'smethod polymorphism is one of itsmost powerful features, yet exploiting this power can pose design challenges.

In particular, in more complexmethod hierarchies it is not uncommon for ambiguities to arise.

Above, it was pointed out that one can resolve ambiguities like

f(x, y::Int) = 1

f(x::Int, y) = 2

by defining amethod

f(x::Int, y::Int) = 3

15.9. METHODDESIGN AND THE AVOIDANCEOF AMBIGUITIES 141

This isoften the right strategy; however, therearecircumstanceswhere following this adviceblindly canbecounterpro-

ductive. In particular, the moremethods a generic function has, the more possibilities there are for ambiguities. When

your method hierarchies get more complicated than this simple example, it can be worth your while to think carefully

about alternative strategies.

Belowwe discuss particular challenges and some alternative ways to resolve such issues.

Tuple andNTuple arguments

Tuple (and NTuple) arguments present special challenges. For example,

f(x::NTuple{N,Int}) where {N} = 1

f(x::NTuple{N,Float64}) where {N} = 2

areambiguousbecauseof thepossibility thatN == 0: therearenoelements todeterminewhether theIntorFloat64

variant should be called. To resolve the ambiguity, one approach is define amethod for the empty tuple:

f(x::Tuple{}) = 3

Alternatively, for all methods but one you can insist that there is at least one element in the tuple:

f(x::NTuple{N,Int}) where {N} = 1 # this is the fallback

f(x::Tuple{Float64, Vararg{Float64}}) = 2 # this requires at least one Float64

Orthogonalize your design

Whenyoumightbe tempted todispatchon twoormorearguments, considerwhether a "wrapper" functionmightmake

for a simpler design. For example, instead of writingmultiple variants:

f(x::A, y::A) = ...

f(x::A, y::B) = ...

f(x::B, y::A) = ...

f(x::B, y::B) = ...

youmight consider defining

f(x::A, y::A) = ...

f(x, y) = f(g(x), g(y))

where g converts the argument to type A. This is a very specific example of the more general principle of orthogonal

design, in which separate concepts are assigned to separatemethods. Here, gwill most likely need a fallback definition

g(x::A) = x

A related strategy exploits promote to bring x and y to a common type:

f(x::T, y::T) where {T} = ...

f(x, y) = f(promote(x, y)...)

One risk with this design is the possibility that if there is no suitable promotion method converting x and y to the

same type, the second method will recurse on itself infinitely and trigger a stack overflow. The non-exported function

Base.promote_noncircular can be used as an alternative; when promotion fails it will still throw an error, but one

that fails faster with amore specific error message.

https://en.wikipedia.org/wiki/Orthogonality_(programming)
https://en.wikipedia.org/wiki/Orthogonality_(programming)

142 CHAPTER 15. METHODS

Dispatch on one argument at a time

If you need to dispatch on multiple arguments, and there are many fallbacks with too many combinations to make it

practical to define all possible variants, then consider introducing a "name cascade" where (for example) you dispatch

on the first argument and then call an internal method:

f(x::A, y) = _fA(x, y)

f(x::B, y) = _fB(x, y)

Then the internal methods _fA and _fB can dispatch on y without concern about ambiguities with each other with

respect to x.

Be aware that this strategy has at least one major disadvantage: in many cases, it is not possible for users to further

customize the behavior offbydefining further specializations of your exported functionf. Instead, they have to define

specializations for your internalmethods_fA and_fB, and this blurs the lines between exported and internalmethods.

Abstract containers and element types

Where possible, try to avoid defining methods that dispatch on specific element types of abstract containers. For ex-

ample,

-(A::AbstractArray{T}, b::Date) where {T<:Date}

generates ambiguities for anyonewho defines amethod

-(A::MyArrayType{T}, b::T) where {T}

Thebestapproach is toavoiddefiningeitherof thesemethods: instead, relyonagenericmethod-(A::AbstractArray,

b) and make sure this method is implemented with generic calls (like similar and -) that do the right thing for each

container type and element type separately. This is just a more complex variant of the advice to orthogonalize your

methods.

When this approach is not possible, it may be worth starting a discussion with other developers about resolving the

ambiguity; just because onemethodwas defined first does not necessarilymean that it can't bemodified or eliminated.

As a last resort, one developer can define the "band-aid" method

-(A::MyArrayType{T}, b::Date) where {T<:Date} = ...

that resolves the ambiguity by brute force.

Complexmethod "cascades" with default arguments

If you aredefining amethod "cascade" that supplies defaults, be careful about dropping any arguments that correspond

to potential defaults. For example, suppose you're writing a digital filtering algorithm and you have amethod that han-

dles the edges of the signal by applying padding:

function myfilter(A, kernel, ::Replicate)

Apadded = replicate_edges(A, size(kernel))

myfilter(Apadded, kernel) # now perform the "real" computation

end

15.9. METHODDESIGN AND THE AVOIDANCEOF AMBIGUITIES 143

This will run afoul of a method that supplies default padding:

myfilter(A, kernel) = myfilter(A, kernel, Replicate()) # replicate the edge by default

Together, these twomethods generate an infinite recursion with A constantly growing bigger.

The better design would be to define your call hierarchy like this:

struct NoPad end # indicate that no padding is desired, or that it's already applied

myfilter(A, kernel) = myfilter(A, kernel, Replicate()) # default boundary conditions

function myfilter(A, kernel, ::Replicate)

Apadded = replicate_edges(A, size(kernel))

myfilter(Apadded, kernel, NoPad()) # indicate the new boundary conditions

end

other padding methods go here

function myfilter(A, kernel, ::NoPad)

Here's the "real" implementation of the core computation

end

NoPad is supplied in the same argument position as any other kind of padding, so it keeps the dispatch hierarchy well

organized and with reduced likelihood of ambiguities. Moreover, it extends the "public" myfilter interface: a user

whowants to control the padding explicitly can call the NoPad variant directly.

2Arthur C. Clarke, Profiles of the Future (1961): Clarke's Third Law.

Chapter 16

Constructors

Constructors 1 are functions that create new objects – specifically, instances of Composite Types. In Julia, type objects

also serve as constructor functions: they create new instances of themselves when applied to an argument tuple as a

function. This muchwas alreadymentioned briefly when composite types were introduced. For example:

julia> struct Foo

bar

baz

end

julia> foo = Foo(1, 2)

Foo(1, 2)

julia> foo.bar

1

julia> foo.baz

2

Formany types, forming newobjects by binding their field values together is all that is ever needed to create instances.

Thereare, however, caseswheremore functionality is requiredwhencreatingcompositeobjects. Sometimes invariants

must be enforced, either by checking arguments or by transforming them. Recursive data structures, especially those

thatmay be self-referential, often cannot be constructed cleanlywithout first being created in an incomplete state and

then altered programmatically to be made whole, as a separate step from object creation. Sometimes, it's just conve-

nient to be able to construct objects with fewer or different types of parameters than they have fields. Julia's system

for object construction addresses all of these cases andmore.

16.1 Outer ConstructorMethods

A constructor is just like any other function in Julia in that its overall behavior is defined by the combined behavior of

itsmethods. Accordingly, you can add functionality to a constructor by simply defining newmethods. For example, let's

say you want to add a constructor method for Foo objects that takes only one argument and uses the given value for

both the bar and baz fields. This is simple:

julia> Foo(x) = Foo(x,x)

1Nomenclature: while the term "constructor" generally refers to the entire function which constructs objects of a type, it is common to abuse

terminology slightly and refer to specific constructormethods as "constructors". In such situations, it is generally clear from context that the term is

used to mean "constructor method" rather than "constructor function", especially as it is often used in the sense of singling out a particular method

of the constructor from all of the others.

145

https://en.wikipedia.org/wiki/Recursion_%28computer_science%29#Recursive_data_structures_.28structural_recursion.29

146 CHAPTER 16. CONSTRUCTORS

Foo

julia> Foo(1)

Foo(1, 1)

You could also add a zero-argument Foo constructor method that supplies default values for both of the bar and baz

fields:

julia> Foo() = Foo(0)

Foo

julia> Foo()

Foo(0, 0)

Here the zero-argument constructormethod calls the single-argument constructormethod, which in turn calls the au-

tomatically provided two-argument constructor method. For reasons that will become clear very shortly, additional

constructor methods declared as normal methods like this are called outer constructor methods. Outer constructor

methods can only ever create a new instance by calling another constructor method, such as the automatically pro-

vided default ones.

16.2 Inner ConstructorMethods

While outer constructor methods succeed in addressing the problem of providing additional conveniencemethods for

constructing objects, they fail to address the other twouse casesmentioned in the introduction of this chapter: enforc-

ing invariants, and allowing construction of self-referential objects. For these problems, one needs inner constructor

methods. An inner constructor method is much like an outer constructor method, with two differences:

1. It is declared inside the block of a type declaration, rather than outside of it like normal methods.

2. It has access to a special locally existent function called new that creates objects of the block's type.

For example, suppose one wants to declare a type that holds a pair of real numbers, subject to the constraint that the

first number is not greater than the second one. One could declare it like this:

julia> struct OrderedPair

x::Real

y::Real

OrderedPair(x,y) = x > y ? error("out of order") : new(x,y)

end

Now OrderedPair objects can only be constructed such that x <= y:

julia> OrderedPair(1, 2)

OrderedPair(1, 2)

julia> OrderedPair(2,1)

ERROR: out of order

Stacktrace:

[1] OrderedPair(::Int64, ::Int64) at ./none:4

If the type were declared mutable, you could reach in and directly change the field values to violate this invariant, but

messing around with an object's internals uninvited is considered poor form. You (or someone else) can also provide

additional outer constructor methods at any later point, but once a type is declared, there is no way to addmore inner

constructor methods. Since outer constructor methods can only create objects by calling other constructor methods,

16.3. INCOMPLETE INITIALIZATION 147

ultimately, some inner constructor must be called to create an object. This guarantees that all objects of the declared

typemust come into existence by a call to one of the inner constructormethods providedwith the type, thereby giving

some degree of enforcement of a type's invariants.

If any inner constructor method is defined, no default constructor method is provided: it is presumed that you have

supplied yourself with all the inner constructors you need. The default constructor is equivalent to writing your own

inner constructormethod that takes all of the object's fields as parameters (constrained to be of the correct type, if the

corresponding field has a type), and passes them to new, returning the resulting object:

julia> struct Foo

bar

baz

Foo(bar,baz) = new(bar,baz)

end

Thisdeclarationhas thesameeffectas theearlierdefinitionof theFoo typewithoutanexplicit innerconstructormethod.

The following two types are equivalent – onewith a default constructor, the other with an explicit constructor:

julia> struct T1

x::Int64

end

julia> struct T2

x::Int64

T2(x) = new(x)

end

julia> T1(1)

T1(1)

julia> T2(1)

T2(1)

julia> T1(1.0)

T1(1)

julia> T2(1.0)

T2(1)

It is considered good form to provide as few inner constructor methods as possible: only those taking all arguments

explicitly and enforcing essential error checking and transformation. Additional convenience constructor methods,

supplying default values or auxiliary transformations, should be provided as outer constructors that call the inner con-

structors to do the heavy lifting. This separation is typically quite natural.

16.3 Incomplete Initialization

Thefinal problemwhichhas still not beenaddressed is constructionof self-referential objects, ormoregenerally, recur-

sive data structures. Since the fundamental difficultymaynot be immediately obvious, let us briefly explain it. Consider

the following recursive type declaration:

julia> mutable struct SelfReferential

obj::SelfReferential

end

148 CHAPTER 16. CONSTRUCTORS

This type may appear innocuous enough, until one considers how to construct an instance of it. If a is an instance of

SelfReferential, then a second instance can be created by the call:

julia> b = SelfReferential(a)

But how does one construct the first instance when no instance exists to provide as a valid value for its obj field? The

only solution is to allow creating an incompletely initialized instance of SelfReferential with an unassigned obj

field, and using that incomplete instance as a valid value for the obj field of another instance, such as, for example,

itself.

Toallowfor thecreationof incompletely initializedobjects, Julia allows thenew function tobecalledwith fewer than the

number of fields that the type has, returning an object with the unspecified fields uninitialized. The inner constructor

method can then use the incomplete object, finishing its initialization before returning it. Here, for example, we take

another crack at defining the SelfReferential type, with a zero-argument inner constructor returning instances

having obj fields pointing to themselves:

julia> mutable struct SelfReferential

obj::SelfReferential

SelfReferential() = (x = new(); x.obj = x)

end

We can verify that this constructor works and constructs objects that are, in fact, self-referential:

julia> x = SelfReferential();

julia> x === x

true

julia> x === x.obj

true

julia> x === x.obj.obj

true

Although it is generally a good idea to return a fully initialized object froman inner constructor, incompletely initialized

objects can be returned:

julia> mutable struct Incomplete

xx

Incomplete() = new()

end

julia> z = Incomplete();

Whileyouareallowed tocreateobjectswithuninitializedfields, anyaccess toanuninitialized reference is an immediate

error:

julia> z.xx

ERROR: UndefRefError: access to undefined reference

This avoids the need to continually check for null values. However, not all object fields are references. Julia considers

some types to be "plain data",meaning all of their data is self-contained anddoes not reference other objects. The plain

data types consist of primitive types (e.g. Int) and immutable structs of other plain data types. The initial contents of a

plain data type is undefined:

16.4. PARAMETRIC CONSTRUCTORS 149

julia> struct HasPlain

n::Int

HasPlain() = new()

end

julia> HasPlain()

HasPlain(438103441441)

Arrays of plain data types exhibit the same behavior.

You can pass incomplete objects to other functions from inner constructors to delegate their completion:

julia> mutable struct Lazy

xx

Lazy(v) = complete_me(new(), v)

end

As with incomplete objects returned from constructors, if complete_me or any of its callees try to access the xx field

of the Lazy object before it has been initialized, an error will be thrown immediately.

16.4 Parametric Constructors

Parametric types add a fewwrinkles to the constructor story. Recall from Parametric Types that, by default, instances

of parametric composite types can be constructed eitherwith explicitly given type parameters orwith type parameters

implied by the types of the arguments given to the constructor. Here are some examples:

julia> struct Point{T<:Real}

x::T

y::T

end

julia> Point(1,2) ## implicit T ##

Point{Int64}(1, 2)

julia> Point(1.0,2.5) ## implicit T ##

Point{Float64}(1.0, 2.5)

julia> Point(1,2.5) ## implicit T ##

ERROR: MethodError: no method matching Point(::Int64, ::Float64)

Closest candidates are:

Point(::T<:Real, !Matched::T<:Real) where T<:Real at none:2

julia> Point{Int64}(1, 2) ## explicit T ##

Point{Int64}(1, 2)

julia> Point{Int64}(1.0,2.5) ## explicit T ##

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Int64}, ::Float64) at ./float.jl:679

[2] Point{Int64}(::Float64, ::Float64) at ./none:2

julia> Point{Float64}(1.0, 2.5) ## explicit T ##

Point{Float64}(1.0, 2.5)

julia> Point{Float64}(1,2) ## explicit T ##

Point{Float64}(1.0, 2.0)

150 CHAPTER 16. CONSTRUCTORS

As you can see, for constructor calls with explicit type parameters, the arguments are converted to the implied field

types: Point{Int64}(1,2) works, but Point{Int64}(1.0,2.5) raises an InexactError when converting 2.5

to Int64. When the type is implied by the arguments to the constructor call, as in Point(1,2), then the types of the

arguments must agree – otherwise the T cannot be determined – but any pair of real arguments with matching type

may be given to the generic Point constructor.

What's really going on here is that Point, Point{Float64} and Point{Int64} are all different constructor func-

tions. In fact, Point{T} is a distinct constructor function for each type T. Without any explicitly provided inner con-

structors, thedeclarationof thecomposite typePoint{T<:Real}automaticallyprovidesan innerconstructor,Point{T},

for each possible type T<:Real, that behaves just like non-parametric default inner constructors do. It also provides a

single general outer Point constructor that takes pairs of real arguments, which must be of the same type. This auto-

matic provision of constructors is equivalent to the following explicit declaration:

julia> struct Point{T<:Real}

x::T

y::T

Point{T}(x,y) where {T<:Real} = new(x,y)

end

julia> Point(x::T, y::T) where {T<:Real} = Point{T}(x,y);

Notice that each definition looks like the form of constructor call that it handles. The call Point{Int64}(1,2) will

invoke the definition Point{T}(x,y) inside the type block. The outer constructor declaration, on the other hand,

defines a method for the general Point constructor which only applies to pairs of values of the same real type. This

declaration makes constructor calls without explicit type parameters, like Point(1,2) and Point(1.0,2.5), work.

Since the method declaration restricts the arguments to being of the same type, calls like Point(1,2.5), with argu-

ments of different types, result in "nomethod" errors.

SupposewewantedtomaketheconstructorcallPoint(1,2.5)workby"promoting" the integervalue1 to thefloating-

point value 1.0. The simplest way to achieve this is to define the following additional outer constructor method:

julia> Point(x::Int64, y::Float64) = Point(convert(Float64,x),y);

This method uses the convert() function to explicitly convert x to Float64 and then delegates construction to the

general constructor for the casewhere both arguments areFloat64. With thismethod definitionwhatwas previously

a MethodError now successfully creates a point of type Point{Float64}:

julia> Point(1,2.5)

Point{Float64}(1.0, 2.5)

julia> typeof(ans)

Point{Float64}

However, other similar calls still don't work:

julia> Point(1.5,2)

ERROR: MethodError: no method matching Point(::Float64, ::Int64)

Closest candidates are:

Point(::T<:Real, !Matched::T<:Real) where T<:Real at none:1

For a more general way to make all such calls work sensibly, see Conversion and Promotion. At the risk of spoiling the

suspense, we can reveal here that all it takes is the following outer method definition to make all calls to the general

Point constructor work as onewould expect:

julia> Point(x::Real, y::Real) = Point(promote(x,y)...);

Thepromote function converts all its arguments to a common type– in this caseFloat64. With thismethoddefinition,

the Point constructor promotes its arguments the same way that numeric operators like + do, and works for all kinds

of real numbers:

16.5. CASE STUDY: RATIONAL 151

julia> Point(1.5,2)

Point{Float64}(1.5, 2.0)

julia> Point(1,1//2)

Point{Rational{Int64}}(1//1, 1//2)

julia> Point(1.0,1//2)

Point{Float64}(1.0, 0.5)

Thus, while the implicit type parameter constructors provided by default in Julia are fairly strict, it is possible to make

them behave in a more relaxed but sensible manner quite easily. Moreover, since constructors can leverage all of the

power of the type system, methods, andmultiple dispatch, defining sophisticated behavior is typically quite simple.

16.5 Case Study: Rational

Perhaps the best way to tie all these pieces together is to present a real world example of a parametric composite type

and its constructor methods. To that end, here is the (slightly modified) beginning of rational.jl, which implements

Julia's Rational Numbers:

julia> struct OurRational{T<:Integer} <: Real

num::T

den::T

function OurRational{T}(num::T, den::T) where T<:Integer

if num == 0 && den == 0

error("invalid rational: 0//0")

end

g = gcd(den, num)

num = div(num, g)

den = div(den, g)

new(num, den)

end

end

julia> OurRational(n::T, d::T) where {T<:Integer} = OurRational{T}(n,d)

OurRational

julia> OurRational(n::Integer, d::Integer) = OurRational(promote(n,d)...)

OurRational

julia> OurRational(n::Integer) = OurRational(n,one(n))

OurRational

julia> //(n::Integer, d::Integer) = OurRational(n,d)

// (generic function with 1 method)

julia> //(x::OurRational, y::Integer) = x.num // (x.den*y)

// (generic function with 2 methods)

julia> //(x::Integer, y::OurRational) = (x*y.den) // y.num

// (generic function with 3 methods)

julia> //(x::Complex, y::Real) = complex(real(x)//y, imag(x)//y)

// (generic function with 4 methods)

julia> //(x::Real, y::Complex) = x*y'//real(y*y')

// (generic function with 5 methods)

https://github.com/JuliaLang/julia/blob/master/base/rational.jl

152 CHAPTER 16. CONSTRUCTORS

julia> function //(x::Complex, y::Complex)

xy = x*y'

yy = real(y*y')

complex(real(xy)//yy, imag(xy)//yy)

end

// (generic function with 6 methods)

Thefirst line –struct OurRational{T<:Integer} <: Real –declares thatOurRational takes one type param-

eter of an integer type, and is itself a real type. The field declarations num::T and den::T indicate that the data held

in a OurRational{T} object are a pair of integers of type T, one representing the rational value's numerator and the

other representing its denominator.

Now things get interesting. OurRational has a single inner constructor method which checks that both of num and

den aren't zero and ensures that every rational is constructed in "lowest terms"with a non-negative denominator. This

is accomplished by dividing the given numerator and denominator values by their greatest common divisor, computed

using the gcd function. Since gcd returns the greatest common divisor of its arguments with sign matching the first

argument (den here), after this division the new value of den is guaranteed to be non-negative. Because this is the

only inner constructor for OurRational, we can be certain that OurRational objects are always constructed in this

normalized form.

OurRational also provides several outer constructor methods for convenience. The first is the "standard" general

constructor that infers the type parameter T from the type of the numerator and denominator when they have the

same type. The second applies when the given numerator and denominator values have different types: it promotes

them to a common type and then delegates construction to the outer constructor for arguments ofmatching type. The

third outer constructor turns integer values into rationals by supplying a value of 1 as the denominator.

Following the outer constructor definitions, we have a number ofmethods for the// operator, which provides a syntax

for writing rationals. Before these definitions, // is a completely undefined operator with only syntax and nomeaning.

Afterwards, it behaves just as described in RationalNumbers – its entire behavior is defined in these few lines. The first

and most basic definition just makes a//b construct a OurRational by applying the OurRational constructor to a

and bwhen they are integers. When one of the operands of // is already a rational number, we construct a new ratio-

nal for the resulting ratio slightly differently; this behavior is actually identical to division of a rational with an integer.

Finally, applying // to complex integral values creates an instance of Complex{OurRational} – a complex number

whose real and imaginary parts are rationals:

julia> ans = (1 + 2im)//(1 - 2im);

julia> typeof(ans)

Complex{OurRational{Int64}}

julia> ans <: Complex{OurRational}

false

Thus, although the // operator usually returns an instance of OurRational, if either of its arguments are complex

integers, itwill returnan instanceofComplex{OurRational} instead. The interestedreadershouldconsiderperusing

the rest of rational.jl: it is short, self-contained, and implements an entire basic Julia type.

16.6 Constructors and Conversion

Constructors T(args...) in Julia are implemented like other callable objects: methods are added to their types. The

type of a type is Type, so all constructor methods are stored in the method table for the Type type. This means that

you can declare more flexible constructors, e.g. constructors for abstract types, by explicitly defining methods for the

appropriate types.

https://github.com/JuliaLang/julia/blob/master/base/rational.jl

16.7. OUTER-ONLY CONSTRUCTORS 153

However, in some cases you could consider adding methods to Base.convert instead of defining a constructor, be-

causeJulia fallsbacktocallingconvert() if nomatchingconstructor is found. Forexample, ifnoconstructorT(args...)

= ... exists Base.convert(::Type{T}, args...) = ... is called.

convert is used extensively throughout Julia whenever one type needs to be converted to another (e.g. in assign-

ment, ccall, etcetera), and should generally only be defined (or successful) if the conversion is lossless. For example,

convert(Int, 3.0) produces 3, but convert(Int, 3.2) throws an InexactError. If you want to define a con-

structor for a lossless conversion from one type to another, you should probably define a convertmethod instead.

On the other hand, if your constructor does not represent a lossless conversion, or doesn't represent "conversion" at

all, it is better to leave it as a constructor rather than a convertmethod. For example, the Array{Int}() constructor

creates a zero-dimensional Array of the type Int, but is not really a "conversion" from Int to an Array.

16.7 Outer-only constructors

Aswe have seen, a typical parametric type has inner constructors that are calledwhen type parameters are known; e.g.

they apply to Point{Int} but not to Point. Optionally, outer constructors that determine type parameters automat-

ically can be added, for example constructing a Point{Int} from the call Point(1,2). Outer constructors call inner

constructors to do the core work of making an instance. However, in some cases one would rather not provide inner

constructors, so that specific type parameters cannot be requestedmanually.

For example, say we define a type that stores a vector along with an accurate representation of its sum:

julia> struct SummedArray{T<:Number,S<:Number}

data::Vector{T}

sum::S

end

julia> SummedArray(Int32[1; 2; 3], Int32(6))

SummedArray{Int32,Int32}(Int32[1, 2, 3], 6)

The problem is that wewant S to be a larger type than T, so that we can summany elements with less information loss.

For example, when T is Int32, we would like S to be Int64. Therefore we want to avoid an interface that allows the

user to construct instances of the type SummedArray{Int32,Int32}. One way to do this is to provide a constructor

only for SummedArray, but inside the type definition block to suppress generation of default constructors:

julia> struct SummedArray{T<:Number,S<:Number}

data::Vector{T}

sum::S

function SummedArray(a::Vector{T}) where T

S = widen(T)

new{T,S}(a, sum(S, a))

end

end

julia> SummedArray(Int32[1; 2; 3], Int32(6))

ERROR: MethodError: no method matching SummedArray(::Array{Int32,1}, ::Int32)

Closest candidates are:

SummedArray(::Array{T,1}) where T at none:5

This constructor will be invoked by the syntax SummedArray(a). The syntax new{T,S} allows specifying parameters

for the type to be constructed, i.e. this call will return aSummedArray{T,S}.new{T,S} can be used in any constructor

definition, but for convenience the parameters to new{} are automatically derived from the type being constructed

when possible.

Chapter 17

Conversion and Promotion

Julia has a system for promoting arguments of mathematical operators to a common type, which has been mentioned

in various other sections, including Integers and Floating-Point Numbers, Mathematical Operations and Elementary

Functions, Types, andMethods. In this section, we explain how this promotion systemworks, as well as how to extend

it to new types and apply it to functions besides built-inmathematical operators. Traditionally, programming languages

fall into two campswith respect to promotion of arithmetic arguments:

• Automatic promotion for built-in arithmetic types and operators. In most languages, built-in numeric types,

when used as operands to arithmetic operators with infix syntax, such as +, -, *, and /, are automatically pro-

moted to a common type to produce the expected results. C, Java, Perl, and Python, to name a few, all correctly

compute the sum 1 + 1.5 as the floating-point value 2.5, even though one of the operands to + is an integer.

These systems are convenient and designed carefully enough that they are generally all-but-invisible to the pro-

grammer: hardly anyone consciously thinks of this promotion taking placewhenwriting such an expression, but

compilers and interpreters must perform conversion before addition since integers and floating-point values

cannot be added as-is. Complex rules for such automatic conversions are thus inevitably part of specifications

and implementations for such languages.

• Noautomatic promotion. This camp includesAda andML– very "strict" statically typed languages. In these lan-

guages, everyconversionmustbeexplicitly specifiedbytheprogrammer. Thus, theexampleexpression1 + 1.5

would be a compilation error in bothAda andML. Instead onemustwritereal(1) + 1.5, explicitly converting

the integer 1 to a floating-point value before performing addition. Explicit conversion everywhere is so incon-

venient, however, that even Ada has some degree of automatic conversion: integer literals are promoted to the

expected integer type automatically, and floating-point literals are similarly promoted to appropriate floating-

point types.

In a sense, Julia falls into the "no automatic promotion" category: mathematical operators are just functions with spe-

cial syntax, and theargumentsof functionsareneverautomatically converted. However, onemayobserve that applying

mathematical operations to awide variety ofmixed argument types is just an extreme case of polymorphicmultiple dis-

patch – something which Julia's dispatch and type systems are particularly well-suited to handle. "Automatic" promo-

tion ofmathematical operands simply emerges as a special application: Julia comeswith pre-defined catch-all dispatch

rules for mathematical operators, invoked when no specific implementation exists for some combination of operand

types. These catch-all rulesfirst promoteall operands toa common typeusinguser-definablepromotion rules, and then

invoke a specialized implementation of the operator in question for the resulting values, now of the same type. User-

defined types can easily participate in this promotion system by defining methods for conversion to and from other

types, and providing a handful of promotion rules defining what types they should promote to when mixed with other

types.

155

156 CHAPTER 17. CONVERSION AND PROMOTION

17.1 Conversion

Conversion of values to various types is performed by the convert function. The convert function generally takes

two arguments: the first is a type object while the second is a value to convert to that type; the returned value is the

value converted to an instance of given type. The simplest way to understand this function is to see it in action:

julia> x = 12

12

julia> typeof(x)

Int64

julia> convert(UInt8, x)

0x0c

julia> typeof(ans)

UInt8

julia> convert(AbstractFloat, x)

12.0

julia> typeof(ans)

Float64

julia> a = Any[1 2 3; 4 5 6]

2×3 Array{Any,2}:

1 2 3

4 5 6

julia> convert(Array{Float64}, a)

2×3 Array{Float64,2}:

1.0 2.0 3.0

4.0 5.0 6.0

Conversion isn't always possible, inwhich case a nomethod error is thrown indicating thatconvert doesn't knowhow

to perform the requested conversion:

julia> convert(AbstractFloat, "foo")

ERROR: MethodError: Cannot `convert` an object of type String to an object of type AbstractFloat

This may have arisen from a call to the constructor AbstractFloat(...),

since type constructors fall back to convert methods.

Some languages considerparsing strings asnumbersor formattingnumbers as strings tobeconversions (manydynamic

languages will even perform conversion for you automatically), however Julia does not: even though some strings can

be parsed as numbers, most strings are not valid representations of numbers, and only a very limited subset of them

are. Therefore in Julia the dedicatedparse() functionmust be used to perform this operation,making itmore explicit.

Defining NewConversions

To define a new conversion, simply provide a new method for convert(). That's really all there is to it. For example,

themethod to convert a real number to a boolean is this:

convert(::Type{Bool}, x::Real) = x==0 ? false : x==1 ? true : throw(InexactError())

17.1. CONVERSION 157

The type of the first argument of thismethod is a singleton type,Type{Bool}, the only instance ofwhich isBool. Thus,

this method is only invoked when the first argument is the type value Bool. Notice the syntax used for the first argu-

ment: the argument name is omitted prior to the :: symbol, and only the type is given. This is the syntax in Julia for

a function argument whose type is specified but whose value is never used in the function body. In this example, since

the type is a singleton, there would never be any reason to use its value within the body. When invoked, the method

determines whether a numeric value is true or false as a boolean, by comparing it to one and zero:

julia> convert(Bool, 1)

true

julia> convert(Bool, 0)

false

julia> convert(Bool, 1im)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Bool}, ::Complex{Int64}) at ./complex.jl:31

julia> convert(Bool, 0im)

false

The method signatures for conversion methods are often quite a bit more involved than this example, especially for

parametric types. The example above ismeant to be pedagogical, and is not the actual Julia behaviour. This is the actual

implementation in Julia:

convert(::Type{T}, z::Complex) where {T<:Real} =

(imag(z) == 0 ? convert(T, real(z)) : throw(InexactError()))

Case Study: Rational Conversions

To continue our case study of Julia's Rational type, here are the conversions declared in rational.jl, right after

the declaration of the type and its constructors:

convert(::Type{Rational{T}}, x::Rational) where {T<:Integer} =

Rational(convert(T,x.num),convert(T,x.den))↪→

convert(::Type{Rational{T}}, x::Integer) where {T<:Integer} = Rational(convert(T,x),

convert(T,1))↪→

function convert(::Type{Rational{T}}, x::AbstractFloat, tol::Real) where T<:Integer

if isnan(x); return zero(T)//zero(T); end

if isinf(x); return sign(x)//zero(T); end

y = x

a = d = one(T)

b = c = zero(T)

while true

f = convert(T,round(y)); y -= f

a, b, c, d = f*a+c, f*b+d, a, b

if y == 0 || abs(a/b-x) <= tol

return a//b

end

y = 1/y

end

end

convert(rt::Type{Rational{T}}, x::AbstractFloat) where {T<:Integer} = convert(rt,x,eps(x))

https://github.com/JuliaLang/julia/blob/master/base/rational.jl

158 CHAPTER 17. CONVERSION AND PROMOTION

convert(::Type{T}, x::Rational) where {T<:AbstractFloat} = convert(T,x.num)/convert(T,x.den)

convert(::Type{T}, x::Rational) where {T<:Integer} = div(convert(T,x.num),convert(T,x.den))

The initial four convert methods provide conversions to rational types. The first method converts one type of rational

to another type of rational by converting the numerator and denominator to the appropriate integer type. The sec-

ondmethod does the same conversion for integers by taking the denominator to be 1. The third method implements a

standard algorithm for approximating a floating-point number by a ratio of integers towithin a given tolerance, and the

fourth method applies it, using machine epsilon at the given value as the threshold. In general, one should have a//b

== convert(Rational{Int64}, a/b).

The last two convert methods provide conversions from rational types to floating-point and integer types. To convert

to floating point, one simply converts both numerator and denominator to that floating point type and then divides. To

convert to integer, one can use the div operator for truncated integer division (rounded towards zero).

17.2 Promotion

Promotion refers to converting values of mixed types to a single common type. Although it is not strictly necessary, it

is generally implied that the common type to which the values are converted can faithfully represent all of the original

values. In this sense, the term "promotion" is appropriate since the values are converted to a "greater" type – i.e. one

which can represent all of the input values in a single common type. It is important, however, not to confuse this with

object-oriented (structural) super-typing, or Julia's notion of abstract super-types: promotion has nothing to do with

the type hierarchy, and everything to do with converting between alternate representations. For instance, although

every Int32 value can also be represented as a Float64 value, Int32 is not a subtype of Float64.

Promotion to a common "greater" type is performed in Julia by the promote function, which takes any number of ar-

guments, and returns a tuple of the same number of values, converted to a common type, or throws an exception if

promotion is not possible. The most common use case for promotion is to convert numeric arguments to a common

type:

julia> promote(1, 2.5)

(1.0, 2.5)

julia> promote(1, 2.5, 3)

(1.0, 2.5, 3.0)

julia> promote(2, 3//4)

(2//1, 3//4)

julia> promote(1, 2.5, 3, 3//4)

(1.0, 2.5, 3.0, 0.75)

julia> promote(1.5, im)

(1.5 + 0.0im, 0.0 + 1.0im)

julia> promote(1 + 2im, 3//4)

(1//1 + 2//1*im, 3//4 + 0//1*im)

Floating-point values are promoted to the largest of the floating-point argument types. Integer values are promoted to

the largerofeither thenativemachinewordsizeor the largest integerargument type. Mixturesof integersandfloating-

point values are promoted to a floating-point type big enough to hold all the values. Integers mixed with rationals are

promoted to rationals. Rationals mixed with floats are promoted to floats. Complex values mixed with real values are

promoted to the appropriate kind of complex value.

17.2. PROMOTION 159

That is really all there is to using promotions. The rest is just a matter of clever application, the most typical "clever"

application being the definition of catch-all methods for numeric operations like the arithmetic operators +, -, * and /.

Here are some of the catch-all method definitions given in promotion.jl:

+(x::Number, y::Number) = +(promote(x,y)...)

-(x::Number, y::Number) = -(promote(x,y)...)

*(x::Number, y::Number) = *(promote(x,y)...)

/(x::Number, y::Number) = /(promote(x,y)...)

Thesemethod definitions say that in the absence ofmore specific rules for adding, subtracting,multiplying and dividing

pairs of numeric values, promote the values to a common type and then try again. That's all there is to it: nowhere else

does one ever need to worry about promotion to a common numeric type for arithmetic operations – it just happens

automatically. There are definitions of catch-all promotion methods for a number of other arithmetic and mathemati-

cal functions in promotion.jl, but beyond that, there are hardly any calls to promote required in the Julia standard

library. Themost common usages of promote occur in outer constructorsmethods, provided for convenience, to allow

constructor calls with mixed types to delegate to an inner type with fields promoted to an appropriate common type.

For example, recall that rational.jl provides the following outer constructor method:

Rational(n::Integer, d::Integer) = Rational(promote(n,d)...)

This allows calls like the following to work:

julia> Rational(Int8(15),Int32(-5))

-3//1

julia> typeof(ans)

Rational{Int32}

For most user-defined types, it is better practice to require programmers to supply the expected types to constructor

functions explicitly, but sometimes, especially for numeric problems, it can be convenient to do promotion automati-

cally.

Defining Promotion Rules

Although one could, in principle, definemethods for thepromote function directly, thiswould requiremany redundant

definitions for all possible permutations of argument types. Instead, the behavior of promote is defined in terms of

an auxiliary function called promote_rule, which one can provide methods for. The promote_rule function takes a

pair of type objects and returns another type object, such that instances of the argument typeswill be promoted to the

returned type. Thus, by defining the rule:

promote_rule(::Type{Float64}, ::Type{Float32}) = Float64

one declares that when 64-bit and 32-bit floating-point values are promoted together, they should be promoted to

64-bit floating-point. The promotion type does not need to be one of the argument types, however; the following pro-

motion rules both occur in Julia's standard library:

promote_rule(::Type{UInt8}, ::Type{Int8}) = Int

promote_rule(::Type{BigInt}, ::Type{Int8}) = BigInt

https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
https://github.com/JuliaLang/julia/blob/master/base/rational.jl

160 CHAPTER 17. CONVERSION AND PROMOTION

In the latter case, the result type is BigInt since BigInt is the only type large enough to hold integers for arbitrary-

precision integerarithmetic. Alsonotethatonedoesnotneedtodefinebothpromote_rule(::Type{A}, ::Type{B})

and promote_rule(::Type{B}, ::Type{A}) – the symmetry is implied by the way promote_rule is used in the

promotion process.

Thepromote_rule function is used as a building block to define a second function calledpromote_type, which, given

any number of type objects, returns the common type to which those values, as arguments to promote should be pro-

moted. Thus, if one wants to know, in absence of actual values, what type a collection of values of certain types would

promote to, one can use promote_type:

julia> promote_type(Int8, UInt16)

Int64

Internally, promote_type is used inside of promote to determine what type argument values should be converted to

forpromotion. It can, however, beuseful in its ownright. Thecurious reader can read thecode inpromotion.jl, which

defines the complete promotionmechanism in about 35 lines.

Case Study: Rational Promotions

Finally, we finish off our ongoing case study of Julia's rational number type, whichmakes relatively sophisticated use of

the promotionmechanismwith the following promotion rules:

promote_rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:Integer} =

Rational{promote_type(T,S)}↪→

promote_rule(::Type{Rational{T}}, ::Type{Rational{S}}) where {T<:Integer,S<:Integer} =

Rational{promote_type(T,S)}↪→

promote_rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:AbstractFloat} =

promote_type(T,S)↪→

The first rule says that promoting a rational number with any other integer type promotes to a rational type whose

numerator/denominator type is the result of promotionof its numerator/denominator typewith theother integer type.

Thesecondruleapplies thesame logic to twodifferent typesof rationalnumbers, resulting ina rationalof thepromotion

of their respectivenumerator/denominator types. The third andfinal rule dictates that promoting a rationalwith afloat

results in the same type as promoting the numerator/denominator type with the float.

This small handful of promotion rules, togetherwith the conversionmethodsdiscussedabove, are sufficient tomake ra-

tional numbers interoperate completely naturally with all of Julia's other numeric types – integers, floating-point num-

bers, and complex numbers. By providing appropriate conversion methods and promotion rules in the same manner,

any user-defined numeric type can interoperate just as naturally with Julia's predefined numerics.

https://github.com/JuliaLang/julia/blob/master/base/promotion.jl

Chapter 18

Interfaces

A lot of the power and extensibility in Julia comes from a collection of informal interfaces. By extending a few specific

methods to work for a custom type, objects of that type not only receive those functionalities, but they are also able to

be used in other methods that are written to generically build upon those behaviors.

18.1 Iteration

Requiredmethods Brief description

start(iter) Returns the initial iteration state

next(iter, state) Returns the current item and the next state

done(iter, state) Tests if there are any items remaining

Important optional

methods

Default

definition

Brief description

iteratorsize(IterType)HasLength() One of HasLength(), HasShape(), IsInfinite(), or

SizeUnknown() as appropriate

iteratoreltype(IterType)HasEltype() Either EltypeUnknown() or HasEltype() as appropriate

eltype(IterType) Any The type the items returned by next()

length(iter) (undefined) The number of items, if known

size(iter,

[dim...])

(undefined) The number of items in each dimension, if known

Value returned by iteratorsize(IterType) RequiredMethods

HasLength() length(iter)

HasShape() length(iter) and size(iter, [dim...])

IsInfinite() (none)

SizeUnknown() (none)

Value returned by iteratoreltype(IterType) RequiredMethods

HasEltype() eltype(IterType)

EltypeUnknown() (none)

Sequential iteration is implemented by the methods start(), done(), and next(). Instead of mutating objects as

they are iterated over, Julia provides these three methods to keep track of the iteration state externally from the ob-

ject. The start(iter)method returns the initial state for the iterable object iter. That state gets passed along to

done(iter, state), which tests if there are any elements remaining, and next(iter, state), which returns a

161

162 CHAPTER 18. INTERFACES

tuple containing the current element and an updated state. The state object can be anything, and is generally con-

sidered to be an implementation detail private to the iterable object.

Any object defines these threemethods is iterable and can be used in themany functions that rely upon iteration. It can

also be used directly in a for loop since the syntax:

for i in iter # or "for i = iter"

body

end

is translated into:

state = start(iter)

while !done(iter, state)

(i, state) = next(iter, state)

body

end

A simple example is an iterable sequence of square numbers with a defined length:

julia> struct Squares

count::Int

end

julia> Base.start(::Squares) = 1

julia> Base.next(S::Squares, state) = (state*state, state+1)

julia> Base.done(S::Squares, state) = state > S.count

julia> Base.eltype(::Type{Squares}) = Int # Note that this is defined for the type

julia> Base.length(S::Squares) = S.count

With only start, next, and done definitions, the Squares type is already pretty powerful. We can iterate over all the

elements:

julia> for i in Squares(7)

println(i)

end

1

4

9

16

25

36

49

We can usemany of the builtin methods that work with iterables, like in(), mean() and std():

julia> 25 in Squares(10)

true

julia> mean(Squares(100))

3383.5

18.2. INDEXING 163

julia> std(Squares(100))

3024.355854282583

There are a few more methods we can extend to give Julia more information about this iterable collection. We know

that the elements in a Squares sequence will always be Int. By extending the eltype() method, we can give that

informationtoJuliaandhelp itmakemorespecializedcode in themorecomplicatedmethods. Wealsoknowthenumber

of elements in our sequence, so we can extend length(), too.

Now,whenwe ask Julia to collect() all the elements into an array it can preallocate a Vector{Int} of the right size

instead of blindly push!ing each element into a Vector{Any}:

julia> collect(Squares(10))' # transposed to save space

1×10 RowVector{Int64,Array{Int64,1}}:

1 4 9 16 25 36 49 64 81 100

While we can rely upon generic implementations, we can also extend specific methods where we know there is a sim-

pler algorithm. For example, there's a formula to compute the sum of squares, so we can override the generic iterative

version with amore performant solution:

julia> Base.sum(S::Squares) = (n = S.count; return n*(n+1)*(2n+1)÷6)

julia> sum(Squares(1803))

1955361914

This is a very common pattern throughout the Julia standard library: a small set of required methods define an infor-

mal interface that enable many fancier behaviors. In some cases, types will want to additionally specialize those extra

behaviors when they know amore efficient algorithm can be used in their specific case.

18.2 Indexing

Methods to implement Brief description

getindex(X, i) X[i], indexed element access

setindex!(X, v, i) X[i] = v, indexed assignment

endof(X) The last index, used in X[end]

For the Squares iterable above, we can easily compute the ith element of the sequence by squaring it. We can expose

this as an indexing expression S[i]. To opt into this behavior, Squares simply needs to define getindex():

julia> function Base.getindex(S::Squares, i::Int)

1 <= i <= S.count || throw(BoundsError(S, i))

return i*i

end

julia> Squares(100)[23]

529

Additionally, to support the syntax S[end], wemust define endof() to specify the last valid index:

julia> Base.endof(S::Squares) = length(S)

julia> Squares(23)[end]

529

Note, though, that the above only defines getindex() with one integer index. Indexing with anything other than an

Intwill throw a MethodError saying that therewas nomatchingmethod. In order to support indexingwith ranges or

vectors of Ints, separatemethodsmust be written:

164 CHAPTER 18. INTERFACES

julia> Base.getindex(S::Squares, i::Number) = S[convert(Int, i)]

julia> Base.getindex(S::Squares, I) = [S[i] for i in I]

julia> Squares(10)[[3,4.,5]]

3-element Array{Int64,1}:

9

16

25

While this is starting to support more of the indexing operations supported by some of the builtin types, there's still

quite a number of behaviors missing. This Squares sequence is starting to look more and more like a vector as we've

added behaviors to it. Instead of defining all these behaviors ourselves, we can officially define it as a subtype of an

AbstractArray.

18.3 Abstract Arrays

If a type is defined as a subtype of AbstractArray, it inherits a very large set of rich behaviors including iteration

and multidimensional indexing built on top of single-element access. See the arrays manual page and standard library

section for more supportedmethods.

A key part in defining an AbstractArray subtype is IndexStyle. Since indexing is such an important part of an array

andoftenoccurs inhot loops, it's important tomakeboth indexingand indexedassignmentasefficientaspossible. Array

data structures are typically defined in one of two ways: either it most efficiently accesses its elements using just one

index (linear indexing) or it intrinsically accesses the elements with indices specified for every dimension. These two

modalities are identified by Julia as IndexLinear() and IndexCartesian(). Converting a linear index to multiple

indexing subscripts is typically very expensive, so this provides a traits-based mechanism to enable efficient generic

code for all array types.

This distinction determines which scalar indexing methods the type must define. IndexLinear() arrays are simple:

just define getindex(A::ArrayType, i::Int). When the array is subsequently indexed with a multidimensional

set of indices, the fallback getindex(A::AbstractArray, I...)() efficiently converts the indices into one linear

index and then calls the abovemethod. IndexCartesian() arrays, on the other hand, require methods to be defined

for each supported dimensionality with ndims(A) Int indices. For example, the built-in SparseMatrixCSC type only

supports two dimensions, so it just defines getindex(A::SparseMatrixCSC, i::Int, j::Int). The same holds

for setindex!().

Returning to the sequence of squares from above, we could instead define it as a subtype of an AbstractArray{Int,

1}:

julia> struct SquaresVector <: AbstractArray{Int, 1}

count::Int

end

julia> Base.size(S::SquaresVector) = (S.count,)

julia> Base.IndexStyle(::Type{<:SquaresVector}) = IndexLinear()

julia> Base.getindex(S::SquaresVector, i::Int) = i*i

Note that it's very important to specify the two parameters of the AbstractArray; the first defines the eltype(),

and the second defines the ndims(). That supertype and those three methods are all it takes for SquaresVector to

be an iterable, indexable, and completely functional array:

julia> s = SquaresVector(7)

7-element SquaresVector:

18.3. ABSTRACT ARRAYS 165

Methods to implement Brief description

size(A) Returns a tuple containing the dimensions of A

getindex(A, i::Int) (if IndexLinear) Linear scalar indexing

getindex(A,

I::Vararg{Int, N})

 (if IndexCartesian, where N = ndims(A))

N-dimensional scalar indexing

setindex!(A, v, i::Int) (if IndexLinear) Scalar indexed assignment

setindex!(A, v,

I::Vararg{Int, N})

 (if IndexCartesian, where N = ndims(A))

N-dimensional scalar indexed assignment

Optional methods Default definition Brief description

IndexStyle(::Type) IndexCartesian() Returns either IndexLinear() or

IndexCartesian(). See the description below.

getindex(A, I...) defined in terms of scalar

getindex()

Multidimensional and nonscalar indexing

setindex!(A, I...) defined in terms of scalar

setindex!()

Multidimensional and nonscalar indexed

assignment

start()/next()/done() defined in terms of scalar

getindex()

Iteration

length(A) prod(size(A)) Number of elements

similar(A) similar(A,

eltype(A),

size(A))

Return amutable array with the same shape and

element type

similar(A, ::Type{S}) similar(A, S,

size(A))

Return amutable array with the same shape and

the specified element type

similar(A,

dims::NTuple{Int})

similar(A,

eltype(A), dims)

Return amutable array with the same element

type and size dims

similar(A, ::Type{S},

dims::NTuple{Int})

Array{S}(dims) Return amutable array with the specified

element type and size

Non-traditional indices Default definition Brief description

indices(A) map(OneTo,

size(A))

Return the AbstractUnitRange of valid

indices

Base.similar(A,

::Type{S},

inds::NTuple{Ind})

similar(A, S,

Base.to_shape(inds))

Return amutable arraywith the specified indices

inds (see below)

Base.similar(T::Union{Type,Function},

inds)

T(Base.to_shape(inds))Return an array similar to Twith the specified

indices inds (see below)

1

4

9

16

25

36

49

julia> s[s .> 20]

3-element Array{Int64,1}:

25

36

49

julia> s \ [1 2; 3 4; 5 6; 7 8; 9 10; 11 12; 13 14]

166 CHAPTER 18. INTERFACES

1×2 Array{Float64,2}:

0.305389 0.335329

julia> s s # dot(s, s)

4676

As amore complicated example, let's define our own toy N-dimensional sparse-like array type built on top of Dict:

julia> struct SparseArray{T,N} <: AbstractArray{T,N}

data::Dict{NTuple{N,Int}, T}

dims::NTuple{N,Int}

end

julia> SparseArray{T}(::Type{T}, dims::Int...) = SparseArray(T, dims);

julia> SparseArray{T,N}(::Type{T}, dims::NTuple{N,Int}) = SparseArray{T,N}(Dict{NTuple{N,Int}, T

}(), dims);

julia> Base.size(A::SparseArray) = A.dims

julia> Base.similar(A::SparseArray, ::Type{T}, dims::Dims) where {T} = SparseArray(T, dims)

julia> Base.getindex(A::SparseArray{T,N}, I::Vararg{Int,N}) where {T,N} = get(A.data, I, zero(T))

julia> Base.setindex!(A::SparseArray{T,N}, v, I::Vararg{Int,N}) where {T,N} = (A.data[I] = v)

Notice that this is an IndexCartesian array, so we must manually define getindex() and setindex!() at the di-

mensionality of the array. Unlike the SquaresVector, we are able to define setindex!(), and so we canmutate the

array:

julia> A = SparseArray(Float64, 3, 3)

3×3 SparseArray{Float64,2}:

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

julia> fill!(A, 2)

3×3 SparseArray{Float64,2}:

2.0 2.0 2.0

2.0 2.0 2.0

2.0 2.0 2.0

julia> A[:] = 1:length(A); A

3×3 SparseArray{Float64,2}:

1.0 4.0 7.0

2.0 5.0 8.0

3.0 6.0 9.0

Theresultof indexinganAbstractArraycan itselfbeanarray (for instancewhen indexingbyaRange). TheAbstractArray

fallbackmethods use similar() to allocate an Array of the appropriate size and element type, which is filled in using

the basic indexingmethod described above. However, when implementing an array wrapper you often want the result

to be wrapped as well:

julia> A[1:2,:]

2×3 SparseArray{Float64,2}:

1.0 4.0 7.0

2.0 5.0 8.0

18.3. ABSTRACT ARRAYS 167

In this example it is accomplished by defining Base.similar{T}(A::SparseArray, ::Type{T}, dims::Dims)

to create the appropriate wrapped array. (Note that while similar supports 1- and 2-argument forms, in most case

you only need to specialize the 3-argument form.) For this to work it's important that SparseArray is mutable (sup-

ports setindex!). Defining similar(), getindex() and setindex!() for SparseArray also makes it possible to

copy() the array:

julia> copy(A)

3×3 SparseArray{Float64,2}:

1.0 4.0 7.0

2.0 5.0 8.0

3.0 6.0 9.0

In addition to all the iterable and indexable methods from above, these types can also interact with each other and use

most of themethods defined in the standard library for AbstractArrays:

julia> A[SquaresVector(3)]

3-element SparseArray{Float64,1}:

1.0

4.0

9.0

julia> dot(A[:,1],A[:,2])

32.0

If you are defining an array type that allows non-traditional indexing (indices that start at something other than 1), you

should specialize indices. You should also specialize similar so that the dims argument (ordinarily a Dims size-

tuple) can accept AbstractUnitRange objects, perhaps range-types Ind of your own design. For more information,

see Arrays with custom indices.

Chapter 19

Modules

Modules in Julia are separate variable workspaces, i.e. they introduce a new global scope. They are delimited syntacti-

cally, inside module Name ... end. Modules allow you to create top-level definitions (aka global variables) without

worryingaboutnameconflictswhenyour code is used togetherwith somebodyelse's. Within amodule, youcancontrol

which names from othermodules are visible (via importing), and specify which of your names are intended to be public

(via exporting).

The following example demonstrates themajor features of modules. It is not meant to be run, but is shown for illustra-

tive purposes:

module MyModule

using Lib

using BigLib: thing1, thing2

import Base.show

importall OtherLib

export MyType, foo

struct MyType

x

end

bar(x) = 2x

foo(a::MyType) = bar(a.x) + 1

show(io::IO, a::MyType) = print(io, "MyType $(a.x)")

end

Note that the style is not to indent the body of themodule, since thatwould typically lead towhole files being indented.

This module defines a type MyType, and two functions. Function foo and type MyType are exported, and so will be

available for importing into other modules. Function bar is private to MyModule.

The statement using Lib means that a module called Lib will be available for resolving names as needed. When a

global variable is encountered that has nodefinition in the currentmodule, the systemwill search for it amongvariables

exported by Lib and import it if it is found there. This means that all uses of that global within the current module will

resolve to the definition of that variable in Lib.

Thestatementusing BigLib: thing1, thing2 is asyntactic shortcut forusing BigLib.thing1, BigLib.thing2.

169

170 CHAPTER 19. MODULES

The import keyword supports all the same syntax as using, but only operates on a single name at a time. It does not

add modules to be searched the way using does. import also differs from using in that functions must be imported

using import to be extendedwith newmethods.

InMyModuleabovewewanted toaddamethod to the standardshow function, sowehad towriteimport Base.show.

Functions whose names are only visible via using cannot be extended.

The keyword importall explicitly imports all names exported by the specifiedmodule, as if importwere individually

used on all of them.

Once a variable is made visible via using or import, a module may not create its own variable with the same name.

Imported variables are read-only; assigning to a global variable always affects a variable owned by the currentmodule,

or else raises an error.

19.1 Summary ofmodule usage

To load a module, two main keywords can be used: using and import. To understand their differences, consider the

following example:

module MyModule

export x, y

x() = "x"

y() = "y"

p() = "p"

end

In this module we export the x and y functions (with the keyword export), and also have the non-exported function p.

There are several different ways to load theModule and its inner functions into the current workspace:

Import Command What is brought into scope Available for method

extension

using MyModule All exported names (x and y), MyModule.x,

MyModule.y and MyModule.p

MyModule.x, MyModule.y

and MyModule.p

using MyModule.x,

MyModule.p

x and p

using MyModule: x,

p

x and p

import MyModule MyModule.x, MyModule.y and MyModule.p MyModule.x, MyModule.y

and MyModule.p

import MyModule.x,

MyModule.p

x and p x and p

import MyModule: x,

p

x and p x and p

importall MyModule All exported names (x and y) x and y

Modules and files

Files and file names are mostly unrelated to modules; modules are associated only with module expressions. One can

havemultiple files per module, andmultiple modules per file:

19.1. SUMMARYOFMODULE USAGE 171

module Foo

include("file1.jl")

include("file2.jl")

end

Including the samecode indifferentmodulesprovidesmixin-likebehavior. Onecoulduse this to run the samecodewith

different base definitions, for example testing code by running it with "safe" versions of some operators:

module Normal

include("mycode.jl")

end

module Testing

include("safe_operators.jl")

include("mycode.jl")

end

Standardmodules

There are three important standardmodules: Main, Core, and Base.

Main is the top-level module, and Julia starts withMain set as the current module. Variables defined at the prompt go

inMain, and whos() lists variables inMain.

Core contains all identifiers considered "built in" to the language, i.e. part of the core language and not libraries. Every

module implicitly specifies using Core, since you can't do anything without those definitions.

Base is the standard library (the contents of base/). All modules implicitly contain using Base, since this is needed in

the vast majority of cases.

Default top-level definitions and baremodules

In addition to using Base, modules also automatically contain a definition of the eval function, which evaluates ex-

pressions within the context of that module.

If thesedefault definitions arenotwanted,modules canbedefinedusing thekeywordbaremodule instead (note: Core

is still imported, as per above). In terms of baremodule, a standard module looks like this:

baremodule Mod

using Base

eval(x) = Core.eval(Mod, x)

eval(m,x) = Core.eval(m, x)

...

end

Relative and absolutemodule paths

Given the statement using Foo, the system looks for Foo within Main. If the module does not exist, the system at-

tempts to require("Foo"), which typically results in loading code from an installed package.

172 CHAPTER 19. MODULES

However, somemodules contain submodules, whichmeans you sometimes need to access amodule that is not directly

available in Main. There are two ways to do this. The first is to use an absolute path, for example using Base.Sort.

The second is to use a relative path, which makes it easier to import submodules of the current module or any of its

enclosingmodules:

module Parent

module Utils

...

end

using .Utils

...

end

HeremoduleParent contains a submoduleUtils, and code inParentwants the contents ofUtils to be visible. This

is done by starting theusing pathwith a period. Addingmore leading periodsmoves up additional levels in themodule

hierarchy. For example using ..Utils would look for Utils in Parent's enclosing module rather than in Parent

itself.

Note that relative-import qualifiers are only valid in using and import statements.

Module file paths

The global variable LOAD_PATH contains the directories Julia searches for modules when calling require. It can be

extended using push!:

push!(LOAD_PATH, "/Path/To/My/Module/")

Putting this statement in the file ~/.juliarc.jl will extend LOAD_PATH on every Julia startup. Alternatively, the

module load path can be extended by defining the environment variable JULIA_LOAD_PATH.

Namespacemiscellanea

If a name is qualified (e.g. Base.sin), then it can be accessed even if it is not exported. This is often useful when debug-

ging. It can also havemethods added to it by using the qualified name as the function name. However, due to syntactic

ambiguities that arise, if you wish to add methods to a function in a different module whose name contains only sym-

bols, such as an operator, Base.+ for example, you must use Base.:+ to refer to it. If the operator is more than one

character in length youmust surround it in brackets, such as: Base.:(==).

Macro names are written with @ in import and export statements, e.g. import Mod.@mac. Macros in other modules

can be invoked as Mod.@mac or @Mod.mac.

The syntax M.x = y does not work to assign a global in another module; global assignment is alwaysmodule-local.

A variable can be "reserved" for the currentmodulewithout assigning to it by declaring it as global x at the top level.

This can be used to prevent name conflicts for globals initialized after load time.

Module initialization and precompilation

Largemodules can take several seconds to loadbecause executing all of the statements in amodule often involves com-

piling a large amount of code. Julia provides the ability to create precompiled versions of modules to reduce this time.

19.1. SUMMARYOFMODULE USAGE 173

To create an incremental precompiled module file, add __precompile__() at the top of your module file (before the

module starts). Thiswill cause it to be automatically compiled the first time it is imported. Alternatively, you canmanu-

allycallBase.compilecache(modulename). Theresultingcachefileswill bestored inBase.LOAD_CACHE_PATH[1].

Subsequently, themodule is automatically recompiled upon importwhenever any of its dependencies change; depen-

denciesaremodules it imports, theJuliabuild, files it includes, orexplicitdependenciesdeclaredbyinclude_dependency(path)

in themodule file(s).

Forfiledependencies, a change isdeterminedbyexaminingwhether themodification time (mtime)of eachfile loadedby

includeoraddedexplicitlybyinclude_dependency is unchanged, orequal to themodification time truncated to the

nearest second (to accommodate systems that can't copy mtime with sub-second accuracy). It also takes into account

whether the path to the file chosen by the search logic in requirematches the path that had created the precompile

file.

It also takes into account the set of dependencies already loaded into the current process and won't recompile those

modules, even if their files changeor disappear, in order to avoid creating incompatibilities between the running system

and the precompile cache. If you want to have changes to the source reflected in the running system, you should call

reload("Module") on the module you changed, and any module that depended on it in which you want to see the

change reflected.

Precompiling a module also recursively precompiles any modules that are imported therein. If you know that it is not

safe to precompile your module (for the reasons described below), you should put __precompile__(false) in the

module file to cause Base.compilecache to throw an error (and thereby prevent themodule frombeing imported by

any other precompiledmodule).

__precompile__() should not be used in amodule unless all of its dependencies are also using __precompile__().

Failure to do so can result in a runtime error when loading themodule.

In order to make your module work with precompilation, however, you may need to change your module to explicitly

separate any initialization steps that must occur at runtime from steps that can occur at compile time. For this purpose,

Julia allows you to define an __init__() function in your module that executes any initialization steps that must oc-

cur at runtime. This function will not be called during compilation (--output-* or __precompile__()). You may, of

course, call itmanually ifnecessary, but thedefault is toassumethis functiondealswithcomputingstate for the localma-

chine,whichdoesnotneed tobe–orevenshouldnotbe–captured in thecompiled image. Itwill becalledafter themod-

ule is loaded into a process, including if it is being loaded into an incremental compile (--output-incremental=yes),

but not if it is being loaded into a full-compilation process.

In particular, if youdefine afunction __init__() in amodule, then Juliawill call__init__() immediately after the

module is loaded (e.g., by import, using, or require) at runtime for the first time (i.e., __init__ is only called once,

and only after all statements in themodule have been executed). Because it is called after themodule is fully imported,

any submodulesorother importedmoduleshave their__init__ functions calledbefore the__init__of theenclosing

module.

Two typical uses of __init__ are calling runtime initialization functions of external C libraries and initializing global

constants that involve pointers returned by external libraries. For example, suppose that we are calling a C library

libfoo that requires us to call a foo_init() initialization function at runtime. Suppose that we also want to define

a global constant foo_data_ptr that holds the return value of a void *foo_data() function defined by libfoo –

this constant must be initialized at runtime (not at compile time) because the pointer address will change from run to

run. You could accomplish this by defining the following __init__ function in yourmodule:

const foo_data_ptr = Ref{Ptr{Void}}(0)

function __init__()

ccall((:foo_init, :libfoo), Void, ())

foo_data_ptr[] = ccall((:foo_data, :libfoo), Ptr{Void}, ())

end

174 CHAPTER 19. MODULES

Notice that it is perfectly possible to define a global inside a function like __init__; this is one of the advantages of

using a dynamic language. But by making it a constant at global scope, we can ensure that the type is known to the

compiler and allow it to generate better optimized code. Obviously, any other globals in your module that depends on

foo_data_ptrwould also have to be initialized in __init__.

Constants involving most Julia objects that are not produced by ccall do not need to be placed in __init__: their

definitions can be precompiled and loaded from the cached module image. This includes complicated heap-allocated

objects like arrays. However, any routine that returns a raw pointer valuemust be called at runtime for precompilation

to work (Ptr objects will turn into null pointers unless they are hidden inside an isbits object). This includes the return

values of the Julia functions cfunction and pointer.

Dictionary and set types, or in general anything that depends on the output of ahash(key)method, are a trickier case.

In the common case where the keys are numbers, strings, symbols, ranges, Expr, or compositions of these types (via

arrays, tuples, sets, pairs, etc.) they are safe to precompile. However, for a few other key types, such as Function

or DataType and generic user-defined types where you haven't defined a hash method, the fallback hash method

depends on the memory address of the object (via its object_id) and hence may change from run to run. If you have

one of these key types, or if you aren't sure, to be safe you can initialize this dictionary from within your __init__

function. Alternatively, you can use the ObjectIdDict dictionary type, which is specially handled by precompilation

so that it is safe to initialize at compile-time.

When using precompilation, it is important to keep a clear sense of the distinction between the compilation phase and

the execution phase. In this mode, it will often be much more clearly apparent that Julia is a compiler which allows

execution of arbitrary Julia code, not a standalone interpreter that also generates compiled code.

Other known potential failure scenarios include:

1. Global counters (for example, for attempting to uniquely identify objects) Consider the following code snippet:

mutable struct UniquedById

myid::Int

let counter = 0

UniquedById() = new(counter += 1)

end

end

while the intent of this code was to give every instance a unique id, the counter value is recorded at the end

of compilation. All subsequent usages of this incrementally compiled module will start from that same counter

value.

Note thatobject_id (whichworks by hashing thememory pointer) has similar issues (see notes onDict usage

below).

One alternative is to store both current_module() and the current counter value, however, it may be better

to redesign the code to not depend on this global state.

2. Associative collections (such as Dict and Set) need to be re-hashed in __init__. (In the future, a mechanism

may be provided to register an initializer function.)

3. Depending on compile-time side-effects persisting through load-time. Example include: modifying arrays or

other variables in other Julia modules; maintaining handles to open files or devices; storing pointers to other

system resources (includingmemory);

4. Creating accidental "copies" of global state from another module, by referencing it directly instead of via its

lookup path. For example, (in global scope):

#mystdout = Base.STDOUT #= will not work correctly, since this will copy Base.STDOUT into

this module =#↪→

instead use accessor functions:

19.1. SUMMARYOFMODULE USAGE 175

getstdout() = Base.STDOUT #= best option =#

or move the assignment into the runtime:

__init__() = global mystdout = Base.STDOUT #= also works =#

Several additional restrictions are placed on the operations that can be done while precompiling code to help the user

avoid other wrong-behavior situations:

1. Calling eval to cause a side-effect in another module. This will also cause a warning to be emitted when the

incremental precompile flag is set.

2. global const statements from local scope after __init__() has been started (see issue #12010 for plans to

add an error for this)

3. Replacing amodule (or calling workspace()) is a runtime error while doing an incremental precompile.

A few other points to be aware of:

1. Nocodereload/cache invalidation isperformedafterchangesaremadetothesourcefiles themselves, (including

by Pkg.update), and no cleanup is done after Pkg.rm

2. Thememory sharingbehavior of a reshapedarray is disregardedbyprecompilation (eachviewgets its owncopy)

3. Expecting thefilesystemtobeunchangedbetweencompile-timeand runtimee.g. @__FILE__/source_path()

to find resources at runtime, or the BinDeps @checked_libmacro. Sometimes this is unavoidable. However,

when possible, it can be good practice to copy resources into the module at compile-time so they won't need to

be found at runtime.

4. WeakRef objects and finalizers are not currently handled properly by the serializer (this will be fixed in an up-

coming release).

5. It isusuallybest toavoidcapturingreferences to instancesof internalmetadataobjectssuchasMethod,MethodInstance,

MethodTable,TypeMapLevel,TypeMapEntryandfieldsof thoseobjects, as this canconfuse the serializer and

may not lead to the outcome you desire. It is not necessarily an error to do this, but you simply need to be pre-

pared that the systemwill try to copy some of these and to create a single unique instance of others.

It is sometimes helpful during module development to turn off incremental precompilation. The command line flag

--compilecache={yes|no} enables you to toggle module precompilation on and off. When Julia is started with --

compilecache=no the serializedmodules in the compile cache are ignoredwhen loadingmodules andmodule depen-

dencies. Base.compilecache() can still be calledmanually and itwill respect__precompile__()directives for the

module. The state of this command line flag is passed to Pkg.build() to disable automatic precompilation triggering

when installing, updating, and explicitly building packages.

Chapter 20

Documentation

Julia enables package developers and users to document functions, types and other objects easily via a built-in docu-

mentation system since Julia 0.4.

The basic syntax is very simple: any string appearing at the top-level right before an object (function, macro, type or

instance) will be interpreted as documenting it (these are called docstrings). Here is a very simple example:

"Tell whether there are too foo items in the array."

foo(xs::Array) = ...

Documentation is interpreted asMarkdown, so you can use indentation and code fences to delimit code examples from

text. Technically, any object can be associated with any other as metadata; Markdown happens to be the default, but

one can construct other stringmacros and pass them to the @docmacro just as well.

Here is a more complex example, still usingMarkdown:

"""

bar(x[, y])

Compute the Bar index between `x` and `y`. If `y` is missing, compute

the Bar index between all pairs of columns of `x`.

Examples

```julia-repl

julia> bar([1, 2], [1, 2])

1

```

"""

function bar(x, y) ...

As in the example above, we recommend following some simple conventions whenwriting documentation:

1. Always show the signature of a function at the top of the documentation, with a four-space indent so that it is

printed as Julia code.

This can be identical to the signature present in the Julia code (like mean(x::AbstractArray)), or a simplified

form. Optional arguments should be represented with their default values (i.e. f(x, y=1)) when possible, fol-

lowing the actual Julia syntax. Optional arguments which do not have a default value should be put in brackets

(i.e. f(x[, y]) and f(x[, y[, z]])). An alternative solution is to use several lines: onewithout optional ar-

guments, the other(s) with them. This solution can also be used to document several relatedmethods of a given

177

https://en.wikipedia.org/wiki/Markdown

178 CHAPTER 20. DOCUMENTATION

function. When a function accepts many keyword arguments, only include a <keyword arguments> place-

holder in the signature (i.e. f(x; <keyword arguments>)), andgive the complete list under an# Arguments

section (see point 4 below).

2. Include a single one-line sentence describing what the function does or what the object represents after the

simplified signature block. If needed, providemore details in a second paragraph, after a blank line.

The one-line sentence should use the imperative form ("Do this", "Return that") instead of the third person (do

not write "Returns the length...") when documenting functions. It should end with a period. If the meaning of a

function cannot be summarized easily, splitting it into separate composable parts could be beneficial (this should

not be taken as an absolute requirement for every single case though).

3. Do not repeat yourself.

Since the function name is givenby the signature, there is noneed to start the documentationwith "The function

bar...": go straight to the point. Similarly, if the signature specifies the types of the arguments, mentioning them

in the description is redundant.

4. Only provide an argument list when really necessary.

For simple functions, it is often clearer to mention the role of the arguments directly in the description of the

function's purpose. An argument list would only repeat information already provided elsewhere. However, pro-

viding an argument list can be a good idea for complex functions with many arguments (in particular keyword

arguments). In that case, insert it after the general description of the function, under an # Arguments header,

with one - bullet for each argument. The list should mention the types and default values (if any) of the argu-

ments:

"""

...

Arguments

- `n::Integer`: the number of elements to compute.

- `dim::Integer=1`: the dimensions along which to perform the computation.

...

"""

5. Include any code examples in an # Examples section.

Examples should, whenever possible, be written as doctests. A doctest is a fenced code block (see Code blocks)

starting with ```jldoctest and contains any number of julia> prompts together with inputs and expected

outputs that mimic the Julia REPL.

For example in the following docstring a variable a is defined and the expected result, as printed in a Julia REPL,

appears afterwards:

"""

Some nice documentation here.

Examples

```jldoctest

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

```

"""

20.1. ACCESSINGDOCUMENTATION 179

Warning

Calling rand and other RNG-related functions should be avoided in doctests since theywill not pro-

duce consistent outputs during different Julia sessions.

Operating systemword size (Int32 or Int64) as well as path separator differences (/ or \) will also

affect the reproducibility of some doctests.

Note that whitespace in your doctest is significant! The doctest will fail if youmisalign the output of

pretty-printing an array, for example.

You can then runmake -C doc doctest to run all the doctests in the JuliaManual, whichwill ensure that your

example works.

Examples that are untestable should be written within fenced code blocks starting with ```julia so that they

are highlighted correctly in the generated documentation.

Tip

Wherever possible examples should be self-contained and runnable so that readers are able to try

them out without having to include any dependencies.

6. Use backticks to identify code and equations.

Julia identifiersandcodeexcerpts shouldalwaysappearbetweenbackticks` toenablehighlighting. Equations in

the LaTeX syntax can be inserted between double backticks ``. UseUnicode characters rather than their LaTeX

escape sequence, i.e. ``α = 1`` rather than ``\\alpha = 1``.

7. Place the starting and ending """ characters on lines by themselves.

That is, write:

"""

...

...

"""

f(x, y) = ...

rather than:

"""...

..."""

f(x, y) = ...

This makes it more clear where docstrings start and end.

8. Respect the line length limit used in the surrounding code.

Docstrings are edited using the same tools as code. Therefore, the same conventions should apply. It it advised

to add line breaks after 92 characters.

20.1 Accessing Documentation

Documentation can be accessed at the REPL or in IJulia by typing ? followed by the name of a function or macro, and

pressing Enter. For example,

?fft

?@time

?r""

https://github.com/JuliaLang/IJulia.jl

180 CHAPTER 20. DOCUMENTATION

will bring up docs for the relevant function, macro or string macro respectively. In Juno using Ctrl-J, Ctrl-D will

bring up documentation for the object under the cursor.

20.2 Functions &Methods

Functions in Julia may have multiple implementations, known as methods. While it's good practice for generic func-

tions to have a single purpose, Julia allows methods to be documented individually if necessary. In general, only the

most genericmethod should be documented, or even the function itself (i.e. the object createdwithout anymethods by

function bar end). Specific methods should only be documented if their behaviour differs from the more generic

ones. In any case, they should not repeat the information provided elsewhere. For example:

"""

*(x, y, z...)

Multiplication operator. `x * y * z *...` calls this function with multiple

arguments, i.e. `*(x, y, z...)`.

"""

function *(x, y, z...)

... [implementation sold separately] ...

end

"""

*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.

"""

function *(x::AbstractString, y::AbstractString, z::AbstractString...)

... [insert secret sauce here] ...

end

help?> *

search: * .*

*(x, y, z...)

Multiplication operator. x * y * z *... calls this function with multiple

arguments, i.e. *(x,y,z...).

*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.

When retrievingdocumentation for a generic function, themetadata for eachmethod is concatenatedwith thecatdoc

function, which can of course be overridden for custom types.

20.3 Advanced Usage

The @docmacro associates its first argument with its second in a per-module dictionary called META. By default, doc-

umentation is expected to be written inMarkdown, and the doc"" string macro simply creates an object representing

the Markdown content. In the future it is likely to do more advanced things such as allowing for relative image or link

paths.

Whenused for retrievingdocumentation, the@docmacro (or equally, thedoc function)will searchallMETAdictionaries

formetadata relevant to the givenobject and return it. The returnedobject (someMarkdowncontent, for example)will

http://junolab.org

20.4. SYNTAX GUIDE 181

by default display itself intelligently. This design also makes it easy to use the doc system in a programmatic way; for

example, to re-use documentation between different versions of a function:

@doc "..." foo!

@doc (@doc foo!) foo

Or for use with Julia's metaprogramming functionality:

for (f, op) in ((:add, :+), (:subtract, :-), (:multiply, :*), (:divide, :/))

@eval begin

$f(a,b) = $op(a,b)

end

end

@doc "`add(a,b)` adds `a` and `b` together" add

@doc "`subtract(a,b)` subtracts `b` from `a`" subtract

Documentationwritten in non-toplevel blocks, such as begin, if, for, and let, is added to the documentation system

as blocks are evaluated. For example:

if VERSION > v"0.5"

"..."

f(x) = x

end

will add documentation to f(x)when the condition is true. Note that even if f(x) goes out of scope at the end of the

block, its documentation will remain.

Dynamic documentation

Sometimes the appropriate documentation for an instance of a type depends on the field values of that instance, rather

than just on the type itself. In these cases, you can add a method to Docs.getdoc for your custom type that returns

the documentation on a per-instance basis. For instance,

struct MyType

value::String

end

Docs.getdoc(t::MyType) = "Documentation for MyType with value $(t.value)"

x = MyType("x")

y = MyType("y")

?xwill display "Documentation forMyType with value x" while ?ywill display "Documentation forMyType with value

y".

20.4 Syntax Guide

A comprehensive overview of all documentable Julia syntax.

In the following examples"..." is used to illustrate an arbitrary docstringwhichmaybeoneof the follow four variants

and contain arbitrary text:

182 CHAPTER 20. DOCUMENTATION

"..."

doc"..."

"""

...

"""

doc"""

...

"""

@doc_str should only be usedwhen the docstring contains $ or\ characters that should not be parsed by Julia such as

LaTeX syntax or Julia source code examples containing interpolation.

Functions andMethods

"..."

function f end

"..."

f

Adds docstring "..." to Functionf. The first version is the preferred syntax, however both are equivalent.

"..."

f(x) = x

"..."

function f(x)

x

end

"..."

f(x)

Adds docstring "..." to Methodf(::Any).

"..."

f(x, y = 1) = x + y

Adds docstring "..." to two Methods, namely f(::Any) and f(::Any, ::Any).

Macros

"..."

macro m(x) end

Adds docstring "..." to the @m(::Any)macro definition.

"..."

:(@m)

Adds docstring "..." to themacro named @m.

20.4. SYNTAX GUIDE 183

Types

"..."

abstract type T1 end

"..."

mutable struct T2

...

end

"..."

struct T3

...

end

Adds the docstring "..." to types T1, T2, and T3.

"..."

struct T

"x"

x

"y"

y

end

Adds docstring "..." to type T, "x" to field T.x and "y" to field T.y. Also applicable to mutable struct types.

Modules

"..."

module M end

module M

"..."

M

end

Adds docstring "..." to the ModuleM. Adding the docstring above the Module is the preferred syntax, however both

are equivalent.

"..."

baremodule M

...

end

baremodule M

import Base: @doc

"..."

f(x) = x

end

184 CHAPTER 20. DOCUMENTATION

Documenting a baremodule by placing a docstring above the expression automatically imports @doc into themodule.

These imports must be done manually when the module expression is not documented. Empty baremodules cannot

be documented.

Global Variables

"..."

const a = 1

"..."

b = 2

"..."

global c = 3

Adds docstring "..." to the Bindings a, b, and c.

Bindings are used to store a reference to a particular Symbol in a Modulewithout storing the referenced value itself.

Note

When a const definition is only used to define an alias of another definition, such as is the case with the

function div and its alias ÷ in Base, do not document the alias and instead document the actual function.

If the alias is documented and not the real definition then the docsystem (? mode) will not return the

docstring attached to the alias when the real definition is searched for.

For example you should write

"..."

f(x) = x + 1

const alias = f

rather than

f(x) = x + 1

"..."

const alias = f

"..."

sym

Adds docstring "..." to the value associated with sym. Users should prefer documenting sym at it's definition.

Multiple Objects

"..."

a, b

Adds docstring "..." to a and b each of which should be a documentable expression. This syntax is equivalent to

"..."

a

"..."

b

20.5. MARKDOWN SYNTAX 185

Any number of expressions many be documented together in this way. This syntax can be useful when two functions

are related, such as non-mutating andmutating versions f and f!.

Macro-generated code

"..."

@m expression

Adds docstring "..." to expression generated by expanding @m expression. This allows for expressions decorated

with @inline, @noinline, @generated, or any other macro to be documented in the same way as undecorated ex-

pressions.

Macro authors should take note that only macros that generate a single expression will automatically support doc-

strings. If a macro returns a block containing multiple subexpressions then the subexpression that should be docu-

mentedmust bemarked using the @__doc__macro.

The @enummacromakes use of @__doc__ to allow for documenting Enums. Examining it's definition should serve as an

example of how to use @__doc__ correctly.

Core.@__doc__ –Macro.

@__doc__(ex)

Low-level macro used to mark expressions returned by a macro that should be documented. If more than one ex-

pression is marked then the same docstring is applied to each expression.

macro example(f)

quote

$(f)() = 0

@__doc__ $(f)(x) = 1

$(f)(x, y) = 2

end |> esc

end

@__doc__ has no effect when amacro that uses it is not documented.

source

20.5 Markdown syntax

The followingmarkdown syntax is supported in Julia.

Inline elements

Here "inline" refers to elements that can be found within blocks of text, i.e. paragraphs. These include the following

elements.

Bold

Surroundwords with two asterisks, **, to display the enclosed text in boldface.

A paragraph containing a **bold** word.

Italics

Surroundwords with one asterisk, *, to display the enclosed text in italics.

A paragraph containing an *emphasised* word.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/Docs.jl#L570-L585

186 CHAPTER 20. DOCUMENTATION

Literals

Surround text that should be displayed exactly as written with single backticks, ` .

A paragraph containing a `literal` word.

Literals should be usedwhenwriting text that refers to names of variables, functions, or other parts of a Julia program.

Tip

To include a backtick character within literal text use three backticks rather than one to enclose the text.

A paragraph containing a ``` `backtick` character ```.

By extension any odd number of backticks may be used to enclose a lesser number of backticks.

LATEX

Surround text that should be displayed asmathematics using LATEXsyntax with double backticks, `` .

A paragraph containing some ``\LaTeX`` markup.

Tip

As with literals in the previous section, if literal backticks need to be written within double backticks

use an even number greater than two. Note that if a single literal backtick needs to be included within

LATEXmarkup then two enclosing backticks is sufficient.

Links

Links to either external or internal addresses can be written using the following syntax, where the text enclosed in

square brackets, [], is the name of the link and the text enclosed in parentheses, (), is the URL.

A paragraph containing a link to [Julia](http://www.julialang.org).

It's also possible to add cross-references to other documented functions/methods/variableswithin the Julia documen-

tation itself. For example:

"""

eigvals!(A,[irange,][vl,][vu]) -> values

Same as [`eigvals`](@ref), but saves space by overwriting the input `A`, instead of creating a

copy.↪→

"""

This will create a link in the generated docs to the eigvals documentation (which has more information about what

this function actually does). It's good to include cross references tomutating/non-mutating versions of a function, or to

highlight a difference between two similar-seeming functions.

Note

Theabovecross referencing isnot aMarkdown feature, and relies onDocumenter.jl, which is used tobuild

base Julia's documentation.

https://github.com/JuliaDocs/Documenter.jl

20.5. MARKDOWN SYNTAX 187

Footnote references

Named andnumbered footnote references can bewritten using the following syntax. A footnote namemust be a single

alphanumeric word containing no punctuation.

A paragraph containing a numbered footnote [^1] and a named one [^named].

Note

The text associatedwith a footnote can bewritten anywherewithin the same page as the footnote refer-

ence. The syntax used to define the footnote text is discussed in the Footnotes section below.

Toplevel elements

The following elements can bewritten either at the "toplevel" of a document or within another "toplevel" element.

Paragraphs

A paragraph is a block of plain text, possibly containing any number of inline elements defined in the Inline elements

section above, with one ormore blank lines above and below it.

This is a paragraph.

And this is *another* one containing some emphasised text.

A new line, but still part of the same paragraph.

Headers

A document can be split up into different sections using headers. Headers use the following syntax:

Level One

Level Two

Level Three

Level Four

Level Five

Level Six

A header line can contain any inline syntax in the sameway as a paragraph can.

Tip

Try to avoid using toomany levels of headerwithin a single document. A heavily nested documentmay be

indicative of a need to restructure it or split it into several pages covering separate topics.

Code blocks

Source code can be displayed as a literal block using an indent of four spaces as shown in the following example.

This is a paragraph.

function func(x)

...

end

Another paragraph.

188 CHAPTER 20. DOCUMENTATION

Additionally, code blocks can be enclosed using triple backticks with an optional "language" to specify how a block of

code should be highlighted.

A code block without a "language":

```

function func(x)

# ...

end

```

and another one with the "language" specified as `julia`:

```julia

function func(x)

# ...

end

```

Note

"Fenced" code blocks, as shown in the last example, should be prefered over indented code blocks since

there is no way to specify what language an indented code block is written in.

Block quotes

Text from external sources, such as quotations from books orwebsites, can be quoted using > characters prepended to

each line of the quote as follows.

Here's a quote:

> Julia is a high-level, high-performance dynamic programming language for

> technical computing, with syntax that is familiar to users of other

> technical computing environments.

Note that a single space must appear after the > character on each line. Quoted blocks may themselves contain other

toplevel or inline elements.

Images

The syntax for images is similar to the link syntax mentioned above. Prepending a ! character to a link will display an

image from the specified URL rather than a link to it.

![alternative text](link/to/image.png)

Lists

Unordered lists can bewritten by prepending each item in a list with either *, +, or -.

A list of items:

* item one

* item two

* item three

20.5. MARKDOWN SYNTAX 189

Note the two spaces before each * and the single space after each one.

Lists can contain other nested toplevel elements such as lists, code blocks, or quoteblocks. A blank line should be left

between each list itemwhen including any toplevel elements within a list.

Another list:

* item one

* item two

```

f(x) = x

```

* And a sublist:

+ sub-item one

+ sub-item two

Note

The contents of each item in the list must line up with the first line of the item. In the above example the

fenced code blockmust be indented by four spaces to align with the i in item two.

Ordered lists are written by replacing the "bullet" character, either *, +, or -, with a positive integer followed by either

. or).

Two ordered lists:

1. item one

2. item two

3. item three

5) item five

6) item six

7) item seven

Anordered listmay start fromanumberother thanone, as in the second list of the aboveexample,where it is numbered

from five. As with unordered lists, ordered lists can contain nested toplevel elements.

Display equations

Large LATEXequations that do not fit inline within a paragraph may be written as display equations using a fenced code

block with the "language" math as in the example below.

```math

f(a) = \frac{1}{2\pi}\int_{0}^{2\pi} (\alpha+R\cos(\theta))d\theta

```

Footnotes

This syntax is paired with the inline syntax for Footnote references. Make sure to read that section as well.

Footnote text is definedusing the following syntax, which is similar to footnote reference syntax, aside from the: char-

acter that is appended to the footnote label.

190 CHAPTER 20. DOCUMENTATION

[^1]: Numbered footnote text.

[^note]:

Named footnote text containing several toplevel elements.

* item one

* item two

* item three

```julia

function func(x)

# ...

end

```

Note

No checks are done during parsing tomake sure that all footnote references havematching footnotes.

Horizontal rules

The equivalent of an <hr>HTML tag can bewritten using the following syntax:

Text above the line.

And text below the line.

Tables

Basic tables can be written using the syntax described below. Note that markdown tables have limited features and

cannot contain nested toplevel elements unlike other elements discussed above – only inline elements are allowed.

Tables must always contain a header rowwith column names. Cells cannot spanmultiple rows or columns of the table.

| Column One | Column Two | Column Three |

|:---------- | ---------- |:------------:|

| Row `1` | Column `2` | |

| *Row* 2 | **Row** 2 | Column ``3`` |

Note

As illustrated in the above example each column of | characters must be aligned vertically.

A : character on either end of a column's header separator (the row containing - characters) specifies

whether the row is left-aligned, right-aligned, or (when: appears onboth ends) center-aligned. Providing

no : characters will default to right-aligning the column.

Admonitions

Specially formatted blocks with titles such as "Notes", "Warning", or "Tips" are known as admonitions and are used

when some part of a document needs special attention. They can be defined using the following !!! syntax:

20.6. MARKDOWN SYNTAX EXTENSIONS 191

!!! note

This is the content of the note.

!!! warning "Beware!"

And this is another one.

This warning admonition has a custom title: `"Beware!"`.

Admonitions, likemost other toplevel elements, can contain other toplevel elements. Whenno title text, specified after

the admonition type in double quotes, is included then the title usedwill be the type of the block, i.e. "Note" in the case

of the note admonition.

20.6 Markdown Syntax Extensions

Julia'smarkdownsupports interpolation in a very similarway tobasic string literals, with thedifference that itwill store

theobject itself in theMarkdowntree (asopposed toconverting it toa string). When theMarkdowncontent is rendered

the usual showmethods will be called, and these can be overridden as usual. This design allows the Markdown to be

extendedwith arbitrarily complex features (such as references) without cluttering the basic syntax.

In principle, the Markdown parser itself can also be arbitrarily extended by packages, or an entirely custom flavour of

Markdown can be used, but this should generally be unnecessary.

Chapter 21

Metaprogramming

The strongest legacy of Lisp in the Julia language is its metaprogramming support. Like Lisp, Julia represents its own

codeas adata structureof the language itself. Since code is representedbyobjects that canbe createdandmanipulated

fromwithin the language, it is possible for a program to transform and generate its own code. This allows sophisticated

code generationwithout extra build steps, and also allows true Lisp-stylemacros operating at the level of abstract syn-

tax trees. In contrast, preprocessor "macro" systems, like that of C and C++, perform textual manipulation and substi-

tution before any actual parsing or interpretation occurs. Because all data types and code in Julia are represented by

Julia data structures, powerful reflection capabilities are available to explore the internals of a program and its types

just like any other data.

21.1 Program representation

Every Julia program starts life as a string:

julia> prog = "1 + 1"

"1 + 1"

What happens next?

The next step is to parse each string into an object called an expression, represented by the Julia type Expr:

julia> ex1 = parse(prog)

:(1 + 1)

julia> typeof(ex1)

Expr

Expr objects contain two parts:

• a Symbol identifying the kind of expression. A symbol is an interned string identifier (more discussion below).

julia> ex1.head

:call

• the expression arguments, whichmay be symbols, other expressions, or literal values:

julia> ex1.args

3-element Array{Any,1}:

:+

1

1

193

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Reflection_%28computer_programming%29
https://en.wikipedia.org/wiki/Parsing#Computer_languages
https://en.wikipedia.org/wiki/String_interning

194 CHAPTER 21. METAPROGRAMMING

Expressionsmay also be constructed directly in prefix notation:

julia> ex2 = Expr(:call, :+, 1, 1)

:(1 + 1)

The two expressions constructed above – by parsing and by direct construction – are equivalent:

julia> ex1 == ex2

true

The key point here is that Julia code is internally represented as a data structure that is accessible from the language

itself.

The dump() function provides indented and annotated display of Expr objects:

julia> dump(ex2)

Expr

head: Symbol call

args: Array{Any}((3,))

1: Symbol +

2: Int64 1

3: Int64 1

typ: Any

Expr objects may also be nested:

julia> ex3 = parse("(4 + 4) / 2")

:((4 + 4) / 2)

Anotherway to viewexpressions iswithMeta.show_sexpr, which displays the S-expression formof a givenExpr, which

may look very familiar to users of Lisp. Here's an example illustrating the display on a nested Expr:

julia> Meta.show_sexpr(ex3)

(:call, :/, (:call, :+, 4, 4), 2)

Symbols

The : character has two syntactic purposes in Julia. The first form creates a Symbol, an interned string used as one

building-block of expressions:

julia> :foo

:foo

julia> typeof(ans)

Symbol

The Symbol constructor takes any number of arguments and creates a new symbol by concatenating their string rep-

resentations together:

julia> :foo == Symbol("foo")

true

julia> Symbol("func",10)

:func10

julia> Symbol(:var,'_',"sym")

:var_sym

https://en.wikipedia.org/wiki/Polish_notation
https://en.wikipedia.org/wiki/S-expression
https://en.wikipedia.org/wiki/String_interning

21.2. EXPRESSIONS AND EVALUATION 195

In the context of an expression, symbols are used to indicate access to variables; when an expression is evaluated, a

symbol is replacedwith the value bound to that symbol in the appropriate scope.

Sometimes extra parentheses around the argument to : are needed to avoid ambiguity in parsing.:

julia> :(:)

:(:)

julia> :(::)

:(::)

21.2 Expressions and evaluation

Quoting

The second syntactic purpose of the : character is to create expression objects without using the explicit Expr con-

structor. This is referred to as quoting. The : character, followed by paired parentheses around a single statement of

Julia code, produces an Expr object based on the enclosed code. Here is example of the short form used to quote an

arithmetic expression:

julia> ex = :(a+b*c+1)

:(a + b * c + 1)

julia> typeof(ex)

Expr

(to view the structure of this expression, try ex.head and ex.args, or use dump() as above)

Note that equivalent expressionsmay be constructed using parse() or the direct Expr form:

julia> :(a + b*c + 1) ==

parse("a + b*c + 1") ==

Expr(:call, :+, :a, Expr(:call, :*, :b, :c), 1)

true

Expressions provided by the parser generally only have symbols, other expressions, and literal values as their args,

whereas expressions constructed by Julia code can have arbitrary run-time values without literal forms as args. In this

specific example, + and a are symbols, *(b,c) is a subexpression, and 1 is a literal 64-bit signed integer.

There is a second syntactic formof quoting formultiple expressions: blocks of code enclosed inquote ... end. Note

that this form introduces QuoteNode elements to the expression tree, whichmust be consideredwhen directlymanip-

ulating an expression tree generated from quote blocks. For other purposes, :(...) and quote .. end blocks

are treated identically.

julia> ex = quote

x = 1

y = 2

x + y

end

quote # none, line 2:

x = 1 # none, line 3:

y = 2 # none, line 4:

x + y

196 CHAPTER 21. METAPROGRAMMING

end

julia> typeof(ex)

Expr

Interpolation

Direct construction ofExpr objectswith value arguments is powerful, butExpr constructors can be tedious compared

to "normal" Julia syntax. As an alternative, Julia allows "splicing" or interpolation of literals or expressions into quoted

expressions. Interpolation is indicated by the $ prefix.

In this example, the literal value of a is interpolated:

julia> a = 1;

julia> ex = :($a + b)

:(1 + b)

Interpolating into an unquoted expression is not supported andwill cause a compile-time error:

julia> $a + b

ERROR: unsupported or misplaced expression $

...

In this example, the tuple (1,2,3) is interpolated as an expression into a conditional test:

julia> ex = :(a in $:((1,2,3)))

:(a in (1, 2, 3))

Interpolating symbols into a nested expression requires enclosing each symbol in an enclosing quote block:

julia> :(:a in $(:(:a + :b)))

^^^^^^^^^^

quoted inner expression

Theuseof$ forexpression interpolation is intentionally reminiscentof string interpolationandcommand interpolation.

Expression interpolation allows convenient, readable programmatic construction of complex Julia expressions.

eval() and effects

Given an expression object, one can cause Julia to evaluate (execute) it at global scope using eval():

julia> :(1 + 2)

:(1 + 2)

julia> eval(ans)

3

julia> ex = :(a + b)

:(a + b)

julia> eval(ex)

ERROR: UndefVarError: b not defined

[...]

julia> a = 1; b = 2;

21.2. EXPRESSIONS AND EVALUATION 197

julia> eval(ex)

3

Everymodulehas itsowneval() function thatevaluatesexpressions in its global scope. Expressionspassed toeval()

are not limited to returning values – they can also have side-effects that alter the state of the enclosing module's envi-

ronment:

julia> ex = :(x = 1)

:(x = 1)

julia> x

ERROR: UndefVarError: x not defined

julia> eval(ex)

1

julia> x

1

Here, the evaluation of an expression object causes a value to be assigned to the global variable x.

Since expressions are just Expr objects which can be constructed programmatically and then evaluated, it is possible

to dynamically generate arbitrary codewhich can then be run using eval(). Here is a simple example:

julia> a = 1;

julia> ex = Expr(:call, :+, a, :b)

:(1 + b)

julia> a = 0; b = 2;

julia> eval(ex)

3

Thevalue ofa is used to construct the expressionexwhich applies the+ function to the value1 and the variableb. Note

the important distinction between the way a and b are used:

• The value of the variablea at expression construction time is used as an immediate value in the expression. Thus,

the value of awhen the expression is evaluated no longermatters: the value in the expression is already 1, inde-

pendent of whatever the value of amight be.

• On the other hand, the symbol:b is used in the expression construction, so the value of the variableb at that time

is irrelevant – :b is just a symbol and the variable b need not even be defined. At expression evaluation time,

however, the value of the symbol :b is resolved by looking up the value of the variable b.

Functions on Expressions

As hinted above, one extremely useful feature of Julia is the capability to generate and manipulate Julia code within

Julia itself. Wehave already seen one example of a function returningExprobjects: theparse() function, which takes

a string of Julia code and returns the corresponding Expr. A function can also take one or more Expr objects as argu-

ments, and return another Expr. Here is a simple, motivating example:

198 CHAPTER 21. METAPROGRAMMING

julia> function math_expr(op, op1, op2)

expr = Expr(:call, op, op1, op2)

return expr

end

math_expr (generic function with 1 method)

julia> ex = math_expr(:+, 1, Expr(:call, :*, 4, 5))

:(1 + 4 * 5)

julia> eval(ex)

21

As another example, here is a function that doubles any numeric argument, but leaves expressions alone:

julia> function make_expr2(op, opr1, opr2)

opr1f, opr2f = map(x -> isa(x, Number) ? 2*x : x, (opr1, opr2))

retexpr = Expr(:call, op, opr1f, opr2f)

return retexpr

end

make_expr2 (generic function with 1 method)

julia> make_expr2(:+, 1, 2)

:(2 + 4)

julia> ex = make_expr2(:+, 1, Expr(:call, :*, 5, 8))

:(2 + 5 * 8)

julia> eval(ex)

42

21.3 Macros

Macros provide amethod to include generated code in the final body of a program. Amacromaps a tuple of arguments

to a returned expression, and the resulting expression is compiled directly rather than requiring a runtime eval() call.

Macro arguments may include expressions, literal values, and symbols.

Basics

Here is an extraordinarily simplemacro:

julia> macro sayhello()

return :(println("Hello, world!"))

end

@sayhello (macro with 1 method)

Macros have a dedicated character in Julia's syntax: the @ (at-sign), followed by the unique name declared in a macro

NAME ... end block. In this example, the compiler will replace all instances of @sayhellowith:

:(println("Hello, world!"))

When @sayhello is entered in the REPL, the expression executes immediately, thuswe only see the evaluation result:

julia> @sayhello()

Hello, world!

21.3. MACROS 199

Now, consider a slightly more complexmacro:

julia> macro sayhello(name)

return :(println("Hello, ", $name))

end

@sayhello (macro with 1 method)

This macro takes one argument: name. When @sayhello is encountered, the quoted expression is expanded to inter-

polate the value of the argument into the final expression:

julia> @sayhello("human")

Hello, human

We can view the quoted return expression using the function macroexpand() (important note: this is an extremely

useful tool for debuggingmacros):

julia> ex = macroexpand(:(@sayhello("human")))

:((println)("Hello, ", "human"))

julia> typeof(ex)

Expr

We can see that the "human" literal has been interpolated into the expression.

There also exists a macro @macroexpand that is perhaps a bit more convenient than the macroexpand function:

julia> @macroexpand @sayhello "human"

:((println)("Hello, ", "human"))

Hold up: whymacros?

Wehave already seen a function f(::Expr...) -> Expr in a previous section. In fact, macroexpand() is also such

a function. So, why domacros exist?

Macros are necessary because they execute when code is parsed, therefore, macros allow the programmer to gener-

ate and include fragments of customized code before the full program is run. To illustrate the difference, consider the

following example:

julia> macro twostep(arg)

println("I execute at parse time. The argument is: ", arg)

return :(println("I execute at runtime. The argument is: ", $arg))

end

@twostep (macro with 1 method)

julia> ex = macroexpand(:(@twostep :(1, 2, 3)));

I execute at parse time. The argument is: $(Expr(:quote, :((1, 2, 3))))

The first call to println() is executed when macroexpand() is called. The resulting expression contains only the

second println:

julia> typeof(ex)

Expr

julia> ex

:((println)("I execute at runtime. The argument is: ", $(Expr(:copyast, :($(QuoteNode(:((1, 2, 3)

))))))))

julia> eval(ex)

I execute at runtime. The argument is: (1, 2, 3)

200 CHAPTER 21. METAPROGRAMMING

Macro invocation

Macros are invokedwith the following general syntax:

@name expr1 expr2 ...

@name(expr1, expr2, ...)

Note thedistinguishing@before themacronameand the lack of commasbetween the argument expressions in thefirst

form, and the lack of whitespace after @name in the second form. The two styles should not bemixed. For example, the

following syntax is different from the examples above; it passes the tuple (expr1, expr2, ...) as one argument to

themacro:

@name (expr1, expr2, ...)

It is important toemphasize thatmacrosreceivetheirargumentsasexpressions, literals, or symbols. Onewaytoexplore

macro arguments is to call the show() function within themacro body:

julia> macro showarg(x)

show(x)

... remainder of macro, returning an expression

end

@showarg (macro with 1 method)

julia> @showarg(a)

:a

julia> @showarg(1+1)

:(1 + 1)

julia> @showarg(println("Yo!"))

:(println("Yo!"))

Building an advancedmacro

Here is a simplified definition of Julia's @assertmacro:

julia> macro assert(ex)

return :($ex ? nothing : throw(AssertionError($(string(ex)))))

end

@assert (macro with 1 method)

This macro can be used like this:

julia> @assert 1 == 1.0

julia> @assert 1 == 0

ERROR: AssertionError: 1 == 0

Inplaceof thewrittensyntax, themacrocall isexpandedatparse timeto its returnedresult. This isequivalent towriting:

1 == 1.0 ? nothing : throw(AssertionError("1 == 1.0"))

1 == 0 ? nothing : throw(AssertionError("1 == 0"))

21.3. MACROS 201

That is, in thefirstcall, theexpression:(1 == 1.0) is spliced intothetestconditionslot,while thevalueofstring(:(1

== 1.0)) is spliced into the assertion message slot. The entire expression, thus constructed, is placed into the syn-

tax tree where the @assert macro call occurs. Then at execution time, if the test expression evaluates to true, then

nothing is returned, whereas if the test is false, an error is raised indicating the asserted expression that was false.

Notice that it would not be possible to write this as a function, since only the value of the condition is available and it

would be impossible to display the expression that computed it in the error message.

The actual definition of @assert in the standard library is more complicated. It allows the user to optionally specify

their own error message, instead of just printing the failed expression. Just like in functions with a variable number of

arguments, this is specifiedwith an ellipses following the last argument:

julia> macro assert(ex, msgs...)

msg_body = isempty(msgs) ? ex : msgs[1]

msg = string(msg_body)

return :($ex ? nothing : throw(AssertionError($msg)))

end

@assert (macro with 1 method)

Now @assert has two modes of operation, depending upon the number of arguments it receives! If there's only one

argument, the tuple of expressions captured bymsgswill be empty and itwill behave the same as the simpler definition

above. Butnowif theuserspecifiesasecondargument, it isprinted in themessagebody insteadof the failingexpression.

You can inspect the result of a macro expansion with the aptly named macroexpand() function:

julia> macroexpand(:(@assert a == b))

:(if a == b

nothing

else

(throw)((AssertionError)("a == b"))

end)

julia> macroexpand(:(@assert a==b "a should equal b!"))

:(if a == b

nothing

else

(throw)((AssertionError)("a should equal b!"))

end)

There is yet another case that the actual @assert macro handles: what if, in addition to printing "a should equal b,"

wewanted to print their values? Onemight naively try to use string interpolation in the custommessage, e.g., @assert

a==b "a ($a) should equal b ($b)!", but thiswon'twork as expectedwith the abovemacro. Canyou seewhy?

Recall from string interpolation that an interpolated string is rewritten to a call to string(). Compare:

julia> typeof(:("a should equal b"))

String

julia> typeof(:("a ($a) should equal b ($b)!"))

Expr

julia> dump(:("a ($a) should equal b ($b)!"))

Expr

head: Symbol string

args: Array{Any}((5,))

1: String "a ("

2: Symbol a

3: String ") should equal b ("

4: Symbol b

202 CHAPTER 21. METAPROGRAMMING

5: String ")!"

typ: Any

So now instead of getting a plain string in msg_body, the macro is receiving a full expression that will need to be eval-

uated in order to display as expected. This can be spliced directly into the returned expression as an argument to the

string() call; see error.jl for the complete implementation.

The @assert macro makes great use of splicing into quoted expressions to simplify the manipulation of expressions

inside themacro body.

Hygiene

An issue that arises in more complex macros is that of hygiene. In short, macros must ensure that the variables they

introduce in their returned expressions do not accidentally clash with existing variables in the surrounding code they

expand into. Conversely, the expressions that are passed into a macro as arguments are often expected to evaluate in

the context of the surrounding code, interactingwith andmodifying theexisting variables. Another concernarises from

the fact that amacromay be called in a differentmodule fromwhere it was defined. In this casewe need to ensure that

all global variables are resolved to the correctmodule. Julia already has amajor advantage over languageswith textual

macro expansion (like C) in that it only needs to consider the returned expression. All the other variables (such as msg

in @assert above) follow the normal scoping block behavior.

To demonstrate these issues, let us consider writing a @timemacro that takes an expression as its argument, records

the time, evaluates the expression, records the time again, prints the difference between the before and after times,

and then has the value of the expression as its final value. Themacromight look like this:

macro time(ex)

return quote

local t0 = time()

local val = $ex

local t1 = time()

println("elapsed time: ", t1-t0, " seconds")

val

end

end

Here, wewant t0, t1, and val to be private temporary variables, andwewant time to refer to the time() function in

the standard library, not to anytime variable the usermight have (the sameapplies toprintln). Imagine theproblems

that could occur if the user expression ex also contained assignments to a variable called t0, or defined its own time

variable. Wemight get errors, or mysteriously incorrect behavior.

Julia's macro expander solves these problems in the following way. First, variables within a macro result are classified

as either local or global. A variable is considered local if it is assigned to (and not declared global), declared local, or

used as a function argument name. Otherwise, it is considered global. Local variables are then renamed to be unique

(using the gensym() function, which generates new symbols), and global variables are resolved within the macro def-

inition environment. Therefore both of the above concerns are handled; the macro's locals will not conflict with any

user variables, and time and printlnwill refer to the standard library definitions.

One problem remains however. Consider the following use of this macro:

module MyModule

import Base.@time

time() = ... # compute something

https://github.com/JuliaLang/julia/blob/master/base/error.jl
https://en.wikipedia.org/wiki/Hygienic_macro

21.4. CODE GENERATION 203

@time time()

end

Here the user expression ex is a call to time, but not the same time function that the macro uses. It clearly refers to

MyModule.time. Therefore we must arrange for the code in ex to be resolved in the macro call environment. This is

done by "escaping" the expression with esc():

macro time(ex)

...

local val = $(esc(ex))

...

end

An expressionwrapped in this manner is left alone by themacro expander and simply pasted into the output verbatim.

Therefore it will be resolved in themacro call environment.

This escaping mechanism can be used to "violate" hygiene when necessary, in order to introduce or manipulate user

variables. For example, the followingmacro sets x to zero in the call environment:

julia> macro zerox()

return esc(:(x = 0))

end

@zerox (macro with 1 method)

julia> function foo()

x = 1

@zerox

return x # is zero

end

foo (generic function with 1 method)

julia> foo()

0

This kind of manipulation of variables should be used judiciously, but is occasionally quite handy.

21.4 Code Generation

When a significant amount of repetitive boilerplate code is required, it is common to generate it programmatically to

avoid redundancy. In most languages, this requires an extra build step, and a separate program to generate the repeti-

tive code. In Julia, expression interpolation and eval() allow such code generation to take place in the normal course

of program execution. For example, the following code defines a series of operators on three arguments in terms of

their 2-argument forms:

for op = (:+, :*, :&, :|, :$)

eval(quote

($op)(a,b,c) = ($op)(($op)(a,b),c)

end)

end

In thismanner, Julia acts as its ownpreprocessor, and allows code generation from inside the language. The above code

could bewritten slightly more tersely using the : prefix quoting form:

https://en.wikipedia.org/wiki/Preprocessor

204 CHAPTER 21. METAPROGRAMMING

for op = (:+, :*, :&, :|, :$)

eval(:(($op)(a,b,c) = ($op)(($op)(a,b),c)))

end

This sortof in-languagecodegeneration, however, using theeval(quote(...)) pattern, is commonenough that Julia

comes with amacro to abbreviate this pattern:

for op = (:+, :*, :&, :|, :$)

@eval ($op)(a,b,c) = ($op)(($op)(a,b),c)

end

The @evalmacro rewrites this call to be precisely equivalent to the above longer versions. For longer blocks of gener-

ated code, the expression argument given to @eval can be a block:

@eval begin

multiple lines

end

21.5 Non-Standard String Literals

Recall from Strings that string literals prefixed by an identifier are called non-standard string literals, and can have dif-

ferent semantics than un-prefixed string literals. For example:

• r"^\s*(?:#|$)" produces a regular expression object rather than a string

• b"DATA\xff\u2200" is a byte array literal for [68,65,84,65,255,226,136,128].

Perhaps surprisingly, these behaviors are not hard-coded into the Julia parser or compiler. Instead, they are custom

behaviors provided by a generalmechanism that anyone can use: prefixed string literals are parsed as calls to specially-

namedmacros. For example, the regular expressionmacro is just the following:

macro r_str(p)

Regex(p)

end

That's all. This macro says that the literal contents of the string literal r"^\s*(?:#|$)" should be passed to the

@r_strmacro and the result of that expansion should be placed in the syntax tree where the string literal occurs. In

otherwords, theexpressionr"^\s*(?:#|$)" is equivalent toplacing the followingobjectdirectly into thesyntax tree:

Regex("^\\s*(?:#|\$)")

Not only is the string literal form shorter and farmore convenient, but it is alsomore efficient: since the regular expres-

sion is compiled and the Regex object is actually created when the code is compiled, the compilation occurs only once,

rather than every time the code is executed. Consider if the regular expression occurs in a loop:

for line = lines

m = match(r"^\s*(?:#|$)", line)

if m === nothing

non-comment

else

comment

end

end

21.6. GENERATED FUNCTIONS 205

Since the regular expression r"^\s*(?:#|$)" is compiled and inserted into the syntax tree when this code is parsed,

the expression is only compiled once instead of each time the loop is executed. In order to accomplish this without

macros, one would have to write this loop like this:

re = Regex("^\\s*(?:#|\$)")

for line = lines

m = match(re, line)

if m === nothing

non-comment

else

comment

end

end

Moreover, if the compiler could not determine that the regex object was constant over all loops, certain optimizations

might not be possible, making this version still less efficient than the more convenient literal form above. Of course,

there are still situations where the non-literal form is more convenient: if one needs to interpolate a variable into the

regular expression, one must take this more verbose approach; in cases where the regular expression pattern itself is

dynamic, potentially changing upon each loop iteration, a new regular expression object must be constructed on each

iteration. In the vast majority of use cases, however, regular expressions are not constructed based on run-time data.

In this majority of cases, the ability to write regular expressions as compile-time values is invaluable.

Like non-standard string literals, non-standard command literals exist using a prefixed variant of the command literal

syntax. The command literal custom`literal` is parsed as @custom_cmd "literal". Julia itself does not contain

any non-standard command literals, but packages canmake use of this syntax. Aside from the different syntax and the

_cmd suffix instead of the _str suffix, non-standard command literals behave exactly like non-standard string literals.

In the event that two modules provide non-standard string or command literals with the same name, it is possible to

qualify the string or command literal with a module name. For instance, if both Foo and Bar provide non-standard

string literal @x_str, then one canwrite Foo.x"literal" or Bar.x"literal" to disambiguate between the two.

The mechanism for user-defined string literals is deeply, profoundly powerful. Not only are Julia's non-standard liter-

als implemented using it, but also the command literal syntax (`echo "Hello, $person"`) is implementedwith the

following innocuous-lookingmacro:

macro cmd(str)

:(cmd_gen($(shell_parse(str)[1])))

end

Of course, a large amount of complexity is hidden in the functions used in this macro definition, but they are just func-

tions, written entirely in Julia. You can read their source and see precisely what they do – and all they do is construct

expression objects to be inserted into your program's syntax tree.

21.6 Generated functions

Avery specialmacro is@generated, which allows you to define so-called generated functions. These have the capability

to generate specialized codedependingon the typesof their argumentswithmoreflexibility and/or less code thanwhat

can be achieved with multiple dispatch. While macros work with expressions at parsing-time and cannot access the

types of their inputs, a generated function gets expanded at a timewhen the types of the arguments are known, but the

function is not yet compiled.

Instead of performing some calculation or action, a generated function declaration returns a quoted expression which

then forms the body for themethod corresponding to the types of the arguments. When called, the body expression is

206 CHAPTER 21. METAPROGRAMMING

first evaluatedand compiled, then the returnedexpression is compiled and run. Tomake this efficient, the result is often

cached. And tomake this inferable, only a limited subset of the language is usable. Thus, generated functions provide a

flexible framework tomovework fromrun-time to compile-time, at theexpenseof greater restrictions on the allowable

constructs.

When defining generated functions, there are four main differences to ordinary functions:

1. You annotate the function declarationwith the@generatedmacro. This adds some information to theAST that

lets the compiler know that this is a generated function.

2. In the body of the generated function you only have access to the types of the arguments – not their values – and

any function that was defined before the definition of the generated function.

3. Instead of calculating something or performing some action, you return a quoted expressionwhich, when evalu-

ated, does what youwant.

4. Generated functionsmust notmutate or observe any non-constant global state (including, for example, IO, locks,

non-local dictionaries, or using method_exists). This means they can only read global constants, and cannot

have any side effects. In other words, they must be completely pure. Due to an implementation limitation, this

alsomeans that they currently cannot define a closure or untyped generator.

It's easiest to illustrate this with an example. We can declare a generated function foo as

julia> @generated function foo(x)

Core.println(x)

return :(x * x)

end

foo (generic function with 1 method)

Note that the body returns a quoted expression, namely :(x * x), rather than just the value of x * x.

From the caller's perspective, they are very similar to regular functions; in fact, you don't have to know if you're calling

a regular or generated function - the syntax and result of the call is just the same. Let's see how foo behaves:

julia> x = foo(2); # note: output is from println() statement in the body

Int64

julia> x # now we print x

4

julia> y = foo("bar");

String

julia> y

"barbar"

So, we see that in the body of the generated function, x is the type of the passed argument, and the value returned by

the generated function, is the result of evaluating the quoted expressionwe returned from the definition, nowwith the

value of x.

What happens if we evaluate foo again with a type that we have already used?

julia> foo(4)

16

Note that there is no printout of Int64. We can see that the body of the generated function was only executed once

here, for the specific set of argument types, and the result was cached. After that, for this example, the expression

21.6. GENERATED FUNCTIONS 207

returned from the generated function on the first invocation was re-used as the method body. However, the actual

caching behavior is an implementation-defined performance optimization, so it is invalid to depend too closely on this

behavior.

The number of times a generated function is generatedmight be only once, but itmight also be more often, or appear

to not happen at all. As a consequence, you should never write a generated function with side effects - when, and how

often, the side effects occur is undefined. (This is true for macros too - and just like for macros, the use of eval() in a

generated function is a sign that you're doing something the wrong way.) However, unlike macros, the runtime system

cannot correctly handle a call to eval(), so it is disallowed.

It is also important to see how @generated functions interact withmethod redefinition. Following the principle that a

correct@generated functionmust not observe anymutable state or cause anymutation of global state, we see the fol-

lowingbehavior. Observe that the generated function cannot call anymethod thatwasnotdefinedprior to thedefinition

of the generated function itself.

Initially f(x) has one definition

julia> f(x) = "original definition";

Define other operations that use f(x):

julia> g(x) = f(x);

julia> @generated gen1(x) = f(x);

julia> @generated gen2(x) = :(f(x));

Wenow add some new definitions for f(x):

julia> f(x::Int) = "definition for Int";

julia> f(x::Type{Int}) = "definition for Type{Int}";

and compare how these results differ:

julia> f(1)

"definition for Int"

julia> g(1)

"definition for Int"

julia> gen1(1)

"original definition"

julia> gen2(1)

"definition for Int"

Eachmethod of a generated function has its own view of defined functions:

julia> @generated gen1(x::Real) = f(x);

julia> gen1(1)

"definition for Type{Int}"

The example generated function foo above did not do anything a normal function foo(x) = x * x could not do (ex-

cept printing the type on the first invocation, and incurring higher overhead). However, the power of a generated func-

tion lies in its ability to compute different quoted expressions depending on the types passed to it:

208 CHAPTER 21. METAPROGRAMMING

julia> @generated function bar(x)

if x <: Integer

return :(x ^ 2)

else

return :(x)

end

end

bar (generic function with 1 method)

julia> bar(4)

16

julia> bar("baz")

"baz"

(although of course this contrived example would bemore easily implemented usingmultiple dispatch...)

Abusing this will corrupt the runtime system and cause undefined behavior:

julia> @generated function baz(x)

if rand() < .9

return :(x^2)

else

return :("boo!")

end

end

baz (generic function with 1 method)

Since the body of the generated function is non-deterministic, its behavior, and the behavior of all subsequent code is

undefined.

Don't copy these examples!

These examples are hopefully helpful to illustrate how generated functions work, both in the definition end and at the

call site; however, don't copy them, for the following reasons:

• thefoo functionhas side-effects (the call toCore.println), and it is undefinedexactlywhen, howoftenorhow

many times these side-effects will occur

• thebar functionsolvesaproblemthat isbettersolvedwithmultipledispatch -definingbar(x) = xandbar(x::Integer)

= x ^ 2will do the same thing, but it is both simpler and faster.

• the baz function is pathologically insane

Note that the set of operations that should not be attempted in a generated function is unbounded, and the runtime

system can currently only detect a subset of the invalid operations. There are many other operations that will simply

corrupt the runtime system without notification, usually in subtle ways not obviously connected to the bad definition.

Because the function generator is run during inference, it must respect all of the limitations of that code.

Some operations that should not be attempted include:

1. Caching of native pointers.

2. Interacting with the contents or methods of Core.Inference in any way.

21.6. GENERATED FUNCTIONS 209

3. Observing anymutable state.

– Inference on the generated function may be run at any time, including while your code is attempting to

observe ormutate this state.

4. Takingany locks: C codeyoucall out tomayuse locks internally, (for example, it is not problematic to callmalloc,

even thoughmost implementations require locks internally) but don't attempt to hold or acquire any while exe-

cuting Julia code.

5. Callinganyfunctionthat isdefinedafter thebodyof thegeneratedfunction. Thiscondition is relaxedfor incrementally-

loaded precompiledmodules to allow calling any function in themodule.

Alright, now that we have a better understanding of how generated functions work, let's use them to build somemore

advanced (and valid) functionality...

An advanced example

Julia's base library has a sub2ind() function to calculate a linear index into an n-dimensional array, based on a set of n

multilinear indices - in otherwords, to calculate the indexi that can be used to index into an arrayAusingA[i], instead

of A[x,y,z,...]. One possible implementation is the following:

julia> function sub2ind_loop(dims::NTuple{N}, I::Integer...) where N

ind = I[N] - 1

for i = N-1:-1:1

ind = I[i]-1 + dims[i]*ind

end

return ind + 1

end

sub2ind_loop (generic function with 1 method)

julia> sub2ind_loop((3, 5), 1, 2)

4

The same thing can be done using recursion:

julia> sub2ind_rec(dims::Tuple{}) = 1;

julia> sub2ind_rec(dims::Tuple{}, i1::Integer, I::Integer...) =

i1 == 1 ? sub2ind_rec(dims, I...) : throw(BoundsError());

julia> sub2ind_rec(dims::Tuple{Integer, Vararg{Integer}}, i1::Integer) = i1;

julia> sub2ind_rec(dims::Tuple{Integer, Vararg{Integer}}, i1::Integer, I::Integer...) =

i1 + dims[1] * (sub2ind_rec(Base.tail(dims), I...) - 1);

julia> sub2ind_rec((3, 5), 1, 2)

4

Both these implementations, although different, do essentially the same thing: a runtime loop over the dimensions of

the array, collecting the offset in each dimension into the final index.

However, all the informationwe need for the loop is embedded in the type information of the arguments. Thus, we can

utilize generated functions to move the iteration to compile-time; in compiler parlance, we use generated functions to

manually unroll the loop. The body becomes almost identical, but instead of calculating the linear index, we build up an

expression that calculates the index:

210 CHAPTER 21. METAPROGRAMMING

julia> @generated function sub2ind_gen(dims::NTuple{N}, I::Integer...) where N

ex = :(I[$N] - 1)

for i = (N - 1):-1:1

ex = :(I[$i] - 1 + dims[$i] * $ex)

end

return :($ex + 1)

end

sub2ind_gen (generic function with 1 method)

julia> sub2ind_gen((3, 5), 1, 2)

4

What codewill this generate?

An easy way to find out is to extract the body into another (regular) function:

julia> @generated function sub2ind_gen(dims::NTuple{N}, I::Integer...) where N

return sub2ind_gen_impl(dims, I...)

end

sub2ind_gen (generic function with 1 method)

julia> function sub2ind_gen_impl(dims::Type{T}, I...) where T <: NTuple{N,Any} where N

length(I) == N || return :(error("partial indexing is unsupported"))

ex = :(I[$N] - 1)

for i = (N - 1):-1:1

ex = :(I[$i] - 1 + dims[$i] * $ex)

end

return :($ex + 1)

end

sub2ind_gen_impl (generic function with 1 method)

We can now execute sub2ind_gen_impl and examine the expression it returns:

julia> sub2ind_gen_impl(Tuple{Int,Int}, Int, Int)

:(((I[1] - 1) + dims[1] * (I[2] - 1)) + 1)

So, themethod body thatwill be used here doesn't include a loop at all - just indexing into the two tuples, multiplication

and addition/subtraction. All the looping is performed compile-time, and we avoid looping during execution entirely.

Thus, we only loop once per type, in this case once perN (except in edge caseswhere the function is generatedmore than

once - see disclaimer above).

Chapter 22

Multi-dimensional Arrays

Julia, like most technical computing languages, provides a first-class array implementation. Most technical computing

languages pay a lot of attention to their array implementation at the expense of other containers. Julia does not treat

arrays in any specialway. The array library is implemented almost completely in Julia itself, and derives its performance

from the compiler, just like any other code written in Julia. As such, it's also possible to define custom array types by

inheriting from AbstractArray. See the manual section on the AbstractArray interface for more details on imple-

menting a custom array type.

An array is a collection of objects stored in a multi-dimensional grid. In the most general case, an array may contain

objects of type Any. For most computational purposes, arrays should contain objects of a more specific type, such as

Float64 or Int32.

In general, unlike many other technical computing languages, Julia does not expect programs to be written in a vector-

ized style for performance. Julia's compiler uses type inference and generates optimized code for scalar array indexing,

allowing programs to be written in a style that is convenient and readable, without sacrificing performance, and using

less memory at times.

In Julia, all arguments to functions are passed by reference. Some technical computing languages pass arrays by value,

and this is convenient in many cases. In Julia, modifications made to input arrays within a function will be visible in the

parent function. The entire Julia array library ensures that inputs are not modified by library functions. User code, if it

needs to exhibit similar behavior, should take care to create a copy of inputs that it maymodify.

22.1 Arrays

Basic Functions

Function Description

eltype(A) the type of the elements contained in A

length(A) the number of elements in A

ndims(A) the number of dimensions of A

size(A) a tuple containing the dimensions of A

size(A,n) the size of A along dimension n

indices(A) a tuple containing the valid indices of A

indices(A,n) a range expressing the valid indices along dimension n

eachindex(A) an efficient iterator for visiting each position in A

stride(A,k) the stride (linear index distance between adjacent elements) along dimension k

strides(A) a tuple of the strides in each dimension

211

212 CHAPTER 22. MULTI-DIMENSIONAL ARRAYS

Construction and Initialization

Many functions for constructing and initializing arrays are provided. In the following list of such functions, calls with a

dims... argument can either take a single tuple of dimension sizes or a series of dimension sizes passed as a variable

number of arguments. Most of these functions also accept a first input T, which is the element type of the array. If the

type T is omitted it will default to Float64.

Function Description

Array{T}(dims...)an uninitialized dense Array

zeros(T,

dims...)

an Array of all zeros

zeros(A) an array of all zeros with the same type, element type and shape as A

ones(T,

dims...)

an Array of all ones

ones(A) an array of all ones with the same type, element type and shape as A

trues(dims...) a BitArraywith all values true

trues(A) a BitArraywith all values true and the same shape as A

falses(dims...)a BitArraywith all values false

falses(A) a BitArraywith all values false and the same shape as A

reshape(A,

dims...)

an array containing the same data as A, but with different dimensions

copy(A) copy A

deepcopy(A) copy A, recursively copying its elements

similar(A,

T, dims...)

an uninitialized array of the same type as A (dense, sparse, etc.), but with the specified element

type and dimensions. The second and third arguments are both optional, defaulting to the

element type and dimensions of A if omitted.

reinterpret(T,

A)

an array with the same binary data as A, but with element type T

rand(T,

dims...)

an Arraywith random, iid 1 and uniformly distributed values in the half-open interval [0, 1)

randn(T,

dims...)

an Arraywith random, iid and standard normally distributed values

eye(T, n) n-by-n identity matrix

eye(T, m, n) m-by-n identity matrix

linspace(start,

stop, n)

range of n linearly spaced elements from start to stop

fill!(A, x) fill the array Awith the value x

fill(x,

dims...)

an Array filled with the value x

The syntax [A, B, C, ...] constructs a 1-d array (vector) of its arguments. If all arguments have a common promo-

tion type then they get converted to that type using convert().

Concatenation

Arrays can be constructed and also concatenated using the following functions:

Scalar values passed to these functions are treated as 1-element arrays.

The concatenation functions are used so often that they have special syntax:

1 iid, independently and identically distributed.

22.1. ARRAYS 213

Function Description

cat(k, A...) concatenate input n-d arrays along the dimension k

vcat(A...) shorthand for cat(1, A...)

hcat(A...) shorthand for cat(2, A...)

Expression Calls

[A; B; C; ...] vcat()

[A B C ...] hcat()

[A B; C D; ...] hvcat()

hvcat() concatenates in both dimension 1 (with semicolons) and dimension 2 (with spaces).

Typed array initializers

An array with a specific element type can be constructed using the syntax T[A, B, C, ...]. This will construct a

1-d array with element type T, initialized to contain elements A, B, C, etc. For example Any[x, y, z] constructs a

heterogeneous array that can contain any values.

Concatenation syntax can similarly be prefixedwith a type to specify the element type of the result.

julia> [[1 2] [3 4]]

1×4 Array{Int64,2}:

1 2 3 4

julia> Int8[[1 2] [3 4]]

1×4 Array{Int8,2}:

1 2 3 4

Comprehensions

Comprehensions provide a general and powerful way to construct arrays. Comprehension syntax is similar to set con-

struction notation inmathematics:

A = [F(x,y,...) for x=rx, y=ry, ...]

Themeaningof this form is thatF(x,y,...) is evaluatedwith the variablesx,y, etc. takingoneachvalue in their given

list of values. Values canbe specifiedas any iterableobject, butwill commonlybe ranges like1:nor2:(n-1), or explicit

arrays of values like [1.2, 3.4, 5.7]. The result is an N-d dense array with dimensions that are the concatenation

of the dimensions of the variable ranges rx, ry, etc. and each F(x,y,...) evaluation returns a scalar.

The following example computes a weighted average of the current element and its left and right neighbor along a 1-d

grid. :

julia> x = rand(8)

8-element Array{Float64,1}:

0.843025

0.869052

0.365105

0.699456

0.977653

0.994953

0.41084

0.809411

214 CHAPTER 22. MULTI-DIMENSIONAL ARRAYS

julia> [0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] for i=2:length(x)-1]

6-element Array{Float64,1}:

0.736559

0.57468

0.685417

0.912429

0.8446

0.656511

The resulting array type depends on the types of the computed elements. In order to control the type explicitly, a type

canbeprepended to the comprehension. For example,wecouldhave requested the result in single precisionbywriting:

Float32[0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] for i=2:length(x)-1]

Generator Expressions

Comprehensions can also bewrittenwithout the enclosing square brackets, producing an object known as a generator.

This object canbe iterated toproduce values ondemand, insteadof allocating an array and storing them in advance (see

Iteration). For example, the following expression sums a series without allocatingmemory:

julia> sum(1/n^2 for n=1:1000)

1.6439345666815615

Whenwriting a generator expressionwithmultiple dimensions inside an argument list, parentheses are needed to sep-

arate the generator from subsequent arguments:

julia> map(tuple, 1/(i+j) for i=1:2, j=1:2, [1:4;])

ERROR: syntax: invalid iteration specification

All comma-separated expressions afterfor are interpreted as ranges. Adding parentheses lets us add a third argument

to map:

julia> map(tuple, (1/(i+j) for i=1:2, j=1:2), [1 3; 2 4])

2×2 Array{Tuple{Float64,Int64},2}:

(0.5, 1) (0.333333, 3)

(0.333333, 2) (0.25, 4)

Ranges in generators and comprehensions can depend on previous ranges by writingmultiple for keywords:

julia> [(i,j) for i=1:3 for j=1:i]

6-element Array{Tuple{Int64,Int64},1}:

(1, 1)

(2, 1)

(2, 2)

(3, 1)

(3, 2)

(3, 3)

In such cases, the result is always 1-d.

Generated values can be filtered using the if keyword:

22.1. ARRAYS 215

julia> [(i,j) for i=1:3 for j=1:i if i+j == 4]

2-element Array{Tuple{Int64,Int64},1}:

(2, 2)

(3, 1)

Indexing

The general syntax for indexing into an n-dimensional array A is:

X = A[I_1, I_2, ..., I_n]

where each I_kmay be a scalar integer, an array of integers, or any other supported index. This includes Colon (:) to

select all indices within the entire dimension, ranges of the form a:c or a:b:c to select contiguous or strided subsec-

tions, and arrays of booleans to select elements at their true indices.

If all the indices are scalars, then the result X is a single element from the array A. Otherwise, X is an arraywith the same

number of dimensions as the sum of the dimensionalities of all the indices.

If all indicesarevectors, forexample, thentheshapeofXwouldbe(length(I_1), length(I_2), ..., length(I_n)),

with location (i_1, i_2, ..., i_n) of X containing the value A[I_1[i_1], I_2[i_2], ..., I_n[i_n]]. If

I_1 is changed to a two-dimensional matrix, then X becomes an n+1-dimensional array of shape (size(I_1, 1),

size(I_1, 2), length(I_2), ..., length(I_n)). The matrix adds a dimension. The location (i_1, i_2,

i_3, ..., i_{n+1}) contains the value at A[I_1[i_1, i_2], I_2[i_3], ..., I_n[i_{n+1}]]. All dimen-

sions indexed with scalars are dropped. For example, the result of A[2, I, 3] is an array with size size(I). Its ith

element is populated by A[2, I[i], 3].

As a special part of this syntax, the end keyword may be used to represent the last index of each dimension within the

indexing brackets, as determined by the size of the innermost array being indexed. Indexing syntax without the end

keyword is equivalent to a call to getindex:

X = getindex(A, I_1, I_2, ..., I_n)

Example:

julia> x = reshape(1:16, 4, 4)

4×4 Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> x[2:3, 2:end-1]

2×2 Array{Int64,2}:

6 10

7 11

julia> x[1, [2 3; 4 1]]

2×2 Array{Int64,2}:

5 9

13 1

Empty ranges of the formn:n-1 are sometimes used to indicate the inter-index location betweenn-1 andn. For exam-

ple, the searchsorted() function uses this convention to indicate the insertion point of a value not found in a sorted

array:

216 CHAPTER 22. MULTI-DIMENSIONAL ARRAYS

julia> a = [1,2,5,6,7];

julia> searchsorted(a, 3)

3:2

Assignment

The general syntax for assigning values in an n-dimensional array A is:

A[I_1, I_2, ..., I_n] = X

where each I_kmay be a scalar integer, an array of integers, or any other supported index. This includes Colon (:) to

select all indices within the entire dimension, ranges of the form a:c or a:b:c to select contiguous or strided subsec-

tions, and arrays of booleans to select elements at their true indices.

IfX is anarray, itmusthavethesamenumberofelementsas theproductof the lengthsof the indices: prod(length(I_1),

length(I_2), ..., length(I_n)). The value in locationI_1[i_1], I_2[i_2], ..., I_n[i_n] ofA is over-

written with the value X[i_1, i_2, ..., i_n]. If X is not an array, its value is written to all referenced locations of

A.

Just as in Indexing, the end keyword may be used to represent the last index of each dimension within the indexing

brackets, as determined by the size of the array being assigned into. Indexed assignment syntax without the end key-

word is equivalent to a call to setindex!():

setindex!(A, X, I_1, I_2, ..., I_n)

Example:

julia> x = collect(reshape(1:9, 3, 3))

3×3 Array{Int64,2}:

1 4 7

2 5 8

3 6 9

julia> x[1:2, 2:3] = -1

-1

julia> x

3×3 Array{Int64,2}:

1 -1 -1

2 -1 -1

3 6 9

Supported index types

In the expression A[I_1, I_2, ..., I_n], each I_kmay be a scalar index, an array of scalar indices, or an object

that represents an array of scalar indices and can be converted to such by to_indices:

1. A scalar index. By default this includes:

– Non-boolean integers

– CartesianIndex{N}s, which behave like anN-tuple of integers spanningmultiple dimensions (see below

for more details)

2. An array of scalar indices. This includes:

22.1. ARRAYS 217

– Vectors andmultidimensional arrays of integers

– Empty arrays like [], which select no elements

– Ranges of the form a:c or a:b:c, which select contiguous or strided subsections from a to c (inclusive)

– Any custom array of scalar indices that is a subtype of AbstractArray

– Arrays of CartesianIndex{N} (see below for more details)

3. An object that represents an array of scalar indices and can be converted to such by to_indices. By default

this includes:

– Colon() (:), which represents all indices within an entire dimension or across the entire array

– Arrays of booleans, which select elements at their true indices (see below for more details)

Cartesian indices

The special CartesianIndex{N} object represents a scalar index that behaves like an N-tuple of integers spanning

multiple dimensions. For example:

julia> A = reshape(1:32, 4, 4, 2);

julia> A[3, 2, 1]

7

julia> A[CartesianIndex(3, 2, 1)] == A[3, 2, 1] == 7

true

Consideredalone, thismayseemrelatively trivial;CartesianIndex simplygathersmultiple integers together intoone

object that represents a single multidimensional index. When combined with other indexing forms and iterators that

yield CartesianIndexes, however, this can lead directly to very elegant and efficient code. See Iteration below, and

for somemore advanced examples, see this blog post onmultidimensional algorithms and iteration.

Arrays of CartesianIndex{N} are also supported. They represent a collection of scalar indices that each span N di-

mensions, enabling a form of indexing that is sometimes referred to as pointwise indexing. For example, it enables ac-

cessing the diagonal elements from the first "page" of A from above:

julia> page = A[:,:,1]

4×4 Array{Int64,2}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> page[[CartesianIndex(1,1),

CartesianIndex(2,2),

CartesianIndex(3,3),

CartesianIndex(4,4)]]

4-element Array{Int64,1}:

1

6

11

16

This canbeexpressedmuchmore simplywithdot broadcasting andby combining itwith anormal integer index (instead

of extracting the first page from A as a separate step). It can even be combined with a : to extract both diagonals from

the two pages at the same time:

https://julialang.org/blog/2016/02/iteration

218 CHAPTER 22. MULTI-DIMENSIONAL ARRAYS

julia> A[CartesianIndex.(indices(A, 1), indices(A, 2)), 1]

4-element Array{Int64,1}:

1

6

11

16

julia> A[CartesianIndex.(indices(A, 1), indices(A, 2)), :]

4×2 Array{Int64,2}:

1 17

6 22

11 27

16 32

Warning

CartesianIndexandarraysofCartesianIndexarenotcompatiblewith theendkeywordtorepresent

the last indexofadimension. Donotuseend in indexingexpressions thatmaycontaineitherCartesianIndex

or arrays thereof.

Logical indexing

Often referred to as logical indexing or indexing with a logical mask, indexing by a boolean array selects elements at

the indices where its values are true. Indexing by a boolean vector B is effectively the same as indexing by the vector

of integers that is returned by find(B). Similarly, indexing by a N-dimensional boolean array is effectively the same as

indexingby thevectorofCartesianIndex{N}swhere its values aretrue. A logical indexmustbeavectorof the same

length as the dimension it indexes into, or it must be the only index provided and match the size and dimensionality of

the array it indexes into. It is generally more efficient to use boolean arrays as indices directly instead of first calling

find().

julia> x = reshape(1:16, 4, 4)

4×4 Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> x[[false, true, true, false], :]

2×4 Array{Int64,2}:

2 6 10 14

3 7 11 15

julia> mask = map(ispow2, x)

4×4 Array{Bool,2}:

true false false false

true false false false

false false false false

true true false true

julia> x[mask]

5-element Array{Int64,1}:

1

2

4

8

16

22.1. ARRAYS 219

Iteration

The recommendedways to iterate over a whole array are

for a in A

Do something with the element a

end

for i in eachindex(A)

Do something with i and/or A[i]

end

The first construct is used when you need the value, but not index, of each element. In the second construct, iwill be

an Int if A is an array type with fast linear indexing; otherwise, it will be a CartesianIndex:

julia> A = rand(4,3);

julia> B = view(A, 1:3, 2:3);

julia> for i in eachindex(B)

@show i

end

i = CartesianIndex{2}((1, 1))

i = CartesianIndex{2}((2, 1))

i = CartesianIndex{2}((3, 1))

i = CartesianIndex{2}((1, 2))

i = CartesianIndex{2}((2, 2))

i = CartesianIndex{2}((3, 2))

In contrastwithfor i = 1:length(A), iteratingwitheachindex provides an efficientway to iterate over any array

type.

Array traits

If youwrite a custom AbstractArray type, you can specify that it has fast linear indexing using

Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()

This setting will cause eachindex iteration over a MyArray to use integers. If you don't specify this trait, the default

value IndexCartesian() is used.

Array and VectorizedOperators and Functions

The following operators are supported for arrays:

1. Unary arithmetic – -, +

2. Binary arithmetic – -, +, *, /, \, ^

3. Comparison – ==, !=, ≈ (isapprox),

220 CHAPTER 22. MULTI-DIMENSIONAL ARRAYS

Most of the binary arithmetic operators listed above also operate elementwise when one argument is scalar: -, +, and

*when either argument is scalar, and / and \when the denominator is scalar. For example, [1, 2] + 3 == [4, 5]

and [6, 4] / 2 == [3, 2].

Additionally, to enable convenient vectorization of mathematical and other operations, Julia provides the dot syntax

f.(args...), e.g. sin.(x) or min.(x,y), for elementwise operations over arrays or mixtures of arrays and scalars

(aBroadcastingoperation); thesehave theadditional advantageof "fusing" intoa single loopwhencombinedwithother

dot calls, e.g. sin.(cos.(x)).

Also, every binary operator supports a dot version that can be applied to arrays (and combinations of arrays and scalars)

in such fused broadcasting operations, e.g. z .== sin.(x .* y).

Note that comparisons such as == operate on whole arrays, giving a single boolean answer. Use dot operators like .==

for elementwise comparisons. (For comparison operations like <, only the elementwise .< version is applicable to ar-

rays.)

Alsonotice thedifferencebetweenmax.(a,b),whichbroadcastsmax()elementwiseoveraandb, andmaximum(a),

which finds the largest value within a. The same relationship holds for min.(a,b) and minimum(a).

Broadcasting

It is sometimes useful to perform element-by-element binary operations on arrays of different sizes, such as adding a

vector to each columnof amatrix. An inefficientway to do thiswould be to replicate the vector to the size of thematrix:

julia> a = rand(2,1); A = rand(2,3);

julia> repmat(a,1,3)+A

2×3 Array{Float64,2}:

1.20813 1.82068 1.25387

1.56851 1.86401 1.67846

This is wasteful when dimensions get large, so Julia offers broadcast(), which expands singleton dimensions in array

arguments tomatch the corresponding dimension in the other arraywithout using extramemory, and applies the given

function elementwise:

julia> broadcast(+, a, A)

2×3 Array{Float64,2}:

1.20813 1.82068 1.25387

1.56851 1.86401 1.67846

julia> b = rand(1,2)

1×2 Array{Float64,2}:

0.867535 0.00457906

julia> broadcast(+, a, b)

2×2 Array{Float64,2}:

1.71056 0.847604

1.73659 0.873631

Dotted operators such as .+ and .* are equivalent to broadcast calls (except that they fuse, as described below).

There is also abroadcast!() function to specify an explicit destination (which can also be accessed in a fusing fashion

by.=assignment), and functionsbroadcast_getindex()andbroadcast_setindex!() thatbroadcast the indices

before indexing. Moreover, f.(args...) is equivalent to broadcast(f, args...), providing a convenient syntax

to broadcast any function (dot syntax). Nested "dot calls" f.(...) (including calls to .+ etcetera) automatically fuse

into a single broadcast call.

22.1. ARRAYS 221

Additionally, broadcast() is not limited to arrays (see the function documentation), it also handles tuples and treats

any argument that is not an array, tuple or Ref (except for Ptr) as a "scalar".

julia> convert.(Float32, [1, 2])

2-element Array{Float32,1}:

1.0

2.0

julia> ceil.((UInt8,), [1.2 3.4; 5.6 6.7])

2×2 Array{UInt8,2}:

0x02 0x04

0x06 0x07

julia> string.(1:3, ". ", ["First", "Second", "Third"])

3-element Array{String,1}:

"1. First"

"2. Second"

"3. Third"

Implementation

Thebase array type in Julia is the abstract typeAbstractArray{T,N}. It is parametrizedby thenumberof dimensions

N and the element type T. AbstractVector and AbstractMatrix are aliases for the 1-d and 2-d cases. Operations

on AbstractArray objects are defined using higher level operators and functions, in a way that is independent of the

underlying storage. These operations generally work correctly as a fallback for any specific array implementation.

TheAbstractArray type includes anythingvaguely array-like, and implementationsof itmightbequitedifferent from

conventional arrays. For example, elements might be computed on request rather than stored. However, any concrete

AbstractArray{T,N} type should generally implement at least size(A) (returning an Int tuple), getindex(A,i)

and getindex(A,i1,...,iN); mutable arrays should also implement setindex!(). It is recommended that these

operationshavenearly constant timecomplexity, or technicallyÕ(1) complexity, asotherwise somearray functionsmay

be unexpectedly slow. Concrete types should also typically provide a similar(A,T=eltype(A),dims=size(A))

method, which is used to allocate a similar array for copy() and other out-of-place operations. No matter how an

AbstractArray{T,N} is represented internally, T is the type of object returned by integer indexing (A[1, ..., 1],

when A is not empty) and N should be the length of the tuple returned by size().

DenseArray is an abstract subtype of AbstractArray intended to include all arrays that are laid out at regular off-

sets in memory, and which can therefore be passed to external C and Fortran functions expecting this memory lay-

out. Subtypes should provide a method stride(A,k) that returns the "stride" of dimension k: increasing the index

of dimension k by 1 should increase the index i of getindex(A,i) by stride(A,k). If a pointer conversion method

Base.unsafe_convert(Ptr{T}, A) is provided, the memory layout should correspond in the same way to these

strides.

The Array type is a specific instance of DenseArraywhere elements are stored in column-major order (see additional

notes inPerformanceTips). Vector andMatrix are aliases for the1-d and2-d cases. Specific operations such as scalar

indexing, assignment, and a few other basic storage-specific operations are all that have to be implemented for Array,

so that the rest of the array library can be implemented in a generic manner.

SubArray is aspecializationofAbstractArray thatperforms indexingbyreferencerather thanbycopying. ASubArray

is created with the view() function, which is called the same way as getindex() (with an array and a series of index

arguments). The result of view() looks the same as the result of getindex(), except the data is left in place. view()

stores the input index vectors in a SubArray object, which can later be used to index the original array indirectly. By

putting the @viewsmacro in front of an expression or block of code, any array[...] slice in that expression will be

converted to create a SubArray view instead.

222 CHAPTER 22. MULTI-DIMENSIONAL ARRAYS

StridedVector and StridedMatrix are convenient aliases defined tomake it possible for Julia to call a wider range

of BLAS and LAPACK functions by passing themeither Array or SubArray objects, and thus saving inefficiencies from

memory allocation and copying.

The following example computes the QR decomposition of a small section of a larger array, without creating any tem-

poraries, and by calling the appropriate LAPACK function with the right leading dimension size and stride parameters.

julia> a = rand(10,10)

10×10 Array{Float64,2}:

0.561255 0.226678 0.203391 0.308912 … 0.750307 0.235023 0.217964

0.718915 0.537192 0.556946 0.996234 0.666232 0.509423 0.660788

0.493501 0.0565622 0.118392 0.493498 0.262048 0.940693 0.252965

0.0470779 0.736979 0.264822 0.228787 0.161441 0.897023 0.567641

0.343935 0.32327 0.795673 0.452242 0.468819 0.628507 0.511528

0.935597 0.991511 0.571297 0.74485 … 0.84589 0.178834 0.284413

0.160706 0.672252 0.133158 0.65554 0.371826 0.770628 0.0531208

0.306617 0.836126 0.301198 0.0224702 0.39344 0.0370205 0.536062

0.890947 0.168877 0.32002 0.486136 0.096078 0.172048 0.77672

0.507762 0.573567 0.220124 0.165816 0.211049 0.433277 0.539476

julia> b = view(a, 2:2:8,2:2:4)

4×2

SubArray{Float64,2,Array{Float64,2},Tuple{StepRange{Int64,Int64},StepRange{Int64,Int64}},false}:↪→

0.537192 0.996234

0.736979 0.228787

0.991511 0.74485

0.836126 0.0224702

julia> (q,r) = qr(b);

julia> q

4×2 Array{Float64,2}:

-0.338809 0.78934

-0.464815 -0.230274

-0.625349 0.194538

-0.527347 -0.534856

julia> r

2×2 Array{Float64,2}:

-1.58553 -0.921517

0.0 0.866567

22.2 Sparse Vectors andMatrices

Julia has built-in support for sparse vectors and sparse matrices. Sparse arrays are arrays that contain enough zeros

that storing them in a special data structure leads to savings in space and execution time, compared to dense arrays.

Compressed Sparse Column (CSC) SparseMatrix Storage

In Julia, sparsematrices are stored in theCompressedSparseColumn (CSC) format. Julia sparsematrices have the type

SparseMatrixCSC{Tv,Ti}, where Tv is the type of the stored values, and Ti is the integer type for storing column

pointers and row indices. The internal representation of SparseMatrixCSC is as follows:

struct SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrix{Tv,Ti}

m::Int # Number of rows

https://en.wikipedia.org/wiki/Sparse_matrix
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_column_.28CSC_or_CCS.29

22.2. SPARSE VECTORS ANDMATRICES 223

n::Int # Number of columns

colptr::Vector{Ti} # Column i is in colptr[i]:(colptr[i+1]-1)

rowval::Vector{Ti} # Row indices of stored values

nzval::Vector{Tv} # Stored values, typically nonzeros

end

The compressed sparse column storage makes it easy and quick to access the elements in the column of a sparse ma-

trix, whereas accessing the sparse matrix by rows is considerably slower. Operations such as insertion of previously

unstored entries one at a time in the CSC structure tend to be slow. This is because all elements of the sparse matrix

that are beyond the point of insertion have to bemoved one place over.

All operations on sparsematrices are carefully implemented to exploit the CSC data structure for performance, and to

avoid expensive operations.

If you have data in CSC format from a different application or library, and wish to import it in Julia, make sure that you

use 1-based indexing. The row indices in every column need to be sorted. If your SparseMatrixCSC object contains

unsorted row indices, one quick way to sort them is by doing a double transpose.

In some applications, it is convenient to store explicit zero values in a SparseMatrixCSC. These are accepted by func-

tions inBase (but there is no guarantee that theywill be preserved inmutating operations). Such explicitly stored zeros

are treated as structural nonzeros by many routines. The nnz() function returns the number of elements explicitly

stored in the sparse data structure, including structural nonzeros. In order to count the exact number of numerical

nonzeros, use countnz(), which inspects every stored element of a sparse matrix. dropzeros(), and the in-place

dropzeros!(), can be used to remove stored zeros from the sparsematrix.

julia> A = sparse([1, 2, 3], [1, 2, 3], [0, 2, 0])

3×3 SparseMatrixCSC{Int64,Int64} with 3 stored entries:

[1, 1] = 0

[2, 2] = 2

[3, 3] = 0

julia> dropzeros(A)

3×3 SparseMatrixCSC{Int64,Int64} with 1 stored entry:

[2, 2] = 2

Sparse Vector Storage

Sparse vectors are stored in a close analog to compressed sparse column format for sparse matrices. In Julia, sparse

vectors have the type SparseVector{Tv,Ti} where Tv is the type of the stored values and Ti the integer type for

the indices. The internal representation is as follows:

struct SparseVector{Tv,Ti<:Integer} <: AbstractSparseVector{Tv,Ti}

n::Int # Length of the sparse vector

nzind::Vector{Ti} # Indices of stored values

nzval::Vector{Tv} # Stored values, typically nonzeros

end

As for SparseMatrixCSC, the SparseVector type can also contain explicitly stored zeros. (See Sparse Matrix Stor-

age.).

Sparse Vector andMatrix Constructors

The simplest way to create sparse arrays is to use functions equivalent to the zeros() and eye() functions that Julia

provides forworkingwithdensearrays. Toproducesparsearrays instead, youcanuse thesamenameswithanspprefix:

224 CHAPTER 22. MULTI-DIMENSIONAL ARRAYS

julia> spzeros(3)

3-element SparseVector{Float64,Int64} with 0 stored entries

julia> speye(3,5)

3×5 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

The sparse() function is often a handy way to construct sparse arrays. For example, to construct a sparse matrix we

can input a vector I of row indices, a vector J of column indices, and a vector V of stored values (this is also known as

the COO (coordinate) format). sparse(I,J,V) then constructs a sparse matrix such that S[I[k], J[k]] = V[k].

The equivalent sparse vector constructor is sparsevec, which takes the (row) index vector I and the vector Vwith the

stored values and constructs a sparse vector R such that R[I[k]] = V[k].

julia> I = [1, 4, 3, 5]; J = [4, 7, 18, 9]; V = [1, 2, -5, 3];

julia> S = sparse(I,J,V)

5×18 SparseMatrixCSC{Int64,Int64} with 4 stored entries:

[1 , 4] = 1

[4 , 7] = 2

[5 , 9] = 3

[3 , 18] = -5

julia> R = sparsevec(I,V)

5-element SparseVector{Int64,Int64} with 4 stored entries:

[1] = 1

[3] = -5

[4] = 2

[5] = 3

The inverse of the sparse() and sparsevec functions is findnz(), which retrieves the inputs used to create the

sparse array. There is also a findn function which only returns the index vectors.

julia> findnz(S)

([1, 4, 5, 3], [4, 7, 9, 18], [1, 2, 3, -5])

julia> findn(S)

([1, 4, 5, 3], [4, 7, 9, 18])

julia> findnz(R)

([1, 3, 4, 5], [1, -5, 2, 3])

julia> findn(R)

4-element Array{Int64,1}:

1

3

4

5

Another way to create a sparse array is to convert a dense array into a sparse array using the sparse() function:

julia> sparse(eye(5))

5×5 SparseMatrixCSC{Float64,Int64} with 5 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

https://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_.28COO.29

22.2. SPARSE VECTORS ANDMATRICES 225

[3, 3] = 1.0

[4, 4] = 1.0

[5, 5] = 1.0

julia> sparse([1.0, 0.0, 1.0])

3-element SparseVector{Float64,Int64} with 2 stored entries:

[1] = 1.0

[3] = 1.0

You can go in the other direction using the Array constructor. The issparse() function can be used to query if a

matrix is sparse.

julia> issparse(speye(5))

true

Sparsematrix operations

Arithmetic operations on sparse matrices also work as they do on dense matrices. Indexing of, assignment into, and

concatenation of sparsematrices work in the sameway as densematrices. Indexing operations, especially assignment,

are expensive, when carried out one element at a time. In many cases it may be better to convert the sparse matrix

into (I,J,V) format using findnz(), manipulate the values or the structure in the dense vectors (I,J,V), and then

reconstruct the sparsematrix.

Correspondence of dense and sparsemethods

Thefollowingtablegivesacorrespondencebetweenbuilt-inmethodsonsparsematricesandtheircorrespondingmeth-

ods on dense matrix types. In general, methods that generate sparse matrices differ from their dense counterparts in

that the resultingmatrix follows the same sparsity pattern as a given sparsematrixS, or that the resulting sparsematrix

has density d, i.e. eachmatrix element has a probability d of being non-zero.

Details can be found in the Sparse Vectors andMatrices section of the standard library reference.

Sparse Dense Description

spzeros(m,n)zeros(m,n)Creates am-by-nmatrix of zeros. (spzeros(m,n) is empty.)

spones(S) ones(m,n)Creates amatrix filled with ones. Unlike the dense version, spones() has the same

sparsity pattern as S.

speye(n) eye(n) Creates a n-by-n identity matrix.

full(S) sparse(A)Interconverts between dense and sparse formats.

sprand(m,n,d)rand(m,n)Creates am-by-n randommatrix (of density d) with iid non-zero elements distributed

uniformly on the half-open interval [0, 1).
sprandn(m,n,d)randn(m,n)Creates am-by-n randommatrix (of density d) with iid non-zero elements distributed

according to the standard normal (Gaussian) distribution.

sprandn(m,n,d,X)randn(m,n,X)Creates am-by-n randommatrix (of density d) with iid non-zero elements distributed

according to the X distribution. (Requires the Distributions package.)

Chapter 23

Linear algebra

In addition to (and as part of) its support for multi-dimensional arrays, Julia provides native implementations of many

common and useful linear algebra operations. Basic operations, such as trace, det, and inv are all supported:

julia> A = [1 2 3; 4 1 6; 7 8 1]

3×3 Array{Int64,2}:

1 2 3

4 1 6

7 8 1

julia> trace(A)

3

julia> det(A)

104.0

julia> inv(A)

3×3 Array{Float64,2}:

-0.451923 0.211538 0.0865385

0.365385 -0.192308 0.0576923

0.240385 0.0576923 -0.0673077

Aswell as other useful operations, such as finding eigenvalues or eigenvectors:

julia> A = [1.5 2 -4; 3 -1 -6; -10 2.3 4]

3×3 Array{Float64,2}:

1.5 2.0 -4.0

3.0 -1.0 -6.0

-10.0 2.3 4.0

julia> eigvals(A)

3-element Array{Complex{Float64},1}:

9.31908+0.0im

-2.40954+2.72095im

-2.40954-2.72095im

julia> eigvecs(A)

3×3 Array{Complex{Float64},2}:

-0.488645+0.0im 0.182546-0.39813im 0.182546+0.39813im

-0.540358+0.0im 0.692926+0.0im 0.692926-0.0im

0.68501+0.0im 0.254058-0.513301im 0.254058+0.513301im

227

228 CHAPTER 23. LINEAR ALGEBRA

In addition, Julia provides many factorizations which can be used to speed up problems such as linear solve or matrix

exponentiation by pre-factorizing a matrix into a form more amenable (for performance or memory reasons) to the

problem. See the documentation on factorize for more information. As an example:

julia> A = [1.5 2 -4; 3 -1 -6; -10 2.3 4]

3×3 Array{Float64,2}:

1.5 2.0 -4.0

3.0 -1.0 -6.0

-10.0 2.3 4.0

julia> factorize(A)

Base.LinAlg.LU{Float64,Array{Float64,2}} with factors L and U:

[1.0 0.0 0.0; -0.15 1.0 0.0; -0.3 -0.132196 1.0]

[-10.0 2.3 4.0; 0.0 2.345 -3.4; 0.0 0.0 -5.24947]

Since A is not Hermitian, symmetric, triangular, tridiagonal, or bidiagonal, an LU factorization may be the best we can

do. Compare with:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]

3×3 Array{Float64,2}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

julia> factorize(B)

Base.LinAlg.BunchKaufman{Float64,Array{Float64,2}}([-1.64286 0.142857 -0.8; 2.0 -2.8 -0.6; -4.0

-3.0 5.0], [1, 2, 3], 'U', true, false, 0)↪→

Here, Julia was able to detect that B is in fact symmetric, and used amore appropriate factorization. Often it's possible

to write more efficient code for a matrix that is known to have certain properties e.g. it is symmetric, or tridiagonal.

Julia provides some special types so that you can "tag" matrices as having these properties. For instance:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]

3×3 Array{Float64,2}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

julia> sB = Symmetric(B)

3×3 Symmetric{Float64,Array{Float64,2}}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

sB has been tagged as amatrix that's (real) symmetric, so for later operationswemight perform on it, such as eigenfac-

torization or computingmatrix-vector products, efficiencies can be found by only referencing half of it. For example:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]

3×3 Array{Float64,2}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

23.1. SPECIALMATRICES 229

julia> sB = Symmetric(B)

3×3 Symmetric{Float64,Array{Float64,2}}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

julia> x = [1; 2; 3]

3-element Array{Int64,1}:

1

2

3

julia> sB\x

3-element Array{Float64,1}:

-1.73913

-1.1087

-1.45652

The \ operation here performs the linear solution. Julia's parser provides convenient dispatch to specialized methods

for the transpose of amatrix left-divided by a vector, or for the various combinations of transpose operations inmatrix-

matrix solutions. Many of these are further specialized for certain special matrix types. For example, A\B will end up

callingBase.LinAlg.A_ldiv_B!whileA'\Bwill endupcallingBase.LinAlg.Ac_ldiv_B, even thoughweused the

same left-division operator. This works for matrices too: A.'\B.' would call Base.LinAlg.At_ldiv_Bt. The left-

division operator is pretty powerful and it's easy to write compact, readable code that is flexible enough to solve all

sorts of systems of linear equations.

23.1 Special matrices

Matriceswith special symmetries and structures ariseoften in linear algebraandare frequently associatedwithvarious

matrix factorizations. Julia features a rich collection of special matrix types, which allow for fast computation with

specialized routines that are specially developed for particular matrix types.

The following tables summarize the types of special matrices that have been implemented in Julia, as well as whether

hooks to various optimizedmethods for them in LAPACK are available.

Type Description

Hermitian Hermitianmatrix

UpperTriangular Upper triangular matrix

LowerTriangular Lower triangular matrix

Tridiagonal Tridiagonal matrix

SymTridiagonal Symmetric tridiagonal matrix

Bidiagonal Upper/lower bidiagonal matrix

Diagonal Diagonal matrix

UniformScaling Uniform scaling operator

Elementary operations

Legend:

Matrix factorizations

Legend:

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274
https://en.wikipedia.org/wiki/Hermitian_matrix
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Tridiagonal_matrix
https://en.wikipedia.org/wiki/Bidiagonal_matrix
https://en.wikipedia.org/wiki/Diagonal_matrix
https://en.wikipedia.org/wiki/Uniform_scaling

230 CHAPTER 23. LINEAR ALGEBRA

Matrix type + - * \ Other functions with optimizedmethods

Hermitian MV inv(), sqrtm(), expm()

UpperTriangular MV MV inv(), det()

LowerTriangular MV MV inv(), det()

SymTridiagonal M M MS MV eigmax(), eigmin()

Tridiagonal M M MS MV

Bidiagonal M M MS MV

Diagonal M M MV MV inv(), det(), logdet(), /()

UniformScaling M M MVS MVS /()

Key Description

M (matrix) An optimizedmethod for matrix-matrix operations is available

V (vector) An optimizedmethod for matrix-vector operations is available

S (scalar) An optimizedmethod for matrix-scalar operations is available

Matrix type LAPACK eig() eigvals() eigvecs() svd() svdvals()

Hermitian HE ARI

UpperTriangular TR A A A

LowerTriangular TR A A A

SymTridiagonal ST A ARI AV

Tridiagonal GT

Bidiagonal BD A A

Diagonal DI A

The uniform scaling operator

AUniformScaling operator represents a scalar times the identity operator,λ*I. The identity operatorI is defined as

a constant and is an instance of UniformScaling. The size of these operators are generic andmatch the othermatrix

in thebinaryoperations+,-,* and\. ForA+I andA-I thismeans thatAmust be square. Multiplicationwith the identity

operator I is a noop (except for checking that the scaling factor is one) and therefore almost without overhead.

23.2 Matrix factorizations

Matrix factorizations (a.k.a. matrix decompositions) compute the factorization of a matrix into a product of matrices,

and are one of the central concepts in linear algebra.

The following table summarizes the types ofmatrix factorizations that have been implemented in Julia. Details of their

associatedmethods can be found in the Linear Algebra section of the standard library documentation.

https://en.wikipedia.org/wiki/Matrix_decomposition

23.2. MATRIX FACTORIZATIONS 231

Key Description Example

A (all) An optimizedmethod to find all the characteristic values and/or vectors is available e.g.

eigvals(M)

R

(range)

An optimizedmethod to find the ilth through the ihth characteristic values are

available

eigvals(M,

il, ih)

I (in-

terval)

An optimizedmethod to find the characteristic values in the interval [vl, vh] is

available

eigvals(M,

vl, vh)

V (vec-

tors)

An optimizedmethod to find the characteristic vectors corresponding to the

characteristic values x=[x1, x2,...] is available

eigvecs(M,

x)

Type Description

Cholesky Cholesky factorization

CholeskyPivoted Pivoted Cholesky factorization

LU LU factorization

LUTridiagonal LU factorization for Tridiagonalmatrices

UmfpackLU LU factorization for sparsematrices (computed by UMFPack)

QR QR factorization

QRCompactWY CompactWY form of theQR factorization

QRPivoted PivotedQR factorization

Hessenberg Hessenberg decomposition

Eigen Spectral decomposition

SVD Singular value decomposition

GeneralizedSVD Generalized SVD

https://en.wikipedia.org/wiki/Cholesky_decomposition
https://en.wikipedia.org/wiki/Pivot_element
https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/QR_decomposition
https://en.wikipedia.org/wiki/QR_decomposition
http://mathworld.wolfram.com/HessenbergDecomposition.html
https://en.wikipedia.org/wiki/Eigendecomposition_(matrix)
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Generalized_singular_value_decomposition#Higher_order_version

Chapter 24

Networking and Streams

Julia provides a rich interface to deal with streaming I/O objects such as terminals, pipes and TCP sockets. This in-

terface, though asynchronous at the system level, is presented in a synchronous manner to the programmer and it is

usually unnecessary to think about the underlying asynchronous operation. This is achieved by making heavy use of

Julia cooperative threading (coroutine) functionality.

24.1 Basic Stream I/O

All Julia streams expose at least a read() and a write()method, taking the stream as their first argument, e.g.:

julia> write(STDOUT,"Hello World"); # suppress return value 11 with ;

Hello World

julia> read(STDIN,Char)

'\n': ASCII/Unicode U+000a (category Cc: Other, control)

Note that write() returns 11, the number of bytes (in "Hello World") written to STDOUT, but this return value is

suppressedwith the ;.

Here Enter was pressed again so that Julia would read the newline. Now, as you can see from this example, write()

takes the data to write as its second argument, while read() takes the type of the data to be read as the second argu-

ment.

For example, to read a simple byte array, we could do:

julia> x = zeros(UInt8, 4)

4-element Array{UInt8,1}:

0x00

0x00

0x00

0x00

julia> read!(STDIN, x)

abcd

4-element Array{UInt8,1}:

0x61

0x62

0x63

0x64

233

234 CHAPTER 24. NETWORKING AND STREAMS

However, since this is slightly cumbersome, there are several convenience methods provided. For example, we could

have written the above as:

julia> read(STDIN,4)

abcd

4-element Array{UInt8,1}:

0x61

0x62

0x63

0x64

or if we hadwanted to read the entire line instead:

julia> readline(STDIN)

abcd

"abcd"

Note that depending on your terminal settings, your TTY may be line buffered and might thus require an additional

enter before the data is sent to Julia.

To read every line from STDIN you can use eachline():

for line in eachline(STDIN)

print("Found $line")

end

or read() if you wanted to read by character instead:

while !eof(STDIN)

x = read(STDIN, Char)

println("Found: $x")

end

24.2 Text I/O

Note that thewrite()methodmentionedaboveoperatesonbinary streams. Inparticular, valuesdonot get converted

to any canonical text representation but are written out as is:

julia> write(STDOUT,0x61); # suppress return value 1 with ;

a

Note that a is written to STDOUT by the write() function and that the returned value is 1 (since 0x61 is one byte).

For text I/O, use the print() or show()methods, depending on your needs (see the standard library reference for a

detailed discussion of the difference between the two):

julia> print(STDOUT, 0x61)

97

24.3. IO OUTPUT CONTEXTUAL PROPERTIES 235

24.3 IOOutput Contextual Properties

Sometimes IO output can benefit from the ability to pass contextual information into showmethods. The IOContext

object provides this framework for associating arbitrarymetadata with an IO object. For example, showcompact adds

a hinting parameter to the IO object that the invoked showmethod should print a shorter output (if applicable).

24.4 Workingwith Files

Like many other environments, Julia has an open() function, which takes a filename and returns an IOStream object

that you can use to read and write things from the file. For example if we have a file, hello.txt, whose contents are

Hello, World!:

julia> f = open("hello.txt")

IOStream(<file hello.txt>)

julia> readlines(f)

1-element Array{String,1}:

"Hello, World!"

If youwant to write to a file, you can open it with the write ("w") flag:

julia> f = open("hello.txt","w")

IOStream(<file hello.txt>)

julia> write(f,"Hello again.")

12

If youexamine thecontentsofhello.txtat thispoint, youwill notice that it is empty; nothinghasactuallybeenwritten

to disk yet. This is because the IOStreammust be closed before the write is actually flushed to disk:

julia> close(f)

Examining hello.txt again will show its contents have been changed.

Opening a file, doing something to its contents, and closing it again is a very common pattern. Tomake this easier, there

exists another invocation of open()which takes a function as its first argument and filename as its second, opens the

file, calls the function with the file as an argument, and then closes it again. For example, given a function:

function read_and_capitalize(f::IOStream)

return uppercase(readstring(f))

end

You can call:

julia> open(read_and_capitalize, "hello.txt")

"HELLO AGAIN."

to open hello.txt, call read_and_capitalize on it, close hello.txt and return the capitalized contents.

To avoid even having to define a named function, you can use the do syntax, which creates an anonymous function on

the fly:

236 CHAPTER 24. NETWORKING AND STREAMS

julia> open("hello.txt") do f

uppercase(readstring(f))

end

"HELLO AGAIN."

24.5 A simple TCP example

Let's jump right in with a simple example involving TCP sockets. Let's first create a simple server:

julia> @async begin

server = listen(2000)

while true

sock = accept(server)

println("Hello World\n")

end

end

Task (runnable) @0x00007fd31dc11ae0

To those familiar with theUnix socket API, themethod nameswill feel familiar, though their usage is somewhat simpler

than the raw Unix socket API. The first call to listen() will create a server waiting for incoming connections on the

specified port (2000) in this case. The same functionmay also be used to create various other kinds of servers:

julia> listen(2000) # Listens on localhost:2000 (IPv4)

TCPServer(active)

julia> listen(ip"127.0.0.1",2000) # Equivalent to the first

TCPServer(active)

julia> listen(ip"::1",2000) # Listens on localhost:2000 (IPv6)

TCPServer(active)

julia> listen(IPv4(0),2001) # Listens on port 2001 on all IPv4 interfaces

TCPServer(active)

julia> listen(IPv6(0),2001) # Listens on port 2001 on all IPv6 interfaces

TCPServer(active)

julia> listen("testsocket") # Listens on a UNIX domain socket/named pipe

PipeServer(active)

Note that the return type of the last invocation is different. This is because this server does not listen onTCP, but rather

on a named pipe (Windows) or UNIX domain socket. The difference is subtle and has to do with the accept() and

connect()methods. The accept()method retrieves a connection to the client that is connecting on the server we

just created, while the connect() function connects to a server using the specifiedmethod. The connect() function

takes the same arguments as listen(), so, assuming the environment (i.e. host, cwd, etc.) is the same you should be

able to pass the same arguments to connect() as you did to listen to establish the connection. So let's try that out

(after having created the server above):

julia> connect(2000)

TCPSocket(open, 0 bytes waiting)

julia> Hello World

24.6. RESOLVING IP ADDRESSES 237

As expected we saw "Hello World" printed. So, let's actually analyze what happened behind the scenes. When we

called connect(), we connect to the serverwe had just created. Meanwhile, the accept function returns a server-side

connection to the newly created socket and prints "HelloWorld" to indicate that the connection was successful.

A great strength of Julia is that since the API is exposed synchronously even though the I/O is actually happening asyn-

chronously,wedidn'thavetoworrycallbacksorevenmakingsurethat theservergets torun. Whenwecalledconnect()

the current task waited for the connection to be established and only continued executing after that was done. In this

pause, the server task resumed execution (because a connection request was now available), accepted the connection,

printed the message and waited for the next client. Reading and writing works in the same way. To see this, consider

the following simple echo server:

julia> @async begin

server = listen(2001)

while true

sock = accept(server)

@async while isopen(sock)

write(sock,readline(sock))

end

end

end

Task (runnable) @0x00007fd31dc12e60

julia> clientside = connect(2001)

TCPSocket(RawFD(28) open, 0 bytes waiting)

julia> @async while true

write(STDOUT,readline(clientside))

end

Task (runnable) @0x00007fd31dc11870

julia> println(clientside,"Hello World from the Echo Server")

Hello World from the Echo Server

Aswith other streams, use close() to disconnect the socket:

julia> close(clientside)

24.6 Resolving IP Addresses

One of the connect() methods that does not follow the listen() methods is connect(host::String,port),

which will attempt to connect to the host given by the host parameter on the port given by the port parameter. It

allows you to do things like:

julia> connect("google.com",80)

TCPSocket(RawFD(30) open, 0 bytes waiting)

At the base of this functionality is getaddrinfo(), which will do the appropriate address resolution:

julia> getaddrinfo("google.com")

ip"74.125.226.225"

Chapter 25

Parallel Computing

Most modern computers possess more than one CPU, and several computers can be combined together in a cluster.

Harnessing the power of thesemultiple CPUs allowsmany computations to be completedmore quickly. There are two

major factors that influence performance: the speed of the CPUs themselves, and the speed of their access tomemory.

In a cluster, it's fairly obvious that a given CPU will have fastest access to the RAM within the same computer (node).

Perhaps more surprisingly, similar issues are relevant on a typical multicore laptop, due to differences in the speed of

mainmemory and the cache. Consequently, a goodmultiprocessing environment should allowcontrol over the "owner-

ship"ofachunkofmemorybyaparticularCPU. Juliaprovidesamultiprocessingenvironmentbasedonmessagepassing

to allow programs to run onmultiple processes in separatememory domains at once.

Julia's implementation ofmessage passing is different from other environments such asMPI 1. Communication in Julia

is generally "one-sided", meaning that the programmer needs to explicitly manage only one process in a two-process

operation. Furthermore, these operations typically do not look like "message send" and "message receive" but rather

resemble higher-level operations like calls to user functions.

Parallel programming in Julia is built on two primitives: remote references and remote calls. A remote reference is an

object that can be used from any process to refer to an object stored on a particular process. A remote call is a request

by one process to call a certain function on certain arguments on another (possibly the same) process.

Remote references come in two flavors: Future and RemoteChannel.

A remote call returns a Future to its result. Remote calls return immediately; the process that made the call proceeds

to its next operation while the remote call happens somewhere else. You can wait for a remote call to finish by calling

wait() on the returned Future, and you can obtain the full value of the result using fetch().

On theother hand,RemoteChannel s are rewritable. For example,multiple processes can co-ordinate their processing

by referencing the same remote Channel.

Each process has an associated identifier. The process providing the interactive Julia prompt always has an id equal to

1. The processes used by default for parallel operations are referred to as "workers". When there is only one process,

process 1 is considered a worker. Otherwise, workers are considered to be all processes other than process 1.

Let's try this out. Starting with julia -p n provides n worker processes on the local machine. Generally it makes

sense for n to equal the number of CPU cores on themachine.

$./julia -p 2

julia> r = remotecall(rand, 2, 2, 2)

Future(2, 1, 4, Nullable{Any}())

julia> s = @spawnat 2 1 .+ fetch(r)

Future(2, 1, 5, Nullable{Any}())

239

https://www.akkadia.org/drepper/cpumemory.pdf

240 CHAPTER 25. PARALLEL COMPUTING

julia> fetch(s)

2×2 Array{Float64,2}:

1.18526 1.50912

1.16296 1.60607

Thefirst argument toremotecall() is the function to call. Most parallel programming in Julia does not reference spe-

cific processes or the number of processes available, but remotecall() is considered a low-level interface providing

finer control. The second argument to remotecall() is the id of the process that will do thework, and the remaining

arguments will be passed to the function being called.

As you can see, in the first linewe asked process 2 to construct a 2-by-2 randommatrix, and in the second linewe asked

it to add 1 to it. The result of both calculations is available in the two futures, r and s. The @spawnatmacro evaluates

the expression in the second argument on the process specified by the first argument.

Occasionally you might want a remotely-computed value immediately. This typically happens when you read from a

remote object to obtain data needed by the next local operation. The function remotecall_fetch() exists for this

purpose. It is equivalent to fetch(remotecall(...)) but is more efficient.

julia> remotecall_fetch(getindex, 2, r, 1, 1)

0.18526337335308085

Remember that getindex(r,1,1) is equivalent to r[1,1], so this call fetches the first element of the future r.

The syntax of remotecall() is not especially convenient. The macro @spawnmakes things easier. It operates on an

expression rather than a function, and picks where to do the operation for you:

julia> r = @spawn rand(2,2)

Future(2, 1, 4, Nullable{Any}())

julia> s = @spawn 1 .+ fetch(r)

Future(3, 1, 5, Nullable{Any}())

julia> fetch(s)

2×2 Array{Float64,2}:

1.38854 1.9098

1.20939 1.57158

Note that we used 1 .+ fetch(r) instead of 1 .+ r. This is because we do not knowwhere the code will run, so in

general a fetch()might be required tomove r to the process doing the addition. In this case, @spawn is smart enough

to perform the computation on the process that owns r, so the fetch()will be a no-op (no work is done).

(It is worth noting that @spawn is not built-in but defined in Julia as a macro. It is possible to define your own such

constructs.)

An important thing to remember is that, once fetched, a Futurewill cache its value locally. Further fetch() calls do

not entail a network hop. Once all referencing Futures have fetched, the remote stored value is deleted.

25.1 Code Availability and Loading Packages

Your codemust be available on any process that runs it. For example, type the following into the Julia prompt:

25.1. CODE AVAILABILITY AND LOADING PACKAGES 241

julia> function rand2(dims...)

return 2*rand(dims...)

end

julia> rand2(2,2)

2×2 Array{Float64,2}:

0.153756 0.368514

1.15119 0.918912

julia> fetch(@spawn rand2(2,2))

ERROR: RemoteException(2, CapturedException(UndefVarError(Symbol("#rand2"))

[...]

Process 1 knew about the function rand2, but process 2 did not.

Most commonly you'll be loading code from files or packages, and you have a considerable amount of flexibility in con-

trolling which processes load code. Consider a file, DummyModule.jl, containing the following code:

module DummyModule

export MyType, f

mutable struct MyType

a::Int

end

f(x) = x^2+1

println("loaded")

end

Starting Julia with julia -p 2, you can use this to verify the following:

• include("DummyModule.jl") loads the file on just a single process (whichever one executes the statement).

• using DummyModule causes the module to be loaded on all processes; however, the module is brought into

scope only on the one executing the statement.

• As long as DummyModule is loaded on process 2, commands like

rr = RemoteChannel(2)

put!(rr, MyType(7))

allow you to store an object of type MyType on process 2 even if DummyModule is not in scope on process 2.

You can force a command to run on all processes using the @everywheremacro. For example, @everywhere can also

be used to directly define a function on all processes:

julia> @everywhere id = myid()

julia> remotecall_fetch(()->id, 2)

2

242 CHAPTER 25. PARALLEL COMPUTING

A file can also be preloaded onmultiple processes at startup, and a driver script can be used to drive the computation:

julia -p <n> -L file1.jl -L file2.jl driver.jl

The Julia process running the driver script in the example above has an id equal to 1, just like a process providing an

interactive prompt.

The base Julia installation has in-built support for two types of clusters:

• A local cluster specifiedwith the -p option as shown above.

• A cluster spanningmachines using the --machinefile option. This uses a passwordless ssh login to start Julia

worker processes (from the same path as the current host) on the specifiedmachines.

Functionsaddprocs(), rmprocs(), workers(), and others are available as a programmaticmeans of adding, remov-

ing and querying the processes in a cluster.

Note that workers do not run a .juliarc.jl startup script, nor do they synchronize their global state (such as global

variables, newmethod definitions, and loadedmodules) with any of the other running processes.

Other types of clusters can be supported by writing your own custom ClusterManager, as described below in the

ClusterManagers section.

25.2 DataMovement

Sending messages and moving data constitute most of the overhead in a parallel program. Reducing the number of

messages and the amount of data sent is critical to achieving performance and scalability. To this end, it is important to

understand the datamovement performed by Julia's various parallel programming constructs.

fetch() can be considered an explicit data movement operation, since it directly asks that an object be moved to the

local machine. @spawn (and a few related constructs) also moves data, but this is not as obvious, hence it can be called

an implicit datamovement operation. Consider these two approaches to constructing and squaring a randommatrix:

Method 1:

julia> A = rand(1000,1000);

julia> Bref = @spawn A^2;

[...]

julia> fetch(Bref);

Method 2:

julia> Bref = @spawn rand(1000,1000)^2;

[...]

julia> fetch(Bref);

The difference seems trivial, but in fact is quite significant due to the behavior of @spawn. In the firstmethod, a random

matrix is constructed locally, then sent to another process where it is squared. In the secondmethod, a randommatrix

is both constructed and squared on another process. Therefore the secondmethod sendsmuch less data than the first.

25.2. DATAMOVEMENT 243

In this toyexample, the twomethodsareeasy todistinguishandchoose from. However, in a real programdesigningdata

movement might require more thought and likely somemeasurement. For example, if the first process needs matrix A

then the first methodmight be better. Or, if computing A is expensive and only the current process has it, then moving

it to another process might be unavoidable. Or, if the current process has very little to do between the @spawn and

fetch(Bref), it might be better to eliminate the parallelism altogether. Or imagine rand(1000,1000) is replaced

with amore expensive operation. Then it might make sense to add another @spawn statement just for this step.

Chapter 26

Global variables

Expressions executed remotely via @spawn, or closures specified for remote execution using remotecall may refer

to global variables. Global bindings under module Main are treated a little differently compared to global bindings in

other modules. Consider the following code snippet:

A = rand(10,10)

remotecall_fetch(()->foo(A), 2)

Note that A is a global variable defined in the local workspace. Worker 2 does not have a variable called A under Main.

The act of shipping the closure()->foo(A) toworker 2 results inMain.Abeing defined on2. Main.A continues to ex-

ist onworker 2 even after the call remotecall_fetch returns. Remote calls with embedded global references (under

Mainmodule only) manage globals as follows:

• New global bindings are created on destination workers if they are referenced as part of a remote call.

• Global constants are declared as constants on remote nodes too.

• Globals are re-sent to a destination worker only in the context of a remote call, and then only if its value has

changed. Also, the cluster does not synchronize global bindings across nodes. For example:

A = rand(10,10)

remotecall_fetch(()->foo(A), 2) # worker 2

A = rand(10,10)

remotecall_fetch(()->foo(A), 3) # worker 3

A = nothing

Executing the above snippet results in Main.A on worker 2 having a different value from Main.A on worker 3,

while the value of Main.A on node 1 is set to nothing.

As you may have realized, while memory associated with globals may be collected when they are reassigned on the

master, no such action is taken on the workers as the bindings continue to be valid. clear! can be used to manually

reassign specific globals on remote nodes to nothing once they are no longer required. This will release any memory

associated with them as part of a regular garbage collection cycle.

Thus programs should be careful referencing globals in remote calls. In fact, it is preferable to avoid them altogether if

possible. If youmust reference globals, consider using let blocks to localize global variables.

For example:

245

246 CHAPTER 26. GLOBAL VARIABLES

julia> A = rand(10,10);

julia> remotecall_fetch(()->A, 2);

julia> B = rand(10,10);

julia> let B = B

remotecall_fetch(()->B, 2)

end;

julia> @spawnat 2 whos();

julia> From worker 2: A 800 bytes 10×10 Array{Float64,2}

From worker 2: Base Module

From worker 2: Core Module

From worker 2: Main Module

As can be seen, global variable A is defined on worker 2, but B is captured as a local variable and hence a binding for B

does not exist on worker 2.

26.1 ParallelMap and Loops

Fortunately, many useful parallel computations do not require data movement. A common example is a Monte Carlo

simulation, where multiple processes can handle independent simulation trials simultaneously. We can use @spawn to

flip coins on two processes. First, write the following function in count_heads.jl:

function count_heads(n)

c::Int = 0

for i = 1:n

c += rand(Bool)

end

c

end

The function count_heads simply adds together n random bits. Here is how we can perform some trials on two ma-

chines, and add together the results:

julia> @everywhere include("count_heads.jl")

julia> a = @spawn count_heads(100000000)

Future(2, 1, 6, Nullable{Any}())

julia> b = @spawn count_heads(100000000)

Future(3, 1, 7, Nullable{Any}())

julia> fetch(a)+fetch(b)

100001564

This example demonstrates a powerful and often-used parallel programming pattern. Many iterations run indepen-

dently over several processes, and then their results are combined using some function. The combination process is

called a reduction, since it is generally tensor-rank-reducing: a vector of numbers is reduced to a single number, or a

matrix is reduced to a single row or column, etc. In code, this typically looks like the pattern x = f(x,v[i]), where x

26.1. PARALLELMAP AND LOOPS 247

is the accumulator, f is the reduction function, and the v[i] are the elements being reduced. It is desirable for f to be

associative, so that it does not matter what order the operations are performed in.

Notice that our use of this pattern with count_heads can be generalized. We used two explicit @spawn statements,

which limits the parallelism to two processes. To run on any number of processes, we can use a parallel for loop, which

can bewritten in Julia using @parallel like this:

nheads = @parallel (+) for i = 1:200000000

Int(rand(Bool))

end

This construct implements the pattern of assigning iterations to multiple processes, and combining themwith a speci-

fied reduction (in this case (+)). The result of each iteration is taken as the value of the last expression inside the loop.

Thewhole parallel loop expression itself evaluates to the final answer.

Note that although parallel for loops look like serial for loops, their behavior is dramatically different. In particular, the

iterations do not happen in a specified order, andwrites to variables or arrayswill not be globally visible since iterations

run on different processes. Any variables used inside the parallel loopwill be copied and broadcast to each process.

For example, the following codewill not work as intended:

a = zeros(100000)

@parallel for i = 1:100000

a[i] = i

end

This code will not initialize all of a, since each process will have a separate copy of it. Parallel for loops like these must

be avoided. Fortunately, Shared Arrays can be used to get around this limitation:

a = SharedArray{Float64}(10)

@parallel for i = 1:10

a[i] = i

end

Using "outside" variables in parallel loops is perfectly reasonable if the variables are read-only:

a = randn(1000)

@parallel (+) for i = 1:100000

f(a[rand(1:end)])

end

Here each iteration applies f to a randomly-chosen sample from a vector a shared by all processes.

Asyoucouldsee, thereductionoperatorcanbeomitted if it isnotneeded. In thatcase, the loopexecutesasynchronously,

i.e. it spawns independent tasks on all available workers and returns an array of Future immediately without waiting

for completion. The caller canwait for the Future completions at a later point by calling fetch() on them, or wait for

completion at the end of the loop by prefixing it with @sync, like @sync @parallel for.

In some cases no reduction operator is needed, andwemerelywish to apply a function to all integers in some range (or,

more generally, to all elements in some collection). This is another useful operation called parallel map, implemented in

Julia as the pmap() function. For example, we could compute the singular values of several large random matrices in

parallel as follows:

248 CHAPTER 26. GLOBAL VARIABLES

julia> M = Matrix{Float64}[rand(1000,1000) for i = 1:10];

julia> pmap(svd, M);

Julia's pmap() is designed for the case where each function call does a large amount of work. In contrast, @parallel

for can handle situations where each iteration is tiny, perhaps merely summing two numbers. Only worker processes

are used by both pmap() and @parallel for for the parallel computation. In case of @parallel for, the final re-

duction is done on the calling process.

26.2 SynchronizationWith Remote References

26.3 Scheduling

Julia's parallel programming platform uses Tasks (aka Coroutines) to switch among multiple computations. Whenever

codeperformsacommunicationoperation likefetch()orwait(), the current task is suspendedandaschedulerpicks

another task to run. A task is restarted when the event it is waiting for completes.

For many problems, it is not necessary to think about tasks directly. However, they can be used to wait for multiple

events at the same time, which provides for dynamic scheduling. In dynamic scheduling, a programdecideswhat to com-

puteorwhere to compute it basedonwhenother jobsfinish. This is needed forunpredictableorunbalancedworkloads,

where wewant to assignmore work to processes only when they finish their current tasks.

As an example, consider computing the singular values of matrices of different sizes:

julia> M = Matrix{Float64}[rand(800,800), rand(600,600), rand(800,800), rand(600,600)];

julia> pmap(svd, M);

If one process handles both 800×800 matrices and another handles both 600×600 matrices, we will not get as much

scalability aswe could. The solution is tomake a local task to "feed"work to each processwhen it completes its current

task. For example, consider a simple pmap() implementation:

function pmap(f, lst)

np = nprocs() # determine the number of processes available

n = length(lst)

results = Vector{Any}(n)

i = 1

function to produce the next work item from the queue.

in this case it's just an index.

nextidx() = (idx=i; i+=1; idx)

@sync begin

for p=1:np

if p != myid() || np == 1

@async begin

while true

idx = nextidx()

if idx > n

break

end

results[idx] = remotecall_fetch(f, p, lst[idx])

end

end

end

26.4. CHANNELS 249

end

end

results

end

@async is similar to@spawn, butonly runs tasksonthe localprocess. Weuse it tocreatea"feeder" task foreachprocess.

Each task picks the next index that needs to be computed, thenwaits for its process to finish, then repeats until we run

outof indexes. Note that the feeder tasksdonotbegin toexecuteuntil themain task reaches theendof the@syncblock,

atwhich point it surrenders control andwaits for all the local tasks to complete before returning from the function. The

feeder tasks are able to share state via nextidx() because they all run on the same process. No locking is required,

since the threads are scheduled cooperatively and not preemptively. This means context switches only occur at well-

defined points: in this case, when remotecall_fetch() is called.

26.4 Channels

ThesectiononTasks inControl Flowdiscussed theexecutionofmultiple functions inaco-operativemanner. Channels

can be quite useful to pass data between running tasks, particularly those involving I/O operations.

Examples of operations involving I/O include reading/writing to files, accessing web services, executing external pro-

grams, etc. In all these cases, overall execution time can be improved if other tasks can be run while a file is being read,

or while waiting for an external service/program to complete.

A channel can be visualized as a pipe, i.e., it has a write end and read end.

• Multiple writers in different tasks can write to the same channel concurrently via put!() calls.

• Multiple readers in different tasks can read data concurrently via take!() calls.

• As an example:

Given Channels c1 and c2,

c1 = Channel(32)

c2 = Channel(32)

and a function `foo()` which reads items from from c1, processes the item read

and writes a result to c2,

function foo()

while true

data = take!(c1)

[...] # process data

put!(c2, result) # write out result

end

end

we can schedule `n` instances of `foo()` to be active concurrently.

for _ in 1:n

@schedule foo()

end

• Channels are created via the Channel{T}(sz) constructor. The channel will only hold objects of type T. If the

type is not specified, the channel canholdobjectsof any type. sz refers to themaximumnumberof elements that

can be held in the channel at any time. For example, Channel(32) creates a channel that can hold a maximum

of 32 objects of any type. A Channel{MyType}(64) can hold up to 64 objects of MyType at any time.

• If a Channel is empty, readers (on a take!() call) will block until data is available.

250 CHAPTER 26. GLOBAL VARIABLES

• If a Channel is full, writers (on a put!() call) will block until space becomes available.

• isready() tests for the presence of any object in the channel, while wait() waits for an object to become

available.

• AChannel is in an open state initially. Thismeans that it can be read fromandwritten to freely viatake!() and

put!() calls. close() closes a Channel. On a closed Channel, put!()will fail. For example:

julia> c = Channel(2);

julia> put!(c, 1) # `put!` on an open channel succeeds

1

julia> close(c);

julia> put!(c, 2) # `put!` on a closed channel throws an exception.

ERROR: InvalidStateException("Channel is closed.",:closed)

[...]

• take!() and fetch() (which retrieves but does not remove the value) on a closed channel successfully return

any existing values until it is emptied. Continuing the above example:

julia> fetch(c) # Any number of `fetch` calls succeed.

1

julia> fetch(c)

1

julia> take!(c) # The first `take!` removes the value.

1

julia> take!(c) # No more data available on a closed channel.

ERROR: InvalidStateException("Channel is closed.",:closed)

[...]

A Channel can be used as an iterable object in a for loop, in which case the loop runs as long as the Channel has data

or is open. The loop variable takes on all values added to the Channel. The for loop is terminated once the Channel

is closed and emptied.

For example, the following would cause the for loop to wait for more data:

julia> c = Channel{Int}(10);

julia> foreach(i->put!(c, i), 1:3) # add a few entries

julia> data = [i for i in c]

while this will return after reading all data:

julia> c = Channel{Int}(10);

julia> foreach(i->put!(c, i), 1:3); # add a few entries

26.4. CHANNELS 251

julia> close(c); # `for` loops can exit

julia> data = [i for i in c]

3-element Array{Int64,1}:

1

2

3

Consider a simple example using channels for inter-task communication. We start 4 tasks to process data from a single

jobs channel. Jobs, identifiedbyan id (job_id), arewritten to thechannel. Each task in this simulation readsajob_id,

waits for a random amout of time and writes back a tuple of job_id and the simulated time to the results channel.

Finally all the results are printed out.

julia> const jobs = Channel{Int}(32);

julia> const results = Channel{Tuple}(32);

julia> function do_work()

for job_id in jobs

exec_time = rand()

sleep(exec_time) # simulates elapsed time doing actual work

typically performed externally.

put!(results, (job_id, exec_time))

end

end;

julia> function make_jobs(n)

for i in 1:n

put!(jobs, i)

end

end;

julia> n = 12;

julia> @schedule make_jobs(n); # feed the jobs channel with "n" jobs

julia> for i in 1:4 # start 4 tasks to process requests in parallel

@schedule do_work()

end

julia> @elapsed while n > 0 # print out results

job_id, exec_time = take!(results)

println("$job_id finished in $(round(exec_time,2)) seconds")

n = n - 1

end

4 finished in 0.22 seconds

3 finished in 0.45 seconds

1 finished in 0.5 seconds

7 finished in 0.14 seconds

2 finished in 0.78 seconds

5 finished in 0.9 seconds

9 finished in 0.36 seconds

6 finished in 0.87 seconds

8 finished in 0.79 seconds

10 finished in 0.64 seconds

252 CHAPTER 26. GLOBAL VARIABLES

12 finished in 0.5 seconds

11 finished in 0.97 seconds

0.029772311

The current version of Julia multiplexes all tasks onto a single OS thread. Thus, while tasks involving I/O operations

benefit from parallel execution, compute bound tasks are effectively executed sequentially on a single OS thread. Fu-

ture versions of Julia may support scheduling of tasks onmultiple threads, in which case compute bound tasks will see

benefits of parallel execution too.

26.5 Remote References and AbstractChannels

Remote references always refer to an implementation of an AbstractChannel.

Aconcrete implementationofanAbstractChannel (likeChannel), is requiredto implementput!(),take!(),fetch(),

isready() and wait(). The remote object referred to by a Future is stored in a Channel{Any}(1), i.e., a Channel

of size 1 capable of holding objects of Any type.

RemoteChannel, which is rewritable, can point to any type and size of channels, or any other implementation of an

AbstractChannel.

TheconstructorRemoteChannel(f::Function, pid)()allowsus toconstruct references tochannelsholdingmore

than one value of a specific type. f() is a function executed on pid and it must return an AbstractChannel.

For example,RemoteChannel(()->Channel{Int}(10), pid), will return a reference to a channel of typeInt and

size 10. The channel exists on worker pid.

Methods put!(), take!(), fetch(), isready() and wait() on a RemoteChannel are proxied onto the backing

store on the remote process.

RemoteChannel can thus be used to refer to user implemented AbstractChannel objects. A simple example of this

is provided in examples/dictchannel.jlwhich uses a dictionary as its remote store.

26.6 Channels and RemoteChannels

• A Channel is local to a process. Worker 2 cannot directly refer to a Channel on worker 3 and vice-versa. A

RemoteChannel, however, can put and take values across workers.

• A RemoteChannel can be thought of as a handle to a Channel.

• The process id, pid, associated with a RemoteChannel identifies the process where the backing store, i.e., the

backing Channel exists.

• Any process with a reference to a RemoteChannel can put and take items from the channel. Data is automati-

cally sent to (or retrieved from) the process a RemoteChannel is associated with.

• Serializing aChannel also serializes anydatapresent in the channel. Deserializing it therefore effectivelymakes

a copy of the original object.

• On the other hand, serializing a RemoteChannel only involves the serialization of an identifier that identifies

the location and instance of Channel referred to by the handle. A deserialized RemoteChannel object (on any

worker), therefore also points to the same backing store as the original.

The channels example from above can bemodified for interprocess communication, as shown below.

We start 4 workers to process a single jobs remote channel. Jobs, identified by an id (job_id), are written to the

channel. Each remotely executing task in this simulation reads a job_id, waits for a randomamount of time andwrites

26.7. REMOTE REFERENCES ANDDISTRIBUTEDGARBAGE COLLECTION 253

back a tuple of job_id, time taken and its own pid to the results channel. Finally all the results are printed out on

themaster process.

julia> addprocs(4); # add worker processes

julia> const jobs = RemoteChannel(()->Channel{Int}(32));

julia> const results = RemoteChannel(()->Channel{Tuple}(32));

julia> @everywhere function do_work(jobs, results) # define work function everywhere

while true

job_id = take!(jobs)

exec_time = rand()

sleep(exec_time) # simulates elapsed time doing actual work

put!(results, (job_id, exec_time, myid()))

end

end

julia> function make_jobs(n)

for i in 1:n

put!(jobs, i)

end

end;

julia> n = 12;

julia> @schedule make_jobs(n); # feed the jobs channel with "n" jobs

julia> for p in workers() # start tasks on the workers to process requests in parallel

@async remote_do(do_work, p, jobs, results)

end

julia> @elapsed while n > 0 # print out results

job_id, exec_time, where = take!(results)

println("$job_id finished in $(round(exec_time,2)) seconds on worker $where")

n = n - 1

end

1 finished in 0.18 seconds on worker 4

2 finished in 0.26 seconds on worker 5

6 finished in 0.12 seconds on worker 4

7 finished in 0.18 seconds on worker 4

5 finished in 0.35 seconds on worker 5

4 finished in 0.68 seconds on worker 2

3 finished in 0.73 seconds on worker 3

11 finished in 0.01 seconds on worker 3

12 finished in 0.02 seconds on worker 3

9 finished in 0.26 seconds on worker 5

8 finished in 0.57 seconds on worker 4

10 finished in 0.58 seconds on worker 2

0.055971741

26.7 Remote References andDistributed Garbage Collection

Objects referred to by remote references can be freed only when all held references in the cluster are deleted.

254 CHAPTER 26. GLOBAL VARIABLES

Thenodewherethevalue is storedkeepstrackofwhichof theworkershaveareferenceto it. EverytimeaRemoteChannel

or a (unfetched) Future is serialized to a worker, the node pointed to by the reference is notified. And every time a

RemoteChannel or a (unfetched) Future is garbage collected locally, the node owning the value is again notified.

The notifications are done via sending of "tracking" messages–an "add reference" message when a reference is serial-

ized to a different process and a "delete reference" message when a reference is locally garbage collected.

Since Futures are write-once and cached locally, the act of fetch()ing a Future also updates reference tracking in-

formation on the node owning the value.

The nodewhich owns the value frees it once all references to it are cleared.

With Futures, serializing an already fetched Future to a different node also sends the value since the original remote

storemay have collected the value by this time.

It is important to note thatwhen an object is locally garbage collected depends on the size of the object and the current

memory pressure in the system.

In case of remote references, the size of the local reference object is quite small, while the value stored on the re-

mote node may be quite large. Since the local object may not be collected immediately, it is a good practice to explic-

itly call finalize() on local instances of a RemoteChannel, or on unfetched Futures. Since calling fetch() on a

Future also removes its reference from the remote store, this is not required on fetched Futures. Explicitly calling

finalize() results in an immediate message sent to the remote node to go ahead and remove its reference to the

value.

Once finalized, a reference becomes invalid and cannot be used in any further calls.

26.8 Shared Arrays

SharedArrays use system sharedmemory tomap the same array acrossmany processes. While there are some similar-

ities to a DArray, the behavior of a SharedArray is quite different. In a DArray, each process has local access to just

a chunk of the data, and no two processes share the same chunk; in contrast, in a SharedArray each "participating"

process has access to the entire array. A SharedArray is a good choice when youwant to have a large amount of data

jointly accessible to two ormore processes on the samemachine.

SharedArray indexing (assignment and accessing values) works just as with regular arrays, and is efficient because

the underlyingmemory is available to the local process. Therefore, most algorithmswork naturally on SharedArrays,

albeit in single-process mode. In cases where an algorithm insists on an Array input, the underlying array can be re-

trieved from a SharedArray by calling sdata(). For other AbstractArray types, sdata() just returns the object

itself, so it's safe to use sdata() on any Array-type object.

The constructor for a shared array is of the form:

SharedArray{T,N}(dims::NTuple; init=false, pids=Int[])

which creates an N-dimensional shared array of a bits type T and size dims across the processes specified by pids. Un-

like distributed arrays, a shared array is accessible only from those participating workers specified by the pids named

argument (and the creating process too, if it is on the same host).

If an init function, of signature initfn(S::SharedArray), is specified, it is called on all the participating workers.

You can specify that each worker runs the init function on a distinct portion of the array, thereby parallelizing initial-

ization.

Here's a brief example:

julia> addprocs(3)

3-element Array{Int64,1}:

https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaParallel/DistributedArrays.jl

26.8. SHARED ARRAYS 255

2

3

4

julia> S = SharedArray{Int,2}((3,4), init = S -> S[Base.localindexes(S)] = myid())

3×4 SharedArray{Int64,2}:

2 2 3 4

2 3 3 4

2 3 4 4

julia> S[3,2] = 7

7

julia> S

3×4 SharedArray{Int64,2}:

2 2 3 4

2 3 3 4

2 7 4 4

Base.localindexes()providesdisjointone-dimensional rangesof indexes, and is sometimesconvenient forsplitting

up tasks among processes. You can, of course, divide the work anyway youwish:

julia> S = SharedArray{Int,2}((3,4), init = S -> S[indexpids(S):length(procs(S)):length(S)] =

myid())↪→

3×4 SharedArray{Int64,2}:

2 2 2 2

3 3 3 3

4 4 4 4

Since all processes have access to the underlying data, you do have to be careful not to set up conflicts. For example:

@sync begin

for p in procs(S)

@async begin

remotecall_wait(fill!, p, S, p)

end

end

end

would result in undefined behavior. Because each process fills the entire array with its own pid, whichever process is

the last to execute (for any particular element of S) will have its pid retained.

As amore extended and complex example, consider running the following "kernel" in parallel:

q[i,j,t+1] = q[i,j,t] + u[i,j,t]

In this case, if we try to split up thework using a one-dimensional index, we are likely to run into trouble: if q[i,j,t] is

near theendof theblockassignedtooneworkerandq[i,j,t+1] isnear thebeginningof theblockassignedtoanother,

it's very likely that q[i,j,t]will not be ready at the time it's needed for computing q[i,j,t+1]. In such cases, one

is better off chunking the array manually. Let's split along the second dimension. Define a function that returns the

(irange, jrange) indexes assigned to this worker:

256 CHAPTER 26. GLOBAL VARIABLES

julia> @everywhere function myrange(q::SharedArray)

idx = indexpids(q)

if idx == 0 # This worker is not assigned a piece

return 1:0, 1:0

end

nchunks = length(procs(q))

splits = [round(Int, s) for s in linspace(0,size(q,2),nchunks+1)]

1:size(q,1), splits[idx]+1:splits[idx+1]

end

Next, define the kernel:

julia> @everywhere function advection_chunk!(q, u, irange, jrange, trange)

@show (irange, jrange, trange) # display so we can see what's happening

for t in trange, j in jrange, i in irange

q[i,j,t+1] = q[i,j,t] + u[i,j,t]

end

q

end

We also define a convenience wrapper for a SharedArray implementation

julia> @everywhere advection_shared_chunk!(q, u) =

advection_chunk!(q, u, myrange(q)..., 1:size(q,3)-1)

Now let's compare three different versions, one that runs in a single process:

julia> advection_serial!(q, u) = advection_chunk!(q, u, 1:size(q,1), 1:size(q,2), 1:size(q,3)-1);

one that uses @parallel:

julia> function advection_parallel!(q, u)

for t = 1:size(q,3)-1

@sync @parallel for j = 1:size(q,2)

for i = 1:size(q,1)

q[i,j,t+1]= q[i,j,t] + u[i,j,t]

end

end

end

q

end;

and one that delegates in chunks:

julia> function advection_shared!(q, u)

@sync begin

for p in procs(q)

@async remotecall_wait(advection_shared_chunk!, p, q, u)

end

end

q

end;

26.9. SHARED ARRAYS ANDDISTRIBUTEDGARBAGE COLLECTION 257

If we create SharedArrays and time these functions, we get the following results (with julia -p 4):

julia> q = SharedArray{Float64,3}((500,500,500));

julia> u = SharedArray{Float64,3}((500,500,500));

Run the functions once to JIT-compile and @time them on the second run:

julia> @time advection_serial!(q, u);

(irange,jrange,trange) = (1:500,1:500,1:499)

830.220 milliseconds (216 allocations: 13820 bytes)

julia> @time advection_parallel!(q, u);

2.495 seconds (3999 k allocations: 289 MB, 2.09% gc time)

julia> @time advection_shared!(q,u);

From worker 2: (irange,jrange,trange) = (1:500,1:125,1:499)

From worker 4: (irange,jrange,trange) = (1:500,251:375,1:499)

From worker 3: (irange,jrange,trange) = (1:500,126:250,1:499)

From worker 5: (irange,jrange,trange) = (1:500,376:500,1:499)

238.119 milliseconds (2264 allocations: 169 KB)

The biggest advantage of advection_shared! is that it minimizes traffic among the workers, allowing each to com-

pute for an extended time on the assigned piece.

26.9 Shared Arrays andDistributed Garbage Collection

Like remote references, shared arrays are also dependent on garbage collection on the creating node to release ref-

erences from all participating workers. Code which creates many short lived shared array objects would benefit from

explicitly finalizing these objects as soon as possible. This results in both memory and file handles mapping the shared

segment being released sooner.

26.10 ClusterManagers

The launching, management and networking of Julia processes into a logical cluster is done via cluster managers. A

ClusterManager is responsible for

• launching worker processes in a cluster environment

• managing events during the lifetime of each worker

• optionally, providing data transport

A Julia cluster has the following characteristics:

• The initial Julia process, also called the master, is special and has an id of 1.

• Only the master process can add or removeworker processes.

• All processes can directly communicate with each other.

Connections betweenworkers (using the in-built TCP/IP transport) is established in the followingmanner:

258 CHAPTER 26. GLOBAL VARIABLES

• addprocs() is called on themaster process with a ClusterManager object.

• addprocs() calls the appropriate launch()method which spawns required number of worker processes on

appropriate machines.

• Eachworker starts listening on a free port andwrites out its host and port information to STDOUT.

• The cluster manager captures the STDOUT of each worker andmakes it available to themaster process.

• Themaster process parses this information and sets up TCP/IP connections to eachworker.

• Every worker is also notified of other workers in the cluster.

• Eachworker connects to all workers whose id is less than the worker's own id.

• In this way amesh network is established, wherein every worker is directly connected with every other worker.

While the default transport layer uses plain TCPSocket, it is possible for a Julia cluster to provide its own transport.

Julia provides two in-built cluster managers:

• LocalManager, used when addprocs() or addprocs(np::Integer) are called

• SSHManager, used when addprocs(hostnames::Array) is called with a list of hostnames

LocalManager isusedto launchadditionalworkersonthesamehost, thereby leveragingmulti-coreandmulti-processor

hardware.

Thus, a minimal cluster manager would need to:

• be a subtype of the abstract ClusterManager

• implement launch(), a method responsible for launching newworkers

• implementmanage(), which is called at various events during aworker's lifetime (for example, sending an inter-

rupt signal)

addprocs(manager::FooManager) requires FooManager to implement:

function launch(manager::FooManager, params::Dict, launched::Array, c::Condition)

[...]

end

function manage(manager::FooManager, id::Integer, config::WorkerConfig, op::Symbol)

[...]

end

As an example let us see how the LocalManager, the manager responsible for starting workers on the same host, is

implemented:

26.10. CLUSTERMANAGERS 259

struct LocalManager <: ClusterManager

np::Integer

end

function launch(manager::LocalManager, params::Dict, launched::Array, c::Condition)

[...]

end

function manage(manager::LocalManager, id::Integer, config::WorkerConfig, op::Symbol)

[...]

end

The launch()method takes the following arguments:

• manager::ClusterManager: the cluster manager that addprocs() is called with

• params::Dict: all the keyword arguments passed to addprocs()

• launched::Array: the array to append one ormore WorkerConfig objects to

• c::Condition: the condition variable to be notified as andwhenworkers are launched

Thelaunch()method is calledasynchronously inaseparate task. Theterminationof this tasksignals thatall requested

workers have been launched. Hence the launch() functionMUST exit as soon as all the requestedworkers have been

launched.

Newly launched workers are connected to each other, and the master process, in an all-to-all manner. Specifying the

command argument --worker <cookie> results in the launched processes initializing themselves as workers and

connections being set up via TCP/IP sockets. Optionally, --bind-to bind_addr[:port] may also be specified to

enable other workers to connect to it at the specified bind_addr and port. This is useful for multi-homed hosts.

As an example of a non-TCP/IP transport, an implementation may choose to use MPI, in which case --worker must

NOTbespecified. Instead, newly launchedworkers should callinit_worker(cookie)beforeusinganyof theparallel

constructs.

For every worker launched, the launch()method must add a WorkerConfig object (with appropriate fields initial-

ized) to launched

mutable struct WorkerConfig

Common fields relevant to all cluster managers

io::Nullable{IO}

host::Nullable{AbstractString}

port::Nullable{Integer}

Used when launching additional workers at a host

count::Nullable{Union{Int, Symbol}}

exename::Nullable{AbstractString}

exeflags::Nullable{Cmd}

External cluster managers can use this to store information at a per-worker level

Can be a dict if multiple fields need to be stored.

userdata::Nullable{Any}

SSHManager / SSH tunnel connections to workers

tunnel::Nullable{Bool}

260 CHAPTER 26. GLOBAL VARIABLES

bind_addr::Nullable{AbstractString}

sshflags::Nullable{Cmd}

max_parallel::Nullable{Integer}

connect_at::Nullable{Any}

[...]

end

Mostof thefields inWorkerConfig areusedby the inbuiltmanagers. Customclustermanagerswould typically specify

only io or host / port:

• If io is specified, it is used to read host/port information. A Julia worker prints out its bind address and port

at startup. This allows Julia workers to listen on any free port available instead of requiring worker ports to be

configuredmanually.

• If io is not specified, host and port are used to connect.

• count, exename and exeflags are relevant for launching additional workers from a worker. For example, a

cluster manager may launch a single worker per node, and use that to launch additional workers.

– countwith an integer value nwill launch a total of nworkers.

– countwith a value of :autowill launch asmanyworkers as the number of cores on that machine.

– exename is the name of the julia executable including the full path.

– exeflags should be set to the required command line arguments for newworkers.

• tunnel, bind_addr, sshflags and max_parallel are used when a ssh tunnel is required to connect to the

workers from themaster process.

• userdata is provided for custom cluster managers to store their ownworker-specific information.

manage(manager::FooManager, id::Integer, config::WorkerConfig, op::Symbol) is calledatdifferent

times during the worker's lifetimewith appropriate op values:

• with :register/:deregisterwhen aworker is added / removed from the Julia worker pool.

• with :interruptwhen interrupt(workers) is called. The ClusterManager should signal the appropriate

worker with an interrupt signal.

• with :finalize for cleanup purposes.

26.11 ClusterManagers with Custom Transports

Replacing the default TCP/IP all-to-all socket connections with a custom transport layer is a little more involved. Each

Julia process has as many communication tasks as the workers it is connected to. For example, consider a Julia cluster

of 32 processes in an all-to-all mesh network:

• Each Julia process thus has 31 communication tasks.

• Each task handles all incomingmessages from a single remote worker in amessage-processing loop.

• The message-processing loop waits on an IO object (for example, a TCPSocket in the default implementation),

reads an entire message, processes it andwaits for the next one.

26.12. NETWORK REQUIREMENTS FOR LOCALMANAGER AND SSHMANAGER 261

• Sending messages to a process is done directly from any Julia task–not just communication tasks–again, via the

appropriate IO object.

Replacing the default transport requires the new implementation to set up connections to remoteworkers and to pro-

vide appropriate IO objects that the message-processing loops can wait on. The manager-specific callbacks to be im-

plemented are:

connect(manager::FooManager, pid::Integer, config::WorkerConfig)

kill(manager::FooManager, pid::Int, config::WorkerConfig)

The default implementation (which uses TCP/IP sockets) is implemented as connect(manager::ClusterManager,

pid::Integer, config::WorkerConfig).

connect should return a pair ofIO objects, one for reading data sent fromworkerpid, and the other towrite data that

needs to be sent to worker pid. Custom cluster managers can use an in-memory BufferStream as the plumbing to

proxy data between the custom, possibly non-IO transport and Julia's in-built parallel infrastructure.

ABufferStream is an in-memoryIOBufferwhichbehaves likeanIO–it isastreamwhichcanbehandledasynchronously.

Folder examples/clustermanager/0mq contains an example of using ZeroMQ to connect Julia workers in a star

topology with a 0MQbroker in themiddle. Note: The Julia processes are still all logically connected to each other–any

worker canmessage any other worker directly without any awareness of 0MQbeing used as the transport layer.

When using custom transports:

• Julia workers must NOT be started with --worker. Starting with --worker will result in the newly launched

workers defaulting to the TCP/IP socket transport implementation.

• For every incoming logical connection with a worker, Base.process_messages(rd::IO, wr::IO)()must

becalled. This launchesanewtask thathandles readingandwritingofmessages from/to theworker represented

by the IO objects.

• init_worker(cookie, manager::FooManager)MUST be called as part of worker process initialization.

• Field connect_at::Any in WorkerConfig can be set by the cluster manager when launch() is called. The

value of this field is passed in in all connect() callbacks. Typically, it carries information on how to connect to a

worker. For example, the TCP/IP socket transport uses this field to specify the (host, port) tuple at which to

connect to a worker.

kill(manager, pid, config) is called to remove a worker from the cluster. On the master process, the corre-

sponding IO objectsmust be closed by the implementation to ensure proper cleanup. The default implementation sim-

ply executes an exit() call on the specified remote worker.

examples/clustermanager/simple is an example that shows a simple implementation usingUNIX domain sockets

for cluster setup.

26.12 Network Requirements for LocalManager and SSHManager

Julia clusters are designed to be executed on already secured environments on infrastructure such as local laptops, de-

partmental clusters, oreventhecloud. This sectioncoversnetworksecurity requirements for the inbuiltLocalManager

and SSHManager:

• Themaster process does not listen on any port. It only connects out to the workers.

262 CHAPTER 26. GLOBAL VARIABLES

• Eachworker binds to only one of the local interfaces and listens on the first free port starting from 9009.

• LocalManager, used by addprocs(N), by default binds only to the loopback interface. This means that work-

ers started later on remote hosts (or by anyone with malicious intentions) are unable to connect to the clus-

ter. An addprocs(4) followed by an addprocs(["remote_host"]) will fail. Some users may need to cre-

ate a cluster comprising their local system and a few remote systems. This can be done by explicitly requesting

LocalManager to bind to an external network interface via the restrict keyword argument: addprocs(4;

restrict=false).

• SSHManager, used by addprocs(list_of_remote_hosts), launches workers on remote hosts via SSH. By

default SSH is only used to launch Julia workers. Subsequent master-worker and worker-worker connections

use plain, unencrypted TCP/IP sockets. The remote hosts must have passwordless login enabled. Additional

SSH flags or credentials may be specified via keyword argument sshflags.

• addprocs(list_of_remote_hosts; tunnel=true, sshflags=<ssh keys and other flags>) isuse-

ful when we wish to use SSH connections for master-worker too. A typical scenario for this is a local laptop

running the Julia REPL (i.e., the master) with the rest of the cluster on the cloud, say on Amazon EC2. In this

case only port 22 needs to be opened at the remote cluster coupled with SSH client authenticated via public

key infrastructure (PKI). Authentication credentials can be supplied via sshflags, for example sshflags=`-e

<keyfile>`.

Note thatworker-worker connections are still plain TCPand the local security policy on the remote clustermust

allow for free connections betweenworker nodes, at least for ports 9009 and above.

Securing and encrypting all worker-worker traffic (via SSH) or encrypting individual messages can be done via a

customClusterManager.

26.13 Cluster Cookie

All processes in a cluster share the same cookiewhich, by default, is a randomly generated string on themaster process:

• Base.cluster_cookie() returns the cookie, while Base.cluster_cookie(cookie)() sets it and returns

the new cookie.

• All connections are authenticated on both sides to ensure that only workers started by the master are allowed

to connect to each other.

• The cookiemust be passed to theworkers at startup via argument --worker <cookie>. CustomClusterMan-

agers can retrieve the cookie on the master by calling Base.cluster_cookie(). Cluster managers not using

thedefaultTCP/IPtransport (andhencenotspecifying--worker)mustcallinit_worker(cookie, manager)

with the same cookie as on themaster.

Note that environments requiring higher levels of security can implement this via a custom ClusterManager. For

example, cookies can be pre-shared and hence not specified as a startup argument.

26.14 Specifying Network Topology (Experimental)

The keyword argument topology passed to addprocs is used to specify how the workers must be connected to each

other:

• :all_to_all, the default: all workers are connected to each other.

• :master_slave: only the driver process, i.e. pid 1, has connections to the workers.

26.15. MULTI-THREADING (EXPERIMENTAL) 263

• :custom: thelaunchmethodof the clustermanager specifies the connection topology via the fieldsident and

connect_idents inWorkerConfig. Aworkerwith a cluster-manager-provided identityidentwill connect to

all workers specified in connect_idents.

Currently, sending amessage between unconnectedworkers results in an error. This behaviour, aswith the functional-

ity and interface, should be considered experimental in nature andmay change in future releases.

26.15 Multi-Threading (Experimental)

Inadditiontotasks, remotecalls, andremotereferences, Julia fromv0.5 forwardswill nativelysupportmulti-threading.

Note that this section is experimental and the interfaces may change in the future.

Setup

Bydefault, Julia startsupwithasingle threadofexecution. ThiscanbeverifiedbyusingthecommandThreads.nthreads():

julia> Threads.nthreads()

1

The number of threads Julia starts upwith is controlled by an environment variable calledJULIA_NUM_THREADS. Now,

let's start up Julia with 4 threads:

export JULIA_NUM_THREADS=4

(The above command works on bourne shells on Linux and OSX. Note that if you're using a C shell on these platforms,

you should use the keyword set instead of export. If you're onWindows, start up the command line in the location of

julia.exe and use set instead of export.)

Let's verify there are 4 threads at our disposal.

julia> Threads.nthreads()

4

But we are currently on themaster thread. To check, we use the command Threads.threadid()

julia> Threads.threadid()

1

The @threadsMacro

Let's work a simple example using our native threads. Let us create an array of zeros:

julia> a = zeros(10)

10-element Array{Float64,1}:

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

264 CHAPTER 26. GLOBAL VARIABLES

Letusoperateonthisarraysimultaneouslyusing4threads. We'll haveeachthreadwrite its thread ID intoeach location.

Julia supportsparallel loopsusing theThreads.@threadsmacro. Thismacro isaffixed in frontofafor loop to indicate

to Julia that the loop is a multi-threaded region:

julia> Threads.@threads for i = 1:10

a[i] = Threads.threadid()

end

The iteration space is split amongst the threads, after which each threadwrites its thread ID to its assigned locations:

julia> a

10-element Array{Float64,1}:

1.0

1.0

1.0

2.0

2.0

2.0

3.0

3.0

4.0

4.0

Note that Threads.@threads does not have an optional reduction parameter like @parallel.

26.16 @threadcall (Experimental)

All I/O tasks, timers, REPL commands, etc aremultiplexed onto a single OS thread via an event loop. A patched version

of libuv (http://docs.libuv.org/en/v1.x/) provides this functionality. Yield points provide for co-operatively scheduling

multiple tasksonto the sameOS thread. I/O tasks and timers yield implicitlywhilewaiting for theevent tooccur. Calling

yield() explicitly allows for other tasks to be scheduled.

Thus, a task executing a ccall effectively prevents the Julia scheduler from executing any other tasks till the call re-

turns. This is true for all calls into external libraries. Exceptions are calls into custom C code that call back into Julia

(whichmay then yield) or C code that calls jl_yield() (C equivalent of yield()).

Note that while Julia code runs on a single thread (by default), libraries used by Julia may launch their own internal

threads. For example, the BLAS librarymay start as many threads as there are cores on amachine.

The @threadcall macro addresses scenarios where we do not want a ccall to block the main Julia event loop. It

schedules a C function for execution in a separate thread. A threadpool with a default size of 4 is used for this. The size

of the threadpool is controlled via environment variable UV_THREADPOOL_SIZE. While waiting for a free thread, and

during function execution once a thread is available, the requesting task (on the main Julia event loop) yields to other

tasks. Note that @threadcall does not return till the execution is complete. From a user point of view, it is therefore

a blocking call like other Julia APIs.

It is very important that the called function does not call back into Julia.

@threadcallmay be removed/changed in future versions of Julia.

1In this context,MPI refers to theMPI-1 standard. BeginningwithMPI-2, theMPI standards committee introduced anewset of communication

mechanisms, collectively referred to as Remote Memory Access (RMA). The motivation for adding RMA to the MPI standard was to facilitate one-

sided communication patterns. For additional information on the latestMPI standard, see http://mpi-forum.org/docs.

http://docs.libuv.org/en/v1.x/
http://mpi-forum.org/docs/

Chapter 27

Date andDateTime

The Datesmodule provides two types for working with dates: Date and DateTime, representing day andmillisecond

precision, respectively; both are subtypes of the abstract TimeType. The motivation for distinct types is simple: some

operations are much simpler, both in terms of code and mental reasoning, when the complexities of greater precision

don't have to be dealt with. For example, since the Date type only resolves to the precision of a single date (i.e. no

hours, minutes, or seconds), normal considerations for time zones, daylight savings/summer time, and leap seconds are

unnecessary and avoided.

Both Date and DateTime are basically immutable Int64wrappers. The single instant field of either type is actually

a UTInstant{P} type, which represents a continuously increasing machine timeline based on the UT second 1. The

DateTime type is not awareof timezones (naive, inPythonparlance), analogous toa LocalDateTime in Java8. Additional

time zone functionality can be added through the TimeZones.jl package, which compiles the IANA time zone database.

Both Date and DateTime are based on the ISO 8601 standard, which follows the proleptic Gregorian calendar. One

note is that the ISO8601standard is particular aboutBC/BCEdates. In general, the last dayof theBC/BCEera, 1-12-31

BC/BCE, was followed by 1-1-1 AD/CE, thus no year zero exists. The ISO standard, however, states that 1 BC/BCE is

year zero, so 0000-12-31 is the day before 0001-01-01, and year -0001 (yes, negative one for the year) is 2 BC/BCE,

year -0002 is 3 BC/BCE, etc.

27.1 Constructors

Date and DateTime types can be constructed by integer or Period types, by parsing, or through adjusters (more on

those later):

julia> DateTime(2013)

2013-01-01T00:00:00

julia> DateTime(2013,7)

2013-07-01T00:00:00

julia> DateTime(2013,7,1)

2013-07-01T00:00:00

1The notion of the UT second is actually quite fundamental. There are basically two different notions of time generally accepted, one based on

the physical rotation of the earth (one full rotation = 1 day), the other based on the SI second (a fixed, constant value). These are radically different!

Think about it, a "UT second", as defined relative to the rotation of the earth,may have a different absolute length depending on the day! Anyway, the

fact thatDate andDateTime are based onUT seconds is a simplifying, yet honest assumption so that things like leap seconds and all their complexity

can be avoided. This basis of time is formally called UT or UT1. Basing types on theUT second basicallymeans that everyminute has 60 seconds and

every day has 24 hours and leads tomore natural calculations whenworking with calendar dates.

265

https://github.com/JuliaTime/TimeZones.jl/
http://www.iana.org/time-zones
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Universal_Time

266 CHAPTER 27. DATE ANDDATETIME

julia> DateTime(2013,7,1,12)

2013-07-01T12:00:00

julia> DateTime(2013,7,1,12,30)

2013-07-01T12:30:00

julia> DateTime(2013,7,1,12,30,59)

2013-07-01T12:30:59

julia> DateTime(2013,7,1,12,30,59,1)

2013-07-01T12:30:59.001

julia> Date(2013)

2013-01-01

julia> Date(2013,7)

2013-07-01

julia> Date(2013,7,1)

2013-07-01

julia> Date(Dates.Year(2013),Dates.Month(7),Dates.Day(1))

2013-07-01

julia> Date(Dates.Month(7),Dates.Year(2013))

2013-07-01

Date or DateTime parsing is accomplished by the use of format strings. Format strings work by the notion of defining

delimited or fixed-width "slots" that contain a period to parse and passing the text to parse and format string to a Date

or DateTime constructor, of the form Date("2015-01-01","y-m-d") or DateTime("20150101","yyyymmdd").

Delimited slots are marked by specifying the delimiter the parser should expect between two subsequent periods; so

"y-m-d" lets the parser know that between the first and second slots in a date string like"2014-07-16", it should find

the - character. The y, m, and d characters let the parser knowwhich periods to parse in each slot.

Fixed-width slots are specified by repeating the period character the number of times corresponding to thewidthwith

no delimiter between characters. So "yyyymmdd" would correspond to a date string like "20140716". The parser

distinguishes afixed-width slot by theabsenceof adelimiter, noting the transition"yyyymm" fromoneperiod character

to the next.

Support for text-formmonth parsing is also supported through the u and U characters, for abbreviated and full-length

month names, respectively. By default, only English month names are supported, so u corresponds to "Jan", "Feb",

"Mar", etc. And U corresponds to "January", "February", "March", etc. Similar to other name=>value mapping func-

tions dayname() and monthname(), custom locales can be loaded by passing in the locale=>Dict{String,Int}

mapping to the MONTHTOVALUEABBR and MONTHTOVALUE dicts for abbreviated and full-name month names, respec-

tively.

One note on parsing performance: using the Date(date_string,format_string) function is fine if only called a

few times. If there are many similarly formatted date strings to parse however, it is much more efficient to first create

a Dates.DateFormat, and pass it instead of a raw format string.

julia> df = DateFormat("y-m-d");

julia> dt = Date("2015-01-01",df)

2015-01-01

27.2. DURATIONS/COMPARISONS 267

julia> dt2 = Date("2015-01-02",df)

2015-01-02

You can also use the dateformat"" stringmacro. This macro creates the DateFormat object oncewhen themacro is

expanded and uses the same DateFormat object even if a code snippet is runmultiple times.

julia> for i = 1:10^5

Date("2015-01-01", dateformat"y-m-d")

end

A full suite of parsing and formatting tests and examples is available in tests/dates/io.jl.

27.2 Durations/Comparisons

Finding the length of time between two Date or DateTime is straightforward given their underlying representation

as UTInstant{Day} and UTInstant{Millisecond}, respectively. The difference between Date is returned in the

number of Day, and DateTime in the number of Millisecond. Similarly, comparing TimeType is a simple matter of

comparing the underlyingmachine instants (which in turn compares the internal Int64 values).

julia> dt = Date(2012,2,29)

2012-02-29

julia> dt2 = Date(2000,2,1)

2000-02-01

julia> dump(dt)

Date

instant: Base.Dates.UTInstant{Base.Dates.Day}

periods: Base.Dates.Day

value: Int64 734562

julia> dump(dt2)

Date

instant: Base.Dates.UTInstant{Base.Dates.Day}

periods: Base.Dates.Day

value: Int64 730151

julia> dt > dt2

true

julia> dt != dt2

true

julia> dt + dt2

ERROR: MethodError: no method matching +(::Date, ::Date)

[...]

julia> dt * dt2

ERROR: MethodError: no method matching *(::Date, ::Date)

[...]

julia> dt / dt2

ERROR: MethodError: no method matching /(::Date, ::Date)

https://github.com/JuliaLang/julia/blob/master/test/dates/io.jl

268 CHAPTER 27. DATE ANDDATETIME

[...]

julia> dt - dt2

4411 days

julia> dt2 - dt

-4411 days

julia> dt = DateTime(2012,2,29)

2012-02-29T00:00:00

julia> dt2 = DateTime(2000,2,1)

2000-02-01T00:00:00

julia> dt - dt2

381110400000 milliseconds

27.3 Accessor Functions

Because the Date and DateTime types are stored as single Int64 values, date parts or fields can be retrieved through

accessor functions. The lowercase accessors return the field as an integer:

julia> t = Date(2014, 1, 31)

2014-01-31

julia> Dates.year(t)

2014

julia> Dates.month(t)

1

julia> Dates.week(t)

5

julia> Dates.day(t)

31

While propercase return the same value in the corresponding Period type:

julia> Dates.Year(t)

2014 years

julia> Dates.Day(t)

31 days

Compoundmethods are provided, as theyprovide ameasureof efficiency ifmultiple fields are neededat the same time:

julia> Dates.yearmonth(t)

(2014, 1)

julia> Dates.monthday(t)

(1, 31)

julia> Dates.yearmonthday(t)

(2014, 1, 31)

Onemay also access the underlying UTInstant or integer value:

27.4. QUERY FUNCTIONS 269

julia> dump(t)

Date

instant: Base.Dates.UTInstant{Base.Dates.Day}

periods: Base.Dates.Day

value: Int64 735264

julia> t.instant

Base.Dates.UTInstant{Base.Dates.Day}(735264 days)

julia> Dates.value(t)

735264

27.4 Query Functions

Query functions provide calendrical information about a TimeType. They include information about the day of the

week:

julia> t = Date(2014, 1, 31)

2014-01-31

julia> Dates.dayofweek(t)

5

julia> Dates.dayname(t)

"Friday"

julia> Dates.dayofweekofmonth(t) # 5th Friday of January

5

Month of the year:

julia> Dates.monthname(t)

"January"

julia> Dates.daysinmonth(t)

31

Aswell as information about the TimeType's year and quarter:

julia> Dates.isleapyear(t)

false

julia> Dates.dayofyear(t)

31

julia> Dates.quarterofyear(t)

1

julia> Dates.dayofquarter(t)

31

The dayname() and monthname()methods can also take an optional locale keyword that can be used to return the

name of the day or month of the year for other languages/locales. There are also versions of these functions returning

the abbreviated names, namely dayabbr() and monthabbr(). First themapping is loaded into the LOCALES variable:

julia> french_months = ["janvier", "février", "mars", "avril", "mai", "juin",

270 CHAPTER 27. DATE ANDDATETIME

"juillet", "août", "septembre", "octobre", "novembre", "décembre"];

julia> french_monts_abbrev = ["janv","févr","mars","avril","mai","juin",

"juil","août","sept","oct","nov","déc"];

julia> french_days = ["lundi","mardi","mercredi","jeudi","vendredi","samedi","dimanche"];

julia> Dates.LOCALES["french"] = Dates.DateLocale(french_months, french_monts_abbrev, french_days

, [""]);

The abovementioned functions can then be used to perform the queries:

julia> Dates.dayname(t;locale="french")

"vendredi"

julia> Dates.monthname(t;locale="french")

"janvier"

julia> Dates.monthabbr(t;locale="french")

"janv"

Since the abbreviated versions of the days are not loaded, trying to use the function dayabbr()will error.

julia> Dates.dayabbr(t;locale="french")

ERROR: BoundsError: attempt to access 1-element Array{String,1} at index [5]

Stacktrace:

[1] #dayabbr#6(::String, ::Function, ::Int64) at ./dates/query.jl:114

[2] (::Base.Dates.#kw##dayabbr)(::Array{Any,1}, ::Base.Dates.#dayabbr, ::Int64) at ./<missing>:0

(repeats 2 times)

27.5 TimeType-Period Arithmetic

It's good practice when using any language/date framework to be familiar with how date-period arithmetic is handled

as there are some tricky issues to deal with (thoughmuch less so for day-precision types).

The Dates module approach tries to follow the simple principle of trying to change as little as possible when doing

Period arithmetic. This approach is also often known as calendrical arithmetic or what you would probably guess if

someoneweretoaskyouthesamecalculation inaconversation. Whyall the fussabout this? Let's takeaclassicexample:

add1month to January31st, 2014. What's the answer? Javascriptwill sayMarch3 (assumes31days). PHPsaysMarch

2 (assumes30days). The fact is, there is no right answer. In theDatesmodule, it gives the result of February28th. How

does it figure that out? I like to think of the classic 7-7-7 gambling game in casinos.

Now just imagine that instead of 7-7-7, the slots are Year-Month-Day, or in our example, 2014-01-31. When you ask to

add 1month to this date, themonth slot is incremented, so nowwe have 2014-02-31. Then the day number is checked

if it is greater than the last valid day of the new month; if it is (as in the case above), the day number is adjusted down

to the last valid day (28). What are the ramifications with this approach? Go ahead and add anothermonth to our date,

2014-02-28 + Month(1) == 2014-03-28. What? Were youexpecting the last dayofMarch? Nope, sorry, remem-

ber the 7-7-7 slots. As few slots as possible are going to change, sowe first increment themonth slot by 1, 2014-03-28,

and boom, we're done because that's a valid date. On the other hand, if we were to add 2 months to our original date,

2014-01-31, then we end up with 2014-03-31, as expected. The other ramification of this approach is a loss in asso-

ciativity when a specific ordering is forced (i.e. adding things in different orders results in different outcomes). For

example:

julia> (Date(2014,1,29)+Dates.Day(1)) + Dates.Month(1)

2014-02-28

https://codeblog.jonskeet.uk/2010/12/01/the-joys-of-date-time-arithmetic/
http://www.markhneedham.com/blog/2009/01/07/javascript-add-a-month-to-a-date/
http://stackoverflow.com/questions/5760262/php-adding-months-to-a-date-while-not-exceeding-the-last-day-of-the-month
http://stackoverflow.com/questions/5760262/php-adding-months-to-a-date-while-not-exceeding-the-last-day-of-the-month

27.6. ADJUSTER FUNCTIONS 271

julia> (Date(2014,1,29)+Dates.Month(1)) + Dates.Day(1)

2014-03-01

What's going on there? In the first line, we're adding 1 day to January 29th, which results in 2014-01-30; then we add

1month, so we get 2014-02-30, which then adjusts down to 2014-02-28. In the second example, we add 1month first,

where we get 2014-02-29, which adjusts down to 2014-02-28, and then add 1 day, which results in 2014-03-01. One

design principle that helps in this case is that, in the presence ofmultiple Periods, the operations will be ordered by the

Periods' types, not their value or positional order; this means Yearwill always be added first, then Month, then Week,

etc. Hence the following does result in associativity and JustWorks:

julia> Date(2014,1,29) + Dates.Day(1) + Dates.Month(1)

2014-03-01

julia> Date(2014,1,29) + Dates.Month(1) + Dates.Day(1)

2014-03-01

Tricky? Perhaps. What is an innocent Dates user to do? The bottom line is to be aware that explicitly forcing a certain

associativity, when dealing with months, may lead to some unexpected results, but otherwise, everything should work

as expected. Thankfully, that's pretty much the extent of the odd cases in date-period arithmetic when dealing with

time in UT (avoiding the "joys" of dealing with daylight savings, leap seconds, etc.).

As a bonus, all period arithmetic objects work directly with ranges:

julia> dr = Date(2014,1,29):Date(2014,2,3)

2014-01-29:1 day:2014-02-03

julia> collect(dr)

6-element Array{Date,1}:

2014-01-29

2014-01-30

2014-01-31

2014-02-01

2014-02-02

2014-02-03

julia> dr = Date(2014,1,29):Dates.Month(1):Date(2014,07,29)

2014-01-29:1 month:2014-07-29

julia> collect(dr)

7-element Array{Date,1}:

2014-01-29

2014-02-28

2014-03-29

2014-04-29

2014-05-29

2014-06-29

2014-07-29

27.6 Adjuster Functions

As convenient as date-period arithmetics are, often the kinds of calculations needed on dates take on a calendrical or

temporalnaturerather thanafixednumberofperiods. Holidaysareaperfectexample;most followrules suchas "Memo-

rial Day = Last Monday of May", or "Thanksgiving = 4th Thursday of November". These kinds of temporal expressions

272 CHAPTER 27. DATE ANDDATETIME

deal with rules relative to the calendar, like first or last of the month, next Tuesday, or the first and thirdWednesdays,

etc.

The Datesmodule provides the adjuster API through several convenient methods that aid in simply and succinctly ex-

pressing temporal rules. The first group of adjustermethods dealwith the first and last ofweeks,months, quarters, and

years. They each take a single TimeType as input and return or adjust to the first or last of the desired period relative

to the input.

julia> Dates.firstdayofweek(Date(2014,7,16)) # Adjusts the input to the Monday of the input's week

2014-07-14

julia> Dates.lastdayofmonth(Date(2014,7,16)) # Adjusts to the last day of the input's month

2014-07-31

julia> Dates.lastdayofquarter(Date(2014,7,16)) # Adjusts to the last day of the input's quarter

2014-09-30

The next two higher-order methods, tonext(), and toprev(), generalize working with temporal expressions by tak-

ing a DateFunction as first argument, along with a starting TimeType. A DateFunction is just a function, usually

anonymous, that takes a single TimeType as input and returns a Bool, true indicating a satisfied adjustment criterion.

For example:

julia> istuesday = x->Dates.dayofweek(x) == Dates.Tuesday # Returns true if the day of the week of

x is Tuesday↪→

(::#1) (generic function with 1 method)

julia> Dates.tonext(istuesday, Date(2014,7,13)) # 2014-07-13 is a Sunday

2014-07-15

julia> Dates.tonext(Date(2014,7,13), Dates.Tuesday) # Convenience method provided for day of the

week adjustments↪→

2014-07-15

This is useful with the do-block syntax for more complex temporal expressions:

julia> Dates.tonext(Date(2014,7,13)) do x

Return true on the 4th Thursday of November (Thanksgiving)

Dates.dayofweek(x) == Dates.Thursday &&

Dates.dayofweekofmonth(x) == 4 &&

Dates.month(x) == Dates.November

end

2014-11-27

The Base.filter()method can be used to obtain all valid dates/moments in a specified range:

Pittsburgh street cleaning; Every 2nd Tuesday from April to November

Date range from January 1st, 2014 to January 1st, 2015

julia> dr = Dates.Date(2014):Dates.Date(2015);

julia> filter(dr) do x

Dates.dayofweek(x) == Dates.Tue &&

Dates.April <= Dates.month(x) <= Dates.Nov &&

Dates.dayofweekofmonth(x) == 2

27.7. PERIOD TYPES 273

end

8-element Array{Date,1}:

2014-04-08

2014-05-13

2014-06-10

2014-07-08

2014-08-12

2014-09-09

2014-10-14

2014-11-11

Additional examples and tests are available in test/dates/adjusters.jl.

27.7 Period Types

Periods are a human view of discrete, sometimes irregular durations of time. Consider 1 month; it could represent,

in days, a value of 28, 29, 30, or 31 depending on the year and month context. Or a year could represent 365 or 366

days in the case of a leap year. Period types are simple Int64wrappers and are constructed by wrapping any Int64

convertible type, i.e. Year(1) orMonth(3.0). Arithmetic between Period of the same type behave like integers, and

limited Period-Real arithmetic is available.

julia> y1 = Dates.Year(1)

1 year

julia> y2 = Dates.Year(2)

2 years

julia> y3 = Dates.Year(10)

10 years

julia> y1 + y2

3 years

julia> div(y3,y2)

5

julia> y3 - y2

8 years

julia> y3 % y2

0 years

julia> div(y3,3) # mirrors integer division

3 years

27.8 Rounding

DateandDateTimevaluescanberoundedtoaspecifiedresolution (e.g., 1monthor15minutes)withfloor(),ceil(),

or round():

julia> floor(Date(1985, 8, 16), Dates.Month)

1985-08-01

https://github.com/JuliaLang/julia/blob/master/test/dates/adjusters.jl

274 CHAPTER 27. DATE ANDDATETIME

julia> ceil(DateTime(2013, 2, 13, 0, 31, 20), Dates.Minute(15))

2013-02-13T00:45:00

julia> round(DateTime(2016, 8, 6, 20, 15), Dates.Day)

2016-08-07T00:00:00

Unlike the numeric round()method, which breaks ties toward the even number by default, the TimeTyperound()

method uses the RoundNearestTiesUp rounding mode. (It's difficult to guess what breaking ties to nearest "even"

TimeTypewould entail.) Further details on the available RoundingMode s can be found in the API reference.

Roundingshouldgenerallybehaveasexpected, but therearea fewcases inwhich theexpectedbehaviour isnotobvious.

Rounding Epoch

In many cases, the resolution specified for rounding (e.g., Dates.Second(30)) divides evenly into the next largest pe-

riod (in this case, Dates.Minute(1)). But rounding behaviour in cases in which this is not truemay lead to confusion.

What is the expected result of rounding a DateTime to the nearest 10 hours?

julia> round(DateTime(2016, 7, 17, 11, 55), Dates.Hour(10))

2016-07-17T12:00:00

That may seem confusing, given that the hour (12) is not divisible by 10. The reason that 2016-07-17T12:00:00was

chosen is that it is 17,676,660 hours after 0000-01-01T00:00:00, and 17,676,660 is divisible by 10.

As Julia Date and DateTime values are represented according to the ISO 8601 standard, 0000-01-01T00:00:00

was chosen as base (or "rounding epoch") from which to begin the count of days (and milliseconds) used in rounding

calculations. (Note that this differs slightly from Julia's internal representation of Date s using Rata Die notation; but

since the ISO8601 standard ismost visible to the enduser,0000-01-01T00:00:00was chosen as the rounding epoch

instead of the 0000-12-31T00:00:00 used internally tominimize confusion.)

The only exception to the use of 0000-01-01T00:00:00 as the rounding epoch is when rounding toweeks. Rounding

to the nearest week will always return a Monday (the first day of the week as specified by ISO 8601). For this reason,

we use 0000-01-03T00:00:00 (the first day of the first week of year 0000, as defined by ISO 8601) as the basewhen

rounding to a number of weeks.

Here is a related case inwhich the expected behaviour is not necessarily obvious: What happenswhenwe round to the

nearest P(2), where P is a Period type? In some cases (specifically, when P <: Dates.TimePeriod) the answer is

clear:

julia> round(DateTime(2016, 7, 17, 8, 55, 30), Dates.Hour(2))

2016-07-17T08:00:00

julia> round(DateTime(2016, 7, 17, 8, 55, 30), Dates.Minute(2))

2016-07-17T08:56:00

This seems obvious, because two of each of these periods still divides evenly into the next larger order period. But in

the case of twomonths (which still divides evenly into one year), the answermay be surprising:

julia> round(DateTime(2016, 7, 17, 8, 55, 30), Dates.Month(2))

2016-07-01T00:00:00

27.8. ROUNDING 275

Why round to the first day in July, even though it ismonth 7 (an odd number)? The key is thatmonths are 1-indexed (the

first month is assigned 1), unlike hours, minutes, seconds, andmilliseconds (the first of which are assigned 0).

This means that rounding a DateTime to an even multiple of seconds, minutes, hours, or years (because the ISO 8601

specification includes a year zero)will result in a DateTimewith an even value in that field, while rounding a DateTime

to an even multiple of months will result in the months field having an odd value. Because both months and years may

contain an irregular number of days,whether rounding to an evennumber of dayswill result in an even value in thedays

field is uncertain.

See the API reference for additional information onmethods exported from the Datesmodule.

Chapter 28

InteractingWith Julia

Julia comeswith a full-featured interactive command-line REPL (read-eval-print loop) built into the julia executable.

In addition to allowing quick and easy evaluation of Julia statements, it has a searchable history, tab-completion, many

helpful keybindings, and dedicated help and shell modes. The REPL can be started by simply calling julia with no

arguments or double-clicking on the executable:

$ julia

_

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: https://docs.julialang.org

_ _ _| |_ __ _ | Type "?help" for help.

| | | | | | |/ _` | |

| | |_| | | | (_| | | Version 0.6.0-dev.2493 (2017-01-31 18:53 UTC)

_/ |__'_|_|_|__'_| | Commit c99e12c* (0 days old master)

|__/ | x86_64-linux-gnu

julia>

Toexit the interactivesession, type^D–thecontrolkeytogetherwith thedkeyonablank line–or typequit() followed

by the return or enter key. The REPL greets youwith a banner and a julia> prompt.

28.1 The different promptmodes

The Julianmode

The REPL has four main modes of operation. The first andmost common is the Julian prompt. It is the default mode of

operation; each new line initially starts with julia>. It is here that you can enter Julia expressions. Hitting return or

enter after a complete expression has been enteredwill evaluate the entry and show the result of the last expression.

julia> string(1 + 2)

"3"

There are a number useful features unique to interactive work. In addition to showing the result, the REPL also binds

the result to the variable ans. A trailing semicolon on the line can be used as a flag to suppress showing the result.

julia> string(3 * 4);

julia> ans

"12"

277

278 CHAPTER 28. INTERACTINGWITH JULIA

In Julia mode, the REPL supports something called prompt pasting. This activates when pasting text that starts with

julia>  into the REPL. In that case, only expressions starting with julia>  are parsed, others are removed. This

makes it is possible to paste a chunk of code that has been copied from a REPL session without having to scrub away

promptsandoutputs. This feature isenabledbydefaultbutcanbedisabledorenabledatwillwithBase.REPL.enable_promptpaste(::Bool).

If it is enabled, you can try it out bypasting the codeblock above this paragraph straight into theREPL. This featuredoes

not work on the standardWindows command prompt due to its limitation at detecting when a paste occurs.

Helpmode

When the cursor is at the beginning of the line, the prompt can be changed to a helpmodeby typing?. Juliawill attempt

to print help or documentation for anything entered in helpmode:

julia> ? # upon typing ?, the prompt changes (in place) to: help?>

help?> string

search: string String stringmime Cstring Cwstring RevString readstring randstring bytestring

SubString↪→

string(xs...)

Create a string from any values using the print function.

Macros, types and variables can also be queried:

help?> @time

@time

A macro to execute an expression, printing the time it took to execute, the number of

allocations,

and the total number of bytes its execution caused to be allocated, before returning the value

of the

expression.

See also @timev, @timed, @elapsed, and @allocated.

help?> AbstractString

search: AbstractString AbstractSparseMatrix AbstractSparseVector AbstractSet

No documentation found.

Summary:

abstract AbstractString <: Any

Subtypes:

Base.Test.GenericString

DirectIndexString

String

Helpmode can be exited by pressing backspace at the beginning of the line.

28.2. KEY BINDINGS 279

Shell mode

Just ashelpmode isuseful forquickaccess todocumentation, another commontask is touse the systemshell toexecute

system commands. Just as ? entered help mode when at the beginning of the line, a semicolon (;) will enter the shell

mode. And it can be exited by pressing backspace at the beginning of the line.

julia> ; # upon typing ;, the prompt changes (in place) to: shell>

shell> echo hello

hello

Searchmodes

In all of the abovemodes, the executed lines get saved to a history file, which can be searched. To initiate an incremen-

tal search through the previous history, type ^R – the control key together with the r key. The prompt will change to

(reverse-i-search)`':, and as you type the search query will appear in the quotes. The most recent result that

matches the query will dynamically update to the right of the colon as more is typed. To find an older result using the

same query, simply type ^R again.

Just as ^R is a reverse search, ^S is a forward search, with the prompt (i-search)`':. The two may be used in con-

junction with each other tomove through the previous or next matching results, respectively.

28.2 Key bindings

The JuliaREPLmakes great useof keybindings. Several control-keybindingswere already introducedabove (^D to exit,

^R and ^S for searching), but there are many more. In addition to the control-key, there are also meta-key bindings.

These varymore by platform, butmost terminals default to using alt- or option- held downwith a key to send themeta-

key (or can be configured to do so).

Customizing keybindings

Julia'sREPLkeybindingsmaybefullycustomizedtoauser'spreferencesbypassingadictionary toREPL.setup_interface().

The keys of this dictionary may be characters or strings. The key '*' refers to the default action. Control plus charac-

ter x bindings are indicated with "^x". Meta plus x can be written "\\Mx". The values of the custom keymapmust be

nothing (indicating that the inputshouldbe ignored)or functions thataccept thesignature(PromptState, AbstractREPL,

Char). The REPL.setup_interface() function must be called before the REPL is initialized, by registering the op-

erationwith atreplinit(). For example, to bind the up and down arrow keys tomove through historywithout prefix

search, one could put the following code in .juliarc.jl:

import Base: LineEdit, REPL

const mykeys = Dict{Any,Any}(

Up Arrow

"\e[A" => (s,o...)->(LineEdit.edit_move_up(s) || LineEdit.history_prev(s,

LineEdit.mode(s).hist)),↪→

Down Arrow

"\e[B" => (s,o...)->(LineEdit.edit_move_up(s) || LineEdit.history_next(s,

LineEdit.mode(s).hist))↪→

)

function customize_keys(repl)

repl.interface = REPL.setup_interface(repl; extra_repl_keymap = mykeys)

end

280 CHAPTER 28. INTERACTINGWITH JULIA

Keybinding Description

Program control

^D Exit (when buffer is empty)

^C Interrupt or cancel

^L Clear console screen

Return/Enter, ^J New line, executing if it is complete

meta-Return/Enter Insert new line without executing it

? or ; Enter help or shell mode (when at start of a line)

^R, ^S Incremental history search, described above

Cursormovement

Right arrow, ^F Move right one character

Left arrow, ^B Move left one character

Home, ^A Move to beginning of line

End, ^E Move to end of line

^P Change to the previous or next history entry

^N Change to the next history entry

Up arrow Move up one line (or to the previous history entry)

Down arrow Move down one line (or to the next history entry)

Page-up Change to the previous history entry that matches the text before the cursor

Page-down Change to the next history entry that matches the text before the cursor

meta-F Move right oneword

meta-B Move left one word

Editing

Backspace, ^H Delete the previous character

Delete, ^D Forward delete one character (when buffer has text)

meta-Backspace Delete the previous word

meta-D Forward delete the next word

^W Delete previous text up to the nearest whitespace

^K "Kill" to end of line, placing the text in a buffer

^Y "Yank" insert the text from the kill buffer

^T Transpose the characters about the cursor

^Q Write a number in REPL and press ^Q to open editor at corresponding stackframe

atreplinit(customize_keys)

Users should refer to base/LineEdit.jl to discover the available actions on key input.

28.3 Tab completion

In both the Julian andhelpmodesof theREPL, one canenter thefirst fewcharacters of a functionor typeand thenpress

the tab key to get a list all matches:

julia> stri[TAB]

stride strides string stringmime strip

julia> Stri[TAB]

StridedArray StridedMatrix StridedVecOrMat StridedVector String

28.3. TAB COMPLETION 281

The tab key can also be used to substitute LaTeX math symbols with their Unicode equivalents, and get a list of LaTeX

matches as well:

julia> \pi[TAB]

julia> π

π = 3.1415926535897...

julia> e_1[TAB] = [1,0]

julia> e = [1,0]

2-element Array{Int64,1}:

1

0

julia> e\^1[TAB] = [1 0]

julia> e¹ = [1 0]

1×2 Array{Int64,2}:

1 0

julia> \sqrt[TAB]2 # √ is equivalent to the sqrt() function

julia> √2

1.4142135623730951

julia> \hbar[TAB](h) = h / 2\pi[TAB]

julia> ħ(h) = h / 2π

ħ (generic function with 1 method)

julia> \h[TAB]

\hat \hermitconjmatrix \hkswarow \hrectangle

\hatapprox \hexagon \hookleftarrow \hrectangleblack

\hbar \hexagonblack \hookrightarrow \hslash

\heartsuit \hksearow \house \hspace

julia> α="\alpha[TAB]" # LaTeX completion also works in strings

julia> α="α"

A full list of tab-completions can be found in the Unicode Input section of themanual.

Completion of paths works for strings and julia's shell mode:

julia> path="/[TAB]"

.dockerenv .juliabox/ boot/ etc/ lib/ media/ opt/ root/

sbin/ sys/ usr/↪→

.dockerinit bin/ dev/ home/ lib64/ mnt/ proc/ run/

srv/ tmp/ var/↪→

shell> /[TAB]

.dockerenv .juliabox/ boot/ etc/ lib/ media/ opt/ root/

sbin/ sys/ usr/↪→

.dockerinit bin/ dev/ home/ lib64/ mnt/ proc/ run/

srv/ tmp/ var/↪→

Tab completion can help with investigation of the available methodsmatching the input arguments:

julia> max([TAB] # All methods are displayed, not shown here due to size of the list

282 CHAPTER 28. INTERACTINGWITH JULIA

julia> max([1, 2], [TAB] # All methods where `Vector{Int}` matches as first argument

max(x, y) in Base at operators.jl:215

max(a, b, c, xs...) in Base at operators.jl:281

julia> max([1, 2], max(1, 2), [TAB] # All methods matching the arguments.

max(x, y) in Base at operators.jl:215

max(a, b, c, xs...) in Base at operators.jl:281

Keywords are also displayed in the suggested methods, see second line after ; where limit and keep are keyword

arguments:

julia> split("1 1 1", [TAB]

split(str::AbstractString) in Base at strings/util.jl:278

split{T<:AbstractString}(str::T, splitter; limit, keep) in Base at strings/util.jl:254

The completionof themethodsuses type inference and can therefore see if the argumentsmatch even if the arguments

are output from functions. The function needs to be type stable for the completion to be able to remove non-matching

methods.

Tab completion can also help completing fields:

julia> Pkg.a[TAB]

add available

Fields for output from functions can also be completed:

julia> split("","")[1].[TAB]

endof offset string

The completion of fields for output from functions uses type inference, and it can only suggest fields if the function is

type stable.

28.4 Customizing Colors

The colors used by Julia and the REPL can be customized, as well. To change the color of the Julia prompt you can add

something like the following to your .juliarc.jl file, which is to be placed inside your home directory:

function customize_colors(repl)

repl.prompt_color = Base.text_colors[:cyan]

end

atreplinit(customize_colors)

The available color keys can be seen by typing Base.text_colors in the helpmode of the REPL. In addition, the inte-

gers 0 to 255 can be used as color keys for terminals with 256 color support.

You can also change the colors for the help and shell prompts and input and answer text by setting the appropriate

field of repl in the customize_colors function above (respectively, help_color, shell_color, input_color,

and answer_color). For the latter two, be sure that the envcolors field is also set to false.

It is also possible to apply boldface formatting by using Base.text_colors[:bold] as a color. For instance, to print

answers in boldface font, one can use the following as a .juliarc.jl:

28.4. CUSTOMIZING COLORS 283

function customize_colors(repl)

repl.envcolors = false

repl.answer_color = Base.text_colors[:bold]

end

atreplinit(customize_colors)

You can also customize the color used to render warning and informational messages by setting the appropriate envi-

ronment variables. For instance, to render error, warning, and informationalmessages respectively inmagenta, yellow,

and cyan you can add the following to your .juliarc.jl file:

ENV["JULIA_ERROR_COLOR"] = :magenta

ENV["JULIA_WARN_COLOR"] = :yellow

ENV["JULIA_INFO_COLOR"] = :cyan

Chapter 29

Running External Programs

Julia borrows backtick notation for commands from the shell, Perl, and Ruby. However, in Julia, writing

julia> `echo hello`

`echo hello`

differs in several aspects from the behavior in various shells, Perl, or Ruby:

• Instead of immediately running the command, backticks create aCmd object to represent the command. You can

use this object to connect the command to others via pipes, run it, and read or write to it.

• When the command is run, Julia does not capture its output unless you specifically arrange for it to. Instead, the

output of the command by default goes to STDOUT as it would using libc's system call.

• The command is never run with a shell. Instead, Julia parses the command syntax directly, appropriately inter-

polating variables and splitting onwords as the shellwould, respecting shell quoting syntax. The command is run

as julia's immediate child process, using fork and exec calls.

Here's a simple example of running an external program:

julia> mycommand = `echo hello`

`echo hello`

julia> typeof(mycommand)

Cmd

julia> run(mycommand)

hello

The hello is the output of the echo command, sent to STDOUT. The runmethod itself returns nothing, and throws an

ErrorException if the external command fails to run successfully.

If youwant to read the output of the external command, readstring() can be used instead:

julia> a = readstring(`echo hello`)

"hello\n"

julia> chomp(a) == "hello"

true

285

286 CHAPTER 29. RUNNING EXTERNAL PROGRAMS

More generally, you can use open() to read from or write to an external command.

julia> open(`less`, "w", STDOUT) do io

for i = 1:3

println(io, i)

end

end

1

2

3

29.1 Interpolation

Supposeyouwant todosomethingabitmorecomplicatedanduse thenameofafile in thevariablefileasanargument

to a command. You can use $ for interpolationmuch as youwould in a string literal (see Strings):

julia> file = "/etc/passwd"

"/etc/passwd"

julia> `sort $file`

`sort /etc/passwd`

A common pitfall when running external programs via a shell is that if a file name contains characters that are special

to the shell, theymay cause undesirable behavior. Suppose, for example, rather than /etc/passwd, wewanted to sort

the contents of the file /Volumes/External HD/data.csv. Let's try it:

julia> file = "/Volumes/External HD/data.csv"

"/Volumes/External HD/data.csv"

julia> `sort $file`

`sort '/Volumes/External HD/data.csv'`

How did the file name get quoted? Julia knows that file is meant to be interpolated as a single argument, so it quotes

the word for you. Actually, that is not quite accurate: the value of file is never interpreted by a shell, so there's no

need for actual quoting; the quotes are inserted only for presentation to the user. Thiswill evenwork if you interpolate

a value as part of a shell word:

julia> path = "/Volumes/External HD"

"/Volumes/External HD"

julia> name = "data"

"data"

julia> ext = "csv"

"csv"

julia> `sort $path/$name.$ext`

`sort '/Volumes/External HD/data.csv'`

As you can see, the space in the path variable is appropriately escaped. But what if you want to interpolate multiple

words? In that case, just use an array (or any other iterable container):

29.2. QUOTING 287

julia> files = ["/etc/passwd","/Volumes/External HD/data.csv"]

2-element Array{String,1}:

"/etc/passwd"

"/Volumes/External HD/data.csv"

julia> `grep foo $files`

`grep foo /etc/passwd '/Volumes/External HD/data.csv'`

If you interpolate an array as part of a shell word, Julia emulates the shell's {a,b,c} argument generation:

julia> names = ["foo","bar","baz"]

3-element Array{String,1}:

"foo"

"bar"

"baz"

julia> `grep xylophone $names.txt`

`grep xylophone foo.txt bar.txt baz.txt`

Moreover, if you interpolate multiple arrays into the same word, the shell's Cartesian product generation behavior is

emulated:

julia> names = ["foo","bar","baz"]

3-element Array{String,1}:

"foo"

"bar"

"baz"

julia> exts = ["aux","log"]

2-element Array{String,1}:

"aux"

"log"

julia> `rm -f $names.$exts`

`rm -f foo.aux foo.log bar.aux bar.log baz.aux baz.log`

Since you can interpolate literal arrays, you can use this generative functionality without needing to create temporary

array objects first:

julia> `rm -rf $["foo","bar","baz","qux"].$["aux","log","pdf"]`

`rm -rf foo.aux foo.log foo.pdf bar.aux bar.log bar.pdf baz.aux baz.log baz.pdf qux.aux qux.log

qux.pdf`↪→

29.2 Quoting

Inevitably, one wants to write commands that aren't quite so simple, and it becomes necessary to use quotes. Here's a

simple example of a Perl one-liner at a shell prompt:

sh$ perl -le '$|=1; for (0..3) { print }'

0

1

2

3

288 CHAPTER 29. RUNNING EXTERNAL PROGRAMS

ThePerl expressionneeds tobe in singlequotes for two reasons: so that spacesdon't break theexpression intomultiple

shellwords, and so thatusesofPerl variables like$| (yes, that's thenameof avariable inPerl), don't cause interpolation.

In other instances, youmaywant to use double quotes so that interpolation does occur:

sh$ first="A"

sh$ second="B"

sh$ perl -le '$|=1; print for @ARGV' "1: $first" "2: $second"

1: A

2: B

In general, the Julia backtick syntax is carefully designed so that you can just cut-and-paste shell commands as is into

backticks and they will work: the escaping, quoting, and interpolation behaviors are the same as the shell's. The only

difference is that the interpolation is integrated and aware of Julia's notion of what is a single string value, and what is

a container for multiple values. Let's try the above two examples in Julia:

julia> A = `perl -le '$|=1; for (0..3) { print }'`

`perl -le '$|=1; for (0..3) { print }'`

julia> run(A)

0

1

2

3

julia> first = "A"; second = "B";

julia> B = `perl -le 'print for @ARGV' "1: $first" "2: $second"`

`perl -le 'print for @ARGV' '1: A' '2: B'`

julia> run(B)

1: A

2: B

The results are identical, and Julia's interpolation behavior mimics the shell's with some improvements due to the fact

that Julia supports first-class iterable objects while most shells use strings split on spaces for this, which introduces

ambiguities. When trying to port shell commands to Julia, try cut and pasting first. Since Julia shows commands to you

before running them, you can easily and safely just examine its interpretation without doing any damage.

29.3 Pipelines

Shell metacharacters, such as |, &, and >, need to be quoted (or escaped) inside of Julia's backticks:

julia> run(`echo hello '|' sort`)

hello | sort

julia> run(`echo hello \| sort`)

hello | sort

This expression invokes the echo command with three words as arguments: hello, |, and sort. The result is that a

single line isprinted: hello | sort. How, then, doesoneconstructapipeline? Insteadofusing'|' insideofbackticks,

one uses pipeline():

julia> run(pipeline(`echo hello`, `sort`))

hello

29.3. PIPELINES 289

This pipes theoutput of theecho command to thesort command. Of course, this isn't terribly interesting since there's

only one line to sort, but we can certainly domuchmore interesting things:

julia> run(pipeline(`cut -d: -f3 /etc/passwd`, `sort -n`, `tail -n5`))

210

211

212

213

214

Thisprints thehighestfiveuser IDsonaUNIXsystem. Thecut,sortandtailcommandsareall spawnedas immediate

children of the current julia process, with no intervening shell process. Julia itself does the work to setup pipes and

connect file descriptors that is normally done by the shell. Since Julia does this itself, it retains better control and can

do some things that shells cannot.

Julia can runmultiple commands in parallel:

julia> run(`echo hello` & `echo world`)

world

hello

The order of the output here is non-deterministic because the two echo processes are started nearly simultaneously,

and race to make the first write to the STDOUT descriptor they share with each other and the julia parent process.

Julia lets you pipe the output from both of these processes to another program:

julia> run(pipeline(`echo world` & `echo hello`, `sort`))

hello

world

In terms of UNIX plumbing, what's happening here is that a single UNIX pipe object is created and written to by both

echo processes, and the other end of the pipe is read from by the sort command.

IO redirection can be accomplished by passing keyword arguments stdin, stdout, and stderr to the pipeline function:

pipeline(`do_work`, stdout=pipeline(`sort`, "out.txt"), stderr="errs.txt")

Avoiding Deadlock in Pipelines

When reading andwriting to both ends of a pipeline from a single process, it is important to avoid forcing the kernel to

buffer all of the data.

For example, when reading all of the output from a command, call readstring(out), not wait(process), since the

former will actively consume all of the data written by the process, whereas the latter will attempt to store the data in

the kernel's buffers while waiting for a reader to be connected.

Another common solution is to separate the reader andwriter of the pipeline into separate Tasks:

writer = @async writeall(process, "data")

reader = @async do_compute(readstring(process))

wait(process)

fetch(reader)

290 CHAPTER 29. RUNNING EXTERNAL PROGRAMS

Complex Example

Thecombinationof ahigh-level programming language, afirst-class commandabstraction, andautomatic setupofpipes

between processes is a powerful one. To give some sense of the complex pipelines that can be created easily, here are

somemore sophisticated examples, with apologies for the excessive use of Perl one-liners:

julia> prefixer(prefix, sleep) = `perl -nle '$|=1; print "'$prefix' ", $_; sleep '$sleep';'`;

julia> run(pipeline(`perl -le '$|=1; for(0..9){ print; sleep 1 }'`, prefixer("A",2) &

prefixer("B",2)))↪→

A 0

B 1

A 2

B 3

A 4

B 5

A 6

B 7

A 8

B 9

This is a classic example of a single producer feeding two concurrent consumers: one perl process generates lines

with the numbers 0 through 9 on them, while two parallel processes consume that output, one prefixing lines with the

letter "A", the other with the letter "B". Which consumer gets the first line is non-deterministic, but once that race has

beenwon, the lines are consumedalternately by oneprocess and then the other. (Setting$|=1 in Perl causes each print

statement toflush theSTDOUThandle,which is necessary for this example towork. Otherwise all the output is buffered

and printed to the pipe at once, to be read by just one consumer process.)

Here is an evenmore complexmulti-stage producer-consumer example:

julia> run(pipeline(`perl -le '$|=1; for(0..9){ print; sleep 1 }'`,

prefixer("X",3) & prefixer("Y",3) & prefixer("Z",3),

prefixer("A",2) & prefixer("B",2)))

A X 0

B Y 1

A Z 2

B X 3

A Y 4

B Z 5

A X 6

B Y 7

A Z 8

B X 9

This example is similar to the previous one, except there are two stages of consumers, and the stages have different

latency so they use a different number of parallel workers, to maintain saturated throughput.

We strongly encourage you to try all these examples to see how theywork.

Chapter 30

Calling C and Fortran Code

Thoughmost codecanbewritten in Julia, therearemanyhigh-quality,mature libraries fornumerical computingalready

written in C and Fortran. To allow easy use of this existing code, Julia makes it simple and efficient to call C and Fortran

functions. Julia has a "no boilerplate" philosophy: functions can be called directly from Julia without any "glue" code,

codegeneration, or compilation–even fromthe interactiveprompt. This is accomplished just bymaking anappropriate

call with ccall syntax, which looks like an ordinary function call.

Thecode tobecalledmustbeavailable as a shared library. MostCandFortran libraries ship compiledas shared libraries

already, but if you are compiling the code yourself using GCC (or Clang), you will need to use the -shared and -fPIC

options. Themachine instructionsgeneratedbyJulia's JITare the sameasanativeCcallwouldbe, so the resultingover-

head is the same as calling a library function from C code. (Non-library function calls in both C and Julia can be inlined

and thus may have even less overhead than calls to shared library functions. When both libraries and executables are

generatedbyLLVM, it is possible to performwhole-programoptimizations that canevenoptimize across this boundary,

but Julia does not yet support that. In the future, however, it may do so, yielding even greater performance gains.)

Shared libraries and functions are referenced by a tuple of the form (:function, "library") or ("function",

"library") where function is the C-exported function name. library refers to the shared library name: shared

libraries available in the (platform-specific) load path will be resolved by name, and if necessary a direct path may be

specified.

A function name may be used alone in place of the tuple (just :function or "function"). In this case the name is

resolved within the current process. This form can be used to call C library functions, functions in the Julia runtime, or

functions in an application linked to Julia.

By default, Fortran compilers generatemangled names (for example, converting function names to lowercase or upper-

case, often appending an underscore), and so to call a Fortran function via ccall youmust pass themangled identifier

corresponding to the rule followed by your Fortran compiler. Also, when calling a Fortran function, all inputs must be

passed by reference.

Finally, you can use ccall to actually generate a call to the library function. Arguments to ccall are as follows:

1. A (:function, "library") pair, whichmust be written as a literal constant,

OR

a function pointer (for example, from dlsym).

2. Return type (see below for mapping the declared C type to Julia)

– This argument will be evaluated at compile-time, when the containingmethod is defined.

3. A tupleof input types. The input typesmustbewrittenasa literal tuple, not a tuple-valuedvariableorexpression.

291

https://en.wikipedia.org/wiki/Name_mangling#Fortran

292 CHAPTER 30. CALLING C AND FORTRAN CODE

– This argument will be evaluated at compile-time, when the containingmethod is defined.

4. The following arguments, if any, are the actual argument values passed to the function.

As a complete but simple example, the following calls the clock function from the standard C library:

julia> t = ccall((:clock, "libc"), Int32, ())

2292761

julia> t

2292761

julia> typeof(ans)

Int32

clock takes no arguments and returns an Int32. One common gotcha is that a 1-tuple must be written with a trailing

comma. For example, to call the getenv function to get a pointer to the value of an environment variable, onemakes a

call like this:

julia> path = ccall((:getenv, "libc"), Cstring, (Cstring,), "SHELL")

Cstring(@0x00007fff5fbffc45)

julia> unsafe_string(path)

"/bin/bash"

Notethat theargument typetuplemustbewrittenas(Cstring,), rather than(Cstring). This isbecause(Cstring)

is just the expression Cstring surrounded by parentheses, rather than a 1-tuple containing Cstring:

julia> (Cstring)

Cstring

julia> (Cstring,)

(Cstring,)

In practice, especially when providing reusable functionality, one generally wraps ccall uses in Julia functions that

set up arguments and then check for errors in whatever manner the C or Fortran function indicates them, propagat-

ing to the Julia caller as exceptions. This is especially important since C and Fortran APIs are notoriously inconsistent

about how they indicate error conditions. For example, the getenvC library function is wrapped in the following Julia

function, which is a simplified version of the actual definition from env.jl:

function getenv(var::AbstractString)

val = ccall((:getenv, "libc"),

Cstring, (Cstring,), var)

if val == C_NULL

error("getenv: undefined variable: ", var)

end

unsafe_string(val)

end

The C getenv function indicates an error by returning NULL, but other standard C functions indicate errors in vari-

ous different ways, including by returning -1, 0, 1 and other special values. This wrapper throws an exception clearly

indicating the problem if the caller tries to get a non-existent environment variable:

https://github.com/JuliaLang/julia/blob/master/base/env.jl

30.1. CREATING C-COMPATIBLE JULIA FUNCTION POINTERS 293

julia> getenv("SHELL")

"/bin/bash"

julia> getenv("FOOBAR")

getenv: undefined variable: FOOBAR

Here is a slightly more complex example that discovers the local machine's hostname:

function gethostname()

hostname = Vector{UInt8}(128)

ccall((:gethostname, "libc"), Int32,

(Ptr{UInt8}, Csize_t),

hostname, sizeof(hostname))

hostname[end] = 0; # ensure null-termination

return unsafe_string(pointer(hostname))

end

This example first allocates an array of bytes, then calls the C library function gethostname to fill the array in with

the hostname, takes a pointer to the hostname buffer, and converts the pointer to a Julia string, assuming that it is a

NUL-terminated C string. It is common for C libraries to use this pattern of requiring the caller to allocate memory to

be passed to the callee and filled in. Allocation of memory from Julia like this is generally accomplished by creating an

uninitialized array andpassing apointer to its data to theC function. This iswhywedon't use theCstring typehere: as

thearray isuninitialized, it could containNULbytes. Converting toaCstringaspartof theccall checks for contained

NUL bytes and could therefore throw a conversion error.

30.1 Creating C-Compatible Julia Function Pointers

It is possible to pass Julia functions to nativeC functions that accept functionpointer arguments. For example, tomatch

C prototypes of the form:

typedef returntype (*functiontype)(argumenttype,...)

The functioncfunction()generates theC-compatible functionpointer for a call toa Julia library function. Arguments

to cfunction() are as follows:

1. A Julia Function

2. Return type

3. A tuple of input types

A classic example is the standard C library qsort function, declared as:

void qsort(void *base, size_t nmemb, size_t size,

int(*compare)(const void *a, const void *b));

The base argument is a pointer to an array of length nmemb, with elements of size bytes each. compare is a callback

function which takes pointers to two elements a and b and returns an integer less/greater than zero if a should appear

before/afterb (or zero if any order is permitted). Now, suppose thatwe have a 1d arrayA of values in Julia thatwewant

to sort using the qsort function (rather than Julia's built-in sort function). Before we worry about calling qsort and

passing arguments, we need to write a comparison function that works for some arbitrary type T:

294 CHAPTER 30. CALLING C AND FORTRAN CODE

julia> function mycompare(a::T, b::T) where T

return convert(Cint, a < b ? -1 : a > b ? +1 : 0)::Cint

end

mycompare (generic function with 1 method)

Notice that we have to be careful about the return type: qsort expects a function returning a C int, so we must be

sure to return Cint via a call to convert and a typeassert.

In order to pass this function to C, we obtain its address using the function cfunction:

julia> const mycompare_c = cfunction(mycompare, Cint, (Ref{Cdouble}, Ref{Cdouble}));

cfunction() accepts three arguments: the Julia function (mycompare), the return type (Cint), and a tuple of the

argument types, in this case to sort an array of Cdouble (Float64) elements.

The final call to qsort looks like this:

julia> A = [1.3, -2.7, 4.4, 3.1]

4-element Array{Float64,1}:

1.3

-2.7

4.4

3.1

julia> ccall(:qsort, Void, (Ptr{Cdouble}, Csize_t, Csize_t, Ptr{Void}),

A, length(A), sizeof(eltype(A)), mycompare_c)

julia> A

4-element Array{Float64,1}:

-2.7

1.3

3.1

4.4

As can be seen, A is changed to the sorted array [-2.7, 1.3, 3.1, 4.4]. Note that Julia knows how to convert

an array into a Ptr{Cdouble}, how to compute the size of a type in bytes (identical to C's sizeof operator), and so

on. For fun, try inserting a println("mycompare($a,$b)") line into mycompare, which will allow you to see the

comparisons that qsort is performing (and to verify that it is really calling the Julia function that you passed to it).

30.2 Mapping C Types to Julia

It is critical to exactlymatch the declaredC typewith its declaration in Julia. Inconsistencies can cause code thatworks

correctly on one system to fail or produce indeterminate results on a different system.

Note that noCheader files are used anywhere in the process of callingC functions: you are responsible formaking sure

that your Julia types and call signatures accurately reflect those in the C header file. (TheClang package can be used to

auto-generate Julia code from a C header file.)

Auto-conversion:

Julia automatically inserts calls to theBase.cconvert() function to convert each argument to the specified type. For

example, the following call:

ccall((:foo, "libfoo"), Void, (Int32, Float64), x, y)

will behave as if the following were written:

https://github.com/ihnorton/Clang.jl

30.2. MAPPING C TYPES TO JULIA 295

ccall((:foo, "libfoo"), Void, (Int32, Float64),

Base.unsafe_convert(Int32, Base.cconvert(Int32, x)),

Base.unsafe_convert(Float64, Base.cconvert(Float64, y)))

Base.cconvert() normally just calls convert(), but can be defined to return an arbitrary new object more appro-

priate for passing to C. For example, this is used to convert an Array of objects (e.g. strings) to an array of pointers.

Base.unsafe_convert() handles conversion to Ptr types. It is considered unsafe because converting an object to a

native pointer can hide the object from the garbage collector, causing it to be freed prematurely.

Type Correspondences:

First, a review of some relevant Julia type terminology:

Syntax /

Keyword

Example Description

mutable

struct

String "Leaf Type" :: A group of related data that includes a type-tag, is managed by

the Julia GC, and is defined by object-identity. The type parameters of a leaf

typemust be fully defined (no TypeVars are allowed) in order for the instance

to be constructed.

abstract

type

Any,

AbstractArray{T,

N}, Complex{T}

"Super Type" :: A super-type (not a leaf-type) that cannot be instantiated, but

can be used to describe a group of types.

T{A} Vector{Int} "Type Parameter" :: A specialization of a type (typically used for dispatch or

storage optimization).

"TypeVar" :: The T in the type parameter declaration is referred to as a TypeVar

(short for type variable).

primitive

type

Int, Float64 "Primitive Type" :: A type with no fields, but a size. It is stored and defined

by-value.

struct Pair{Int, Int} "Struct" :: A type with all fields defined to be constant. It is defined by-value,

andmay be storedwith a type-tag.

Complex128

(isbits)

"Is-Bits" :: A primitive type, or a struct type where all fields are other

isbits types. It is defined by-value, and is stored without a type-tag.

struct

...;

end

nothing "Singleton" :: a Leaf Type or Struct with no fields.

(...) or

tuple(...)

(1, 2, 3) "Tuple" :: an immutable data-structure similar to an anonymous struct type, or

a constant array. Represented as either an array or a struct.

Bits Types:

There are several special types to be aware of, as no other type can be defined to behave the same:

• Float32

Exactly corresponds to the float type in C (or REAL*4 in Fortran).

• Float64

Exactly corresponds to the double type in C (or REAL*8 in Fortran).

• Complex64

Exactly corresponds to the complex float type in C (or COMPLEX*8 in Fortran).

296 CHAPTER 30. CALLING C AND FORTRAN CODE

• Complex128

Exactly corresponds to the complex double type in C (or COMPLEX*16 in Fortran).

• Signed

Exactly corresponds to the signed type annotation in C (or any INTEGER type in Fortran). Any Julia type that is

not a subtype of Signed is assumed to be unsigned.

• Ref{T}

Behaves like a Ptr{T} that canmanage its memory via the Julia GC.

• Array{T,N}

When an array is passed to C as a Ptr{T} argument, it is not reinterpret-cast: Julia requires that the element

type of the arraymatches T, and the address of the first element is passed.

Therefore, if an Array contains data in the wrong format, it will have to be explicitly converted using a call such

as trunc(Int32, a).

To pass an array A as a pointer of a different typewithout converting the data beforehand (for example, to pass a

Float64array toa function thatoperatesonuninterpretedbytes), youcandeclare theargumentasPtr{Void}.

If an array of eltype Ptr{T} is passed as a Ptr{Ptr{T}} argument, Base.cconvert() will attempt to first

make a null-terminated copy of the arraywith each element replaced by its Base.cconvert() version. This al-

lows, forexample, passinganargvpointerarrayof typeVector{String} toanargumentof typePtr{Ptr{Cchar}}.

On all systemswe currently support, basic C/C++ value typesmay be translated to Julia types as follows. Every C type

also has a corresponding Julia type with the same name, prefixed by C. This can help for writing portable code (and

remembering that an int in C is not the same as an Int in Julia).

System Independent:

The Cstring type is essentially a synonym for Ptr{UInt8}, except the conversion to Cstring throws an error if the

Julia string contains any embeddedNUL characters (which would cause the string to be silently truncated if the C rou-

tine treatsNULas the terminator). If you are passing achar* to aC routine that does not assumeNUL termination (e.g.

because you pass an explicit string length), or if you know for certain that your Julia string does not contain NUL and

want to skip the check, you can use Ptr{UInt8} as the argument type. Cstring can also be used as the ccall return

type, but in that case it obviously does not introduce any extra checks and is only meant to improve readability of the

call.

System-dependent:

Note

WhencallingaFortran function, all inputsmustbepassedbyreference, soall typecorrespondencesabove

should contain an additional Ptr{..} or Ref{..} wrapper around their type specification.

Warning

Forstringarguments (char*) theJulia typeshouldbeCstring (ifNUL- terminateddata isexpected)orei-

therPtr{Cchar}orPtr{UInt8}otherwise (these twopointer typeshave the sameeffect), as described

above, not String. Similarly, for array arguments (T[] or T*), the Julia type should again be Ptr{T}, not

Vector{T}.

Warning

Julia's Char type is 32 bits, which is not the same as the wide character type (wchar_t or wint_t) on all

platforms.

30.2. MAPPING C TYPES TO JULIA 297

C name Fortran

name

Standard

Julia Alias

Julia Base Type

unsigned char CHARACTER Cuchar UInt8

bool (only in C++) Cuchar UInt8

short INTEGER*2,

LOGICAL*2

Cshort Int16

unsigned short Cushort UInt16

int, BOOL (C, typical) INTEGER*4,

LOGICAL*4

Cint Int32

unsigned int Cuint UInt32

long long INTEGER*8,

LOGICAL*8

Clonglong Int64

unsigned long long CulonglongUInt64

intmax_t Cintmax_t Int64

uintmax_t Cuintmax_tUInt64

float REAL*4i Cfloat Float32

double REAL*8 Cdouble Float64

complex float COMPLEX*8 Complex64 Complex{Float32}

complex double COMPLEX*16 Complex128Complex{Float64}

ptrdiff_t Cptrdiff_tInt

ssize_t Cssize_t Int

size_t Csize_t UInt

void Void

void and [[noreturn]]

or _Noreturn

 Union{}

void* Ptr{Void}

T* (where T represents an

appropriately defined type)

 Ref{T}

char* (or char[], e.g. a

string)

CHARACTER*N Cstring if NUL-terminated, or Ptr{UInt8} if not

char** (or *char[]) Ptr{Ptr{UInt8}}

jl_value_t* (any Julia

Type)

 Any

jl_value_t** (a

reference to a Julia Type)

 Ref{Any}

va_arg Not supported

... (variadic function

specification)

 T... (where T is one of the above types, variadic

functions of different argument types are not

supported)

Warning

AreturntypeofUnion{}meansthe functionwillnot return i.e. C++11[[noreturn]]orC11_Noreturn

(e.g. jl_throw or longjmp). Do not use this for functions that return no value (void) but do return, use

Void instead.

Note

For wchar_t* arguments, the Julia type should be Cwstring (if the C routine expects aNUL-terminated

string)orPtr{Cwchar_t}otherwise. Notealso thatUTF-8stringdata inJulia is internallyNUL-terminated,

298 CHAPTER 30. CALLING C AND FORTRAN CODE

C name Standard Julia Alias Julia Base Type

char Cchar Int8 (x86, x86_64), UInt8 (powerpc, arm)

long Clong Int (UNIX), Int32 (Windows)

unsigned long Culong UInt (UNIX), UInt32 (Windows)

wchar_t Cwchar_t Int32 (UNIX), UInt16 (Windows)

so it can be passed to C functions expecting NUL-terminated data without making a copy (but using the

Cwstring type will cause an error to be thrown if the string itself contains NUL characters).

Note

C functions that take an argument of the type char** can be called by using a Ptr{Ptr{UInt8}} type

within Julia. For example, C functions of the form:

int main(int argc, char **argv);

can be called via the following Julia code:

argv = ["a.out", "arg1", "arg2"]

ccall(:main, Int32, (Int32, Ptr{Ptr{UInt8}}), length(argv), argv)

Note

AC function declared to return Voidwill return the value nothing in Julia.

Struct Type correspondences

Composite types, aka struct in C or TYPE in Fortran90 (or STRUCTURE / RECORD in some variants of F77), can be

mirrored in Julia by creating a struct definition with the same field layout.

When used recursively, isbits types are stored inline. All other types are stored as a pointer to the data. When mir-

roring a struct used by-value inside another struct in C, it is imperative that you do not attempt to manually copy the

fields over, as this will not preserve the correct field alignment. Instead, declare an isbits struct type and use that

instead. Unnamed structs are not possible in the translation to Julia.

Packed structs and union declarations are not supported by Julia.

You can get a near approximation of a union if you know, a priori, the field that will have the greatest size (potentially

including padding). When translating your fields to Julia, declare the Julia field to be only of that type.

Arrays of parameters can be expressedwith NTuple:

in C:

struct B {

int A[3];

};

b_a_2 = B.A[2];

in Julia:

struct B

A::NTuple{3, CInt}

end

b_a_2 = B.A[3] # note the difference in indexing (1-based in Julia, 0-based in C)

Arraysofunknownsize (C99-compliant variable length structs specifiedby[]or[0]) arenotdirectly supported. Often

thebestway todealwith these is todealwith thebyteoffsetsdirectly. Forexample, if aC librarydeclaredaproper string

type and returned a pointer to it:

30.2. MAPPING C TYPES TO JULIA 299

struct String {

int strlen;

char data[];

};

In Julia, we can access the parts independently tomake a copy of that string:

str = from_c::Ptr{Void}

len = unsafe_load(Ptr{Cint}(str))

unsafe_string(str + Core.sizeof(Cint), len)

Type Parameters

The type arguments to ccall are evaluated statically, when themethod containing the ccall is defined. They therefore

must take the form of a literal tuple, not a variable, and cannot reference local variables.

This may sound like a strange restriction, but remember that since C is not a dynamic language like Julia, its functions

can only accept argument types with a statically-known, fixed signature.

However, while the type layoutmust be known statically to compute the ccallABI, the static parameters of the func-

tion are considered to be part of this static environment. The static parameters of the functionmay be used as type pa-

rameters in theccall signature, as long as they don't affect the layout of the type. For example,f(x::T) where {T}

= ccall(:valid, Ptr{T}, (Ptr{T},), x) is valid, since Ptr is always aword-size primitive type. But, g(x::T)

where {T} = ccall(:notvalid, T, (T,), x) is not valid, since the type layout of T is not known statically.

SIMDValues

Note: This feature is currently implemented on 64-bit x86 and AArch64 platforms only.

If a C/C++ routine has an argument or return value that is a native SIMD type, the corresponding Julia type is a homo-

geneous tuple of VecElement that naturally maps to the SIMD type. Specifically:

• The tuplemust be the same size as the SIMD type. For example, a tuple representing an __m128 on

x86must have a size of 16 bytes.

• The element type of the tuple must be an instance of VecElement{T}where T is a primitive type

that is 1, 2, 4 or 8 bytes.

For instance, consider this C routine that uses AVX intrinsics:

#include <immintrin.h>

__m256 dist(__m256 a, __m256 b) {

return _mm256_sqrt_ps(_mm256_add_ps(_mm256_mul_ps(a, a),

_mm256_mul_ps(b, b)));

}

The following Julia code calls dist using ccall:

const m256 = NTuple{8, VecElement{Float32}}

a = m256(ntuple(i -> VecElement(sin(Float32(i))), 8))

b = m256(ntuple(i -> VecElement(cos(Float32(i))), 8))

function call_dist(a::m256, b::m256)

300 CHAPTER 30. CALLING C AND FORTRAN CODE

ccall((:dist, "libdist"), m256, (m256, m256), a, b)

end

println(call_dist(a,b))

The host machinemust have the requisite SIMD registers. For example, the code abovewill not work on hosts without

AVX support.

MemoryOwnership

malloc/free

Memory allocation and deallocation of such objectsmust be handled by calls to the appropriate cleanup routines in the

libraries being used, just like in any C program. Do not try to free an object received from a C library with Libc.free

in Julia, as this may result in the free function being called via the wrong libc library and cause Julia to crash. The

reverse (passing an object allocated in Julia to be freed by an external library) is equally invalid.

When to use T, Ptr{T} and Ref{T}

In Julia code wrapping calls to external C routines, ordinary (non-pointer) data should be declared to be of type T in-

side the ccall, as they are passed by value. For C code accepting pointers, Ref{T} should generally be used for the

types of input arguments, allowing the use of pointers tomemorymanaged by either Julia or C through the implicit call

to Base.cconvert(). In contrast, pointers returned by the C function called should be declared to be of output type

Ptr{T}, reflecting that the memory pointed to is managed by C only. Pointers contained in C structs should be repre-

sented as fields of type Ptr{T}within the corresponding Julia struct types designed tomimic the internal structure of

corresponding C structs.

In Julia code wrapping calls to external Fortran routines, all input arguments should be declared as of type Ref{T},

as Fortran passes all variables by reference. The return type should either be Void for Fortran subroutines, or a T for

Fortran functions returning the type T.

30.3 Mapping C Functions to Julia

ccall/cfunction argument translation guide

For translating a C argument list to Julia:

• T, where T is one of the primitive types: char, int, long, short, float, double, complex, enum or any of their

typedef equivalents

– T, where T is an equivalent Julia Bits Type (per the table above)

– if T is an enum, the argument type should be equivalent to Cint or Cuint

– argument value will be copied (passed by value)

• struct T (including typedef to a struct)

– T, where T is a Julia leaf type

– argument value will be copied (passed by value)

• void*

– depends on how this parameter is used, first translate this to the intended pointer type, then determine

the Julia equivalent using the remaining rules in this list

30.3. MAPPING C FUNCTIONS TO JULIA 301

– this argumentmay be declared as Ptr{Void}, if it really is just an unknown pointer

• jl_value_t*

– Any

– argument valuemust be a valid Julia object

– currently unsupported by cfunction()

• jl_value_t**

– Ref{Any}

– argument valuemust be a valid Julia object (or C_NULL)

– currently unsupported by cfunction()

• T*

– Ref{T}, where T is the Julia type corresponding to T

– argument value will be copied if it is an isbits type otherwise, the valuemust be a valid Julia object

• (T*)(...) (e.g. a pointer to a function)

– Ptr{Void} (youmay need to use cfunction() explicitly to create this pointer)

• ... (e.g. a vararg)

– T..., where T is the Julia type

• va_arg

– not supported

ccall/cfunction return type translation guide

For translating a C return type to Julia:

• void

– Void (this will return the singleton instance nothing::Void)

• T, where T is one of the primitive types: char, int, long, short, float, double, complex, enum or any of their

typedef equivalents

– T, where T is an equivalent Julia Bits Type (per the table above)

– if T is an enum, the argument type should be equivalent to Cint or Cuint

– argument value will be copied (returned by-value)

• struct T (including typedef to a struct)

– T, where T is a Julia Leaf Type

– argument value will be copied (returned by-value)

• void*

302 CHAPTER 30. CALLING C AND FORTRAN CODE

– depends on how this parameter is used, first translate this to the intended pointer type, then determine

the Julia equivalent using the remaining rules in this list

– this argumentmay be declared as Ptr{Void}, if it really is just an unknown pointer

• jl_value_t*

– Any

– argument valuemust be a valid Julia object

• jl_value_t**

– Ref{Any}

– argument valuemust be a valid Julia object (or C_NULL)

• T*

– If thememory is already owned by Julia, or is an isbits type, and is known to be non-null:

* Ref{T}, where T is the Julia type corresponding to T

* a return type of Ref{Any} is invalid, it should either be Any (corresponding to jl_value_t*) or

Ptr{Any} (corresponding to Ptr{Any})

* CMUSTNOTmodify thememory returned via Ref{T} if T is an isbits type

– If thememory is owned by C:

* Ptr{T}, where T is the Julia type corresponding to T

• (T*)(...) (e.g. a pointer to a function)

– Ptr{Void} (youmay need to use cfunction() explicitly to create this pointer)

Passing Pointers forModifying Inputs

Because C doesn't support multiple return values, often C functions will take pointers to data that the function will

modify. To accomplish this within a ccall, you need to first encapsulate the value inside an Ref{T} of the appropriate

type. When you pass this Ref object as an argument, Julia will automatically pass a C pointer to the encapsulated data:

width = Ref{Cint}(0)

range = Ref{Cfloat}(0)

ccall(:foo, Void, (Ref{Cint}, Ref{Cfloat}), width, range)

Uponreturn, thecontentsofwidthandrangecanberetrieved (if theywerechangedbyfoo)bywidth[]andrange[];

that is, they act like zero-dimensional arrays.

Special Reference Syntax for ccall (deprecated):

The & syntax is deprecated, use the Ref{T} argument type instead.

A prefix & is used on an argument to ccall to indicate that a pointer to a scalar argument should be passed instead of

the scalar value itself (required for all Fortran function arguments, as noted above). The following example computes a

dot product using a BLAS function.

30.4. SOME EXAMPLES OF CWRAPPERS 303

function compute_dot(DX::Vector{Float64}, DY::Vector{Float64})

@assert length(DX) == length(DY)

n = length(DX)

incx = incy = 1

product = ccall((:ddot_, "libLAPACK"),

Float64,

(Ptr{Int32}, Ptr{Float64}, Ptr{Int32}, Ptr{Float64}, Ptr{Int32}),

&n, DX, &incx, DY, &incy)

return product

end

The meaning of prefix & is not quite the same as in C. In particular, any changes to the referenced variables will not be

visible in Julia unless the type ismutable (declared via type). However, even for immutable structs it will not cause any

harm for called functions to attempt suchmodifications (that is, writing through the passed pointers). Moreover, &may

be usedwith any expression, such as &0 or &f(x).

When a scalar value is passedwith & as an argument of type Ptr{T}, the value will first be converted to type T.

30.4 Some Examples of CWrappers

Here is a simple example of a Cwrapper that returns a Ptr type:

mutable struct gsl_permutation

end

The corresponding C signature is

gsl_permutation * gsl_permutation_alloc (size_t n);

function permutation_alloc(n::Integer)

output_ptr = ccall(

(:gsl_permutation_alloc, :libgsl), # name of C function and library

Ptr{gsl_permutation}, # output type

(Csize_t,), # tuple of input types

n # name of Julia variable to pass in

)

if output_ptr == C_NULL # Could not allocate memory

throw(OutOfMemoryError())

end

return output_ptr

end

TheGNUScientificLibrary (hereassumedtobeaccessible through:libgsl)definesanopaquepointer,gsl_permutation

*, as thereturntypeof theCfunctiongsl_permutation_alloc(). Asusercodeneverhas to look insidethegsl_permutation

struct, the corresponding Julia wrapper simply needs a new type declaration, gsl_permutation, that has no internal

fields and whose sole purpose is to be placed in the type parameter of a Ptr type. The return type of the ccall is de-

clared asPtr{gsl_permutation}, since thememory allocated andpointed to byoutput_ptr is controlled byC (and

not Julia).

The input n is passed by value, and so the function's input signature is simply declared as (Csize_t,)without any Ref

or Ptr necessary. (If the wrapper was calling a Fortran function instead, the corresponding function input signature

should instead be (Ref{Csize_t},), since Fortran variables are passed by reference.) Furthermore, n can be any

type that is convertable to a Csize_t integer; the ccall implicitly calls Base.cconvert(Csize_t, n).

Here is a second example wrapping the corresponding destructor:

https://www.gnu.org/software/gsl/

304 CHAPTER 30. CALLING C AND FORTRAN CODE

The corresponding C signature is

void gsl_permutation_free (gsl_permutation * p);

function permutation_free(p::Ref{gsl_permutation})

ccall(

(:gsl_permutation_free, :libgsl), # name of C function and library

Void, # output type

(Ref{gsl_permutation},), # tuple of input types

p # name of Julia variable to pass in

)

end

Here, the input p is declared to be of type Ref{gsl_permutation}, meaning that the memory that p points to may

bemanaged by Julia or by C. A pointer to memory allocated by C should be of type Ptr{gsl_permutation}, but it is

convertable usingBase.cconvert() and therefore can be used in the same (covariant) context of the input argument

to accall. A pointer tomemory allocated by Juliamust be of typeRef{gsl_permutation}, to ensure that themem-

ory address pointed to is valid and that Julia's garbage collector manages the chunk of memory pointed to correctly.

Therefore, the Ref{gsl_permutation} declaration allows pointers managed by C or Julia to be used.

If theCwrapperneverexpects theuser topasspointers tomemorymanagedbyJulia, thenusingp::Ptr{gsl_permutation}

for themethod signature of the wrapper and similarly in the ccall is also acceptable.

Here is a third example passing Julia arrays:

The corresponding C signature is

int gsl_sf_bessel_Jn_array (int nmin, int nmax, double x,

double result_array[])

function sf_bessel_Jn_array(nmin::Integer, nmax::Integer, x::Real)

if nmax < nmin

throw(DomainError())

end

result_array = Vector{Cdouble}(nmax - nmin + 1)

errorcode = ccall(

(:gsl_sf_bessel_Jn_array, :libgsl), # name of C function and library

Cint, # output type

(Cint, Cint, Cdouble, Ref{Cdouble}),# tuple of input types

nmin, nmax, x, result_array # names of Julia variables to pass in

)

if errorcode != 0

error("GSL error code $errorcode")

end

return result_array

end

The C function wrapped returns an integer error code; the results of the actual evaluation of the Bessel J function

populate the Julia array result_array. This variable can only be used with corresponding input type declaration

Ref{Cdouble}, since itsmemory isallocatedandmanagedbyJulia, notC.The implicit call toBase.cconvert(Ref{Cdouble},

result_array) unpacks the Julia pointer to a Julia array data structure into a form understandable by C.

Notethat for thiscodetoworkcorrectly,result_arraymustbedeclaredtobeof typeRef{Cdouble}andnotPtr{Cdouble}.

The memory is managed by Julia and the Ref signature alerts Julia's garbage collector to keep managing the memory

for result_arraywhile the ccall executes. If Ptr{Cdouble}were used instead, the ccallmay still work, but Ju-

lia's garbage collectorwould not be aware that thememorydeclared forresult_array is beingusedby the externalC

function. As a result, the codemay produce amemory leak if result_array never gets freed by the garbage collector,

or if the garbage collector prematurely frees result_array, the C function may end up throwing an invalid memory

access exception.

30.5. GARBAGE COLLECTION SAFETY 305

30.5 Garbage Collection Safety

When passing data to a ccall, it is best to avoid using the pointer() function. Instead define a convert method and

pass the variables directly to the ccall. ccall automatically arranges that all of its arguments will be preserved from

garbage collection until the call returns. If a C API will store a reference to memory allocated by Julia, after the ccall

returns, you must arrange that the object remains visible to the garbage collector. The suggested way to handle this is

to make a global variable of type Array{Ref,1} to hold these values, until the C library notifies you that it is finished

with them.

Whenever you have created a pointer to Julia data, you must ensure the original data exists until you are done with

using the pointer. Manymethods in Julia such asunsafe_load() andString()make copies of data instead of taking

ownership of the buffer, so that it is safe to free (or alter) the original data without affecting Julia. A notable exception

is unsafe_wrap()which, for performance reasons, shares (or can be told to take ownership of) the underlying buffer.

The garbage collector does not guarantee any order of finalization. That is, if a contained a reference to b and both a

and b are due for garbage collection, there is no guarantee that bwould be finalized after a. If proper finalization of a

depends on b being valid, it must be handled in other ways.

30.6 Non-constant Function Specifications

A (name, library) function specification must be a constant expression. However, it is possible to use computed

values as function names by staging through eval as follows:

@eval ccall(($(string("a", "b")), "lib"), ...

This expression constructs a name using string, then substitutes this name into a new ccall expression, which is

then evaluated. Keep in mind that eval only operates at the top level, so within this expression local variables will not

be available (unless their values are substituted with $). For this reason, eval is typically only used to form top-level

definitions, for example whenwrapping libraries that contain many similar functions.

If your usage is more dynamic, use indirect calls as described in the next section.

30.7 Indirect Calls

The first argument to ccall can also be an expression evaluated at run time. In this case, the expressionmust evaluate

to a Ptr, which will be used as the address of the native function to call. This behavior occurs when the first ccall

argument contains references to non-constants, such as local variables, function arguments, or non-constant globals.

For example, youmight look up the function via dlsym, then cache it in a global variable for that session. For example:

macro dlsym(func, lib)

z, zlocal = gensym(string(func)), gensym()

eval(current_module(), :(global $z = C_NULL))

z = esc(z)

quote

let $zlocal::Ptr{Void} = $z::Ptr{Void}

if $zlocal == C_NULL

$zlocal = dlsym($(esc(lib))::Ptr{Void}, $(esc(func)))

global $z = $zlocal

end

$zlocal

end

end

end

306 CHAPTER 30. CALLING C AND FORTRAN CODE

mylibvar = Libdl.dlopen("mylib")

ccall(@dlsym("myfunc", mylibvar), Void, ())

30.8 Calling Convention

The second argument to ccall can optionally be a calling convention specifier (immediately preceding return type).

Without any specifier, the platform-default C calling convention is used. Other supported conventions are: stdcall,

cdecl,fastcall, andthiscall. For example (frombase/libc.jl)we see the samegethostnameccall as above,

but with the correct signature forWindows:

hn = Vector{UInt8}(256)

err = ccall(:gethostname, stdcall, Int32, (Ptr{UInt8}, UInt32), hn, length(hn))

Formore information, please see the LLVM Language Reference.

There is one additional special calling convention llvmcall, which allows inserting calls to LLVM intrinsics directly.

This can be especially useful when targeting unusual platforms such as GPGPUs. For example, for CUDA, we need to

be able to read the thread index:

ccall("llvm.nvvm.read.ptx.sreg.tid.x", llvmcall, Int32, ())

As with any ccall, it is essential to get the argument signature exactly correct. Also, note that there is no compatibil-

ity layer that ensures the intrinsic makes sense and works on the current target, unlike the equivalent Julia functions

exposed by Core.Intrinsics.

30.9 Accessing Global Variables

Global variables exported by native libraries can be accessed by name using the cglobal() function. The arguments

to cglobal() are a symbol specification identical to that used by ccall, and a type describing the value stored in the

variable:

julia> cglobal((:errno, :libc), Int32)

Ptr{Int32} @0x00007f418d0816b8

Theresult isapointergiving theaddressof thevalue. Thevaluecanbemanipulatedthroughthispointerusingunsafe_load()

and unsafe_store!().

30.10 Accessing Data through a Pointer

The followingmethods are described as "unsafe" because a badpointer or typedeclaration can cause Julia to terminate

abruptly.

Given a Ptr{T}, the contents of type T can generally be copied from the referenced memory into a Julia object us-

ing unsafe_load(ptr, [index]). The index argument is optional (default is 1), and follows the Julia-convention

of 1-based indexing. This function is intentionally similar to the behavior of getindex() and setindex!() (e.g. []

access syntax).

The return valuewill be a new object initialized to contain a copy of the contents of the referencedmemory. The refer-

encedmemory can safely be freed or released.

If T is Any, then the memory is assumed to contain a reference to a Julia object (a jl_value_t*), the result will be a

reference to this object, and the objectwill not be copied. Youmust be careful in this case to ensure that the objectwas

http://llvm.org/docs/LangRef.html#calling-conventions
http://llvm.org/docs/NVPTXUsage.html

30.11. THREAD-SAFETY 307

always visible to the garbage collector (pointers do not count, but the new reference does) to ensure thememory is not

prematurely freed. Note that if the object was not originally allocated by Julia, the newobjectwill never be finalized by

Julia's garbage collector. If thePtr itself is actually ajl_value_t*, it can be convertedback to a Julia object reference

by unsafe_pointer_to_objref(ptr). (Julia values v can be converted to jl_value_t* pointers, as Ptr{Void},

by calling pointer_from_objref(v).)

Thereverseoperation (writingdata toaPtr{T}), canbeperformedusingunsafe_store!(ptr, value, [index]).

Currently, this is only supported for primitive types or other pointer-free (isbits) immutable struct types.

Any operation that throws an error is probably currently unimplemented and should be posted as a bug so that it can

be resolved.

If the pointer of interest is a plain-data array (primitive type or immutable struct), the function unsafe_wrap(Array,

ptr,dims,[own]) may be more useful. The final parameter should be true if Julia should "take ownership" of the

underlying buffer and call free(ptr)when the returned Array object is finalized. If the own parameter is omitted or

false, the caller must ensure the buffer remains in existence until all access is complete.

Arithmetic on the Ptr type in Julia (e.g. using +) does not behave the same as C's pointer arithmetic. Adding an integer

to aPtr in Julia alwaysmoves thepointer by somenumberofbytes, not elements. Thisway, the address valuesobtained

from pointer arithmetic do not depend on the element types of pointers.

30.11 Thread-safety

Some C libraries execute their callbacks from a different thread, and since Julia isn't thread-safe you'll need to take

some extra precautions. In particular, you'll need to set up a two-layered system: the C callback should only schedule

(via Julia's event loop) the execution of your "real" callback. To do this, create aAsyncCondition object andwait on it:

cond = Base.AsyncCondition()

wait(cond)

The callback you pass to C should only execute a ccall to :uv_async_send, passing cond.handle as the argument,

taking care to avoid any allocations or other interactions with the Julia runtime.

Note that events may be coalesced, so multiple calls to uv_async_sendmay result in a single wakeup notification to

the condition.

30.12 More About Callbacks

Formore details on how to pass callbacks to C libraries, see this blog post.

30.13 C++

For direct C++ interfacing, see the Cxx package. For tools to create C++ bindings, see the CxxWrap package.

https://julialang.org/blog/2013/05/callback
https://github.com/Keno/Cxx.jl
https://github.com/JuliaInterop/CxxWrap.jl

Chapter 31

HandlingOperating SystemVariation

When dealing with platform libraries, it is often necessary to provide special cases for various platforms. The vari-

able Sys.KERNEL can be used to write these special cases. There are several functions intended to make this easier:

is_unix, is_linux, is_apple, is_bsd, and is_windows. Thesemay be used as follows:

if is_windows()

some_complicated_thing(a)

end

Note thatis_linux andis_apple aremutually exclusive subsets ofis_unix. Additionally, there is amacro@static

which makes it possible to use these functions to conditionally hide invalid code, as demonstrated in the following ex-

amples.

Simple blocks:

ccall((@static is_windows() ? :_fopen : :fopen), ...)

Complex blocks:

@static if is_linux()

some_complicated_thing(a)

else

some_different_thing(a)

end

When chaining conditionals (including if/elseif/end), the @static must be repeated for each level (parentheses op-

tional, but recommended for readability):

@static is_windows() ? :a : (@static is_apple() ? :b : :c)

309

Chapter 32

Environment Variables

Juliamay be configuredwith a number of environment variables, either in the usualway of the operating system, or in a

portable way fromwithin Julia. Suppose you want to set the environment variable JULIA_EDITOR to vim, then either

typeENV["JULIA_EDITOR"] = "vim" for instance in theREPL tomake this changeonacasebycasebasis, or add the

same to the user configuration file .juliarc.jl in the user's home directory to have a permanent effect. The current

value of the same environment variable is determined by evaluating ENV["JULIA_EDITOR"].

The environment variables that Julia uses generally start with JULIA. If Base.versioninfo is called with verbose

equal totrue, then theoutputwill list definedenvironmentvariables relevant for Julia, including those forwhichJULIA

appears in the name.

32.1 File locations

JULIA_HOME

The absolute path of the directory containing the Julia executable, which sets the global variable Base.JULIA_HOME.

If $JULIA_HOME is not set, then Julia determines the value Base.JULIA_HOME at run-time.

The executable itself is one of

$JULIA_HOME/julia

$JULIA_HOME/julia-debug

by default.

The global variable Base.DATAROOTDIR determines a relative path from Base.JULIA_HOME to the data directory as-

sociated with Julia. Then the path

$JULIA_HOME/$DATAROOTDIR/julia/base

determines the directory in which Julia initially searches for source files (via Base.find_source_file()).

Likewise, the global variable Base.SYSCONFDIR determines a relative path to the configuration file directory. Then

Julia searches for a juliarc.jl file at

$JULIA_HOME/$SYSCONFDIR/julia/juliarc.jl

$JULIA_HOME/../etc/julia/juliarc.jl

by default (via Base.load_juliarc()).

For example, a Linux installation with a Julia executable located at /bin/julia, a DATAROOTDIR of ../share, and a

SYSCONFDIR of ../etcwill have JULIA_HOME set to /bin, a source-file search path of

/share/julia/base

311

312 CHAPTER 32. ENVIRONMENT VARIABLES

and a global configuration search path of

/etc/julia/juliarc.jl

JULIA_LOAD_PATH

A separated list of absolute paths that are to be appended to the variable LOAD_PATH. (In Unix-like systems, the path

separator is :; in Windows systems, the path separator is ;.) The LOAD_PATH variable is where Base.require and

Base.load_in_path() look for code; it defaults to the absolute paths

$JULIA_HOME/../local/share/julia/site/v$(VERSION.major).$(VERSION.minor)

$JULIA_HOME/../share/julia/site/v$(VERSION.major).$(VERSION.minor)

so that, e.g., version0.6 of Julia on a Linux systemwith a Julia executable at/bin/juliawill have adefaultLOAD_PATH

of

/local/share/julia/site/v0.6

/share/julia/site/v0.6

JULIA_PKGDIR

The path of the parent directory Pkg.Dir._pkgroot() for the version-specific Julia package repositories. If the path

is relative, then it is takenwithrespect to theworkingdirectory. If$JULIA_PKGDIR isnotset, thenPkg.Dir._pkgroot()

defaults to

$HOME/.julia

Then the repository location Pkg.dir for a given Julia version is

$JULIA_PKGDIR/v$(VERSION.major).$(VERSION.minor)

Forexample, for a Linuxuserwhosehomedirectory is/home/alice, thedirectory containing thepackage repositories

would by default be

/home/alice/.julia

and the package repository for version 0.6 of Julia would be

/home/alice/.julia/v0.6

JULIA_HISTORY

The absolute path Base.REPL.find_hist_file() of the REPL's history file. If $JULIA_HISTORY is not set, then

Base.REPL.find_hist_file() defaults to

$HOME/.julia_history

JULIA_PKGRESOLVE_ACCURACY

A positive Int that determines how much time the max-sum subroutine MaxSum.maxsum() of the package depen-

dency resolver Base.Pkg.resolvewill devote to attempting satisfying constraints before giving up: this value is by

default 1, and larger values correspond to larger amounts of time.

Suppose the value of $JULIA_PKGRESOLVE_ACCURACY is n. Then

• the number of pre-decimation iterations is 20*n,

• the number of iterations between decimation steps is 10*n, and

• at decimation steps, at most one in every 20*n packages is decimated.

32.2. EXTERNAL APPLICATIONS 313

32.2 External applications

JULIA_SHELL

The absolute path of the shell with which Julia should execute external commands (via Base.repl_cmd()). Defaults

to the environment variable $SHELL, and falls back to /bin/sh if $SHELL is unset.

Note

OnWindows, this environment variable is ignored, and external commands are executed directly.

JULIA_EDITOR

Theeditor returnedbyBase.editor()andused in, e.g.,Base.edit, referring to thecommandof thepreferrededitor,

for instance vim.

$JULIA_EDITOR takes precedenceover$VISUAL, which in turn takes precedenceover$EDITOR. If noneof these envi-

ronment variables is set, then the editor is taken to be open onWindows andOS X, or /etc/alternatives/editor

if it exists, or emacs otherwise.

Note

$JULIA_EDITOR is not used in the determination of the editor for Base.Pkg.edit: this function checks

$VISUAL and $EDITOR alone.

32.3 Parallelization

JULIA_CPU_CORES

Overrides the global variable Base.Sys.CPU_CORES, the number of logical CPU cores available.

JULIA_WORKER_TIMEOUT

AFloat64 that sets thevalueofBase.worker_timeout() (default: 60.0). This functiongives thenumberof seconds

a worker process will wait for amaster process to establish a connection before dying.

JULIA_NUM_THREADS

Anunsigned64-bit integer (uint64_t) that sets themaximumnumberof threadsavailable toJulia. If$JULIA_NUM_THREADS

exceeds the number of available physical CPU cores, then the number of threads is set to the number of cores. If

$JULIA_NUM_THREADS is notpositiveor isnot set, or if thenumberofCPUcores cannotbedetermined throughsystem

calls, then the number of threads is set to 1.

JULIA_THREAD_SLEEP_THRESHOLD

If set to a string that starts with the case-insensitive substring "infinite", then spinning threads never sleep. Oth-

erwise, $JULIA_THREAD_SLEEP_THRESHOLD is interpreted as an unsigned 64-bit integer (uint64_t) and gives, in

nanoseconds, the amount of time after which spinning threads should sleep.

JULIA_EXCLUSIVE

If set to anything besides 0, then Julia's thread policy is consistent with running on a dedicated machine: the master

thread is on proc 0, and threads are affinitized. Otherwise, Julia lets the operating system handle thread policy.

314 CHAPTER 32. ENVIRONMENT VARIABLES

32.4 REPL formatting

Environment variables that determine how REPL output should be formatted at the terminal. Generally, these vari-

ables should be set to ANSI terminal escape sequences. Julia provides a high-level interface with much of the same

functionality: see the section on InteractingWith Julia.

JULIA_ERROR_COLOR

The formatting Base.error_color() (default: light red, "\033[91m") that errors should have at the terminal.

JULIA_WARN_COLOR

The formatting Base.warn_color() (default: yellow, "\033[93m") that warnings should have at the terminal.

JULIA_INFO_COLOR

The formatting Base.info_color() (default: cyan, "\033[36m") that info should have at the terminal.

JULIA_INPUT_COLOR

The formatting Base.input_color() (default: normal, "\033[0m") that input should have at the terminal.

JULIA_ANSWER_COLOR

The formatting Base.answer_color() (default: normal, "\033[0m") that output should have at the terminal.

JULIA_STACKFRAME_LINEINFO_COLOR

The formattingBase.stackframe_lineinfo_color() (default: bold,"\033[1m") that line info should have during

a stack trace at the terminal.

JULIA_STACKFRAME_FUNCTION_COLOR

The formatting Base.stackframe_function_color() (default: bold, "\033[1m") that function calls should have

during a stack trace at the terminal.

32.5 Debugging and profiling

JULIA_GC_ALLOC_POOL, JULIA_GC_ALLOC_OTHER, JULIA_GC_ALLOC_PRINT

If set, these environment variables take strings that optionally start with the character 'r', followed by a string inter-

polation of a colon-separated list of three signed 64-bit integers (int64_t). This triple of integers a:b:c represents

the arithmetic sequence a, a + b, a + 2*b, ... c.

• If it's the nth time that jl_gc_pool_alloc() has been called, and n belongs to the arithmetic sequence repre-

sented by $JULIA_GC_ALLOC_POOL, then garbage collection is forced.

• If it's the nth time that maybe_collect() has been called, and n belongs to the arithmetic sequence repre-

sented by $JULIA_GC_ALLOC_OTHER, then garbage collection is forced.

• If it's the nth time that jl_gc_collect() has been called, and n belongs to the arithmetic sequence repre-

sentedby$JULIA_GC_ALLOC_PRINT, thencounts for thenumberofcalls tojl_gc_pool_alloc()andmaybe_collect()

are printed.

http://ascii-table.com/ansi-escape-sequences.php

32.5. DEBUGGING AND PROFILING 315

If the value of the environment variable begins with the character 'r', then the interval between garbage collection

events is randomized.

Note

These environment variables only have an effect if Juliawas compiledwith garbage-collection debugging

(that is, if WITH_GC_DEBUG_ENV is set to 1 in the build configuration).

JULIA_GC_NO_GENERATIONAL

If set to anything besides 0, then the Julia garbage collector never performs "quick sweeps" of memory.

Note

Thisenvironmentvariableonlyhasaneffect if Juliawascompiledwithgarbage-collectiondebugging (that

is, if WITH_GC_DEBUG_ENV is set to 1 in the build configuration).

JULIA_GC_WAIT_FOR_DEBUGGER

If set to anything besides0, then the Julia garbage collectorwill wait for a debugger to attach instead of abortingwhen-

ever there's a critical error.

Note

Thisenvironmentvariableonlyhasaneffect if Juliawascompiledwithgarbage-collectiondebugging (that

is, if WITH_GC_DEBUG_ENV is set to 1 in the build configuration).

ENABLE_JITPROFILING

If set to anything besides 0, then the compiler will create and register an event listener for just-in-time (JIT) profiling.

Note

This environment variable only has an effect if Julia was compiled with JIT profiling support, using either

• Intel's VTune™Amplifier (USE_INTEL_JITEVENTS set to 1 in the build configuration), or

• OProfile (USE_OPROFILE_JITEVENTS set to 1 in the build configuration).

JULIA_LLVM_ARGS

Arguments to be passed to the LLVMbackend.

Note

This environment variable has an effect only if Julia was compiledwith JL_DEBUG_BUILD set— in partic-

ular, the julia-debug executable is always compiled with this build variable.

JULIA_DEBUG_LOADING

If set, then Julia prints detailed information about the cache in the loading process of Base.require.

https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://oprofile.sourceforge.net/news/

Chapter 33

Embedding Julia

As we have seen in Calling C and Fortran Code, Julia has a simple and efficient way to call functions written in C. But

there are situations where the opposite is needed: calling Julia function from C code. This can be used to integrate

Julia code into a larger C/C++ project, without the need to rewrite everything in C/C++. Julia has a C API to make this

possible. As almost all programming languages have some way to call C functions, the Julia C API can also be used to

build further language bridges (e.g. calling Julia from Python or C#).

33.1 High-Level Embedding

We start with a simple C program that initializes Julia and calls some Julia code:

#include <julia.h>

int main(int argc, char *argv[])

{

/* required: setup the Julia context */

jl_init();

/* run Julia commands */

jl_eval_string("print(sqrt(2.0))");

/* strongly recommended: notify Julia that the

program is about to terminate. this allows

Julia time to cleanup pending write requests

and run all finalizers

*/

jl_atexit_hook(0);

return 0;

}

Inorder tobuild thisprogramyouhavetoput thepathtotheJuliaheader into the includepathand linkagainstlibjulia.

For instance, when Julia is installed to $JULIA_DIR, one can compile the above test program test.cwith gcc using:

gcc -o test -fPIC -I$JULIA_DIR/include/julia -L$JULIA_DIR/lib test.c -ljulia $JULIA_DIR/lib/julia

/libstdc++.so.6

Then if the environment variable JULIA_HOME is set to $JULIA_DIR/bin, the output test program can be executed.

Alternatively, look at the embedding.c program in the Julia source tree in the examples/ folder. The file ui/repl.c

program is another simple example of how to set jl_options options while linking against libjulia.

317

318 CHAPTER 33. EMBEDDING JULIA

The first thing that has to be done before calling any other Julia C function is to initialize Julia. This is done by calling

jl_init, which tries to automatically determine Julia's install location. If you need to specify a custom location, or

specify which system image to load, use jl_init_with_image instead.

The second statement in the test program evaluates a Julia statement using a call to jl_eval_string.

Before theprogramterminates, it is strongly recommendedtocalljl_atexit_hook. Theaboveexampleprogramcalls

this before returning from main.

Note

Currently, dynamically linking with the libjulia shared library requires passing the RTLD_GLOBAL op-

tion. In Python, this looks like:

>>> julia=CDLL('./libjulia.dylib',RTLD_GLOBAL)

>>> julia.jl_init.argtypes = []

>>> julia.jl_init()

250593296

Note

If the julia programneeds to access symbols from themain executable, itmaybenecessary to add-Wl,--

export-dynamic linkerflagatcompile timeonLinux inadditiontotheonesgeneratedbyjulia-config.jl

described below. This is not necessary when compiling a shared library.

Using julia-config to automatically determine build parameters

The scriptjulia-config.jlwas created to aid in determiningwhat build parameters are required by a program that

uses embedded Julia. This script uses the build parameters and system configuration of the particular Julia distribution

it is invoked by to export the necessary compiler flags for an embedding program to interactwith that distribution. This

script is located in the Julia shared data directory.

Example

#include <julia.h>

int main(int argc, char *argv[])

{

jl_init();

(void)jl_eval_string("println(sqrt(2.0))");

jl_atexit_hook(0);

return 0;

}

On the command line

Asimpleuseof this script is fromthecommand line. Assumingthatjulia-config.jl is located in/usr/local/julia/share/julia,

it can be invoked on the command line directly and takes any combination of 3 flags:

/usr/local/julia/share/julia/julia-config.jl

Usage: julia-config [--cflags|--ldflags|--ldlibs]

If the above example source is saved in the file embed_example.c, then the following command will compile it into a

running program on Linux andWindows (MSYS2 environment), or if onOS/X, then substitute clang for gcc.:

/usr/local/julia/share/julia/julia-config.jl --cflags --ldflags --ldlibs | xargs gcc

embed_example.c

33.2. CONVERTING TYPES 319

Use inMakefiles

But in general, embedding projectswill bemore complicated than the above, and so the following allows generalmake-

file support as well – assumingGNUmake because of the use of the shellmacro expansions. Additionally, thoughmany

times julia-config.jlmay be found in the directory /usr/local, this is not necessarily the case, but Julia can be

used to locate julia-config.jl too, and the makefile can be used to take advantage of that. The above example is

extended to use aMakefile:

JL_SHARE = $(shell julia -e 'print(joinpath(JULIA_HOME,Base.DATAROOTDIR,"julia"))')

CFLAGS += $(shell $(JL_SHARE)/julia-config.jl --cflags)

CXXFLAGS += $(shell $(JL_SHARE)/julia-config.jl --cflags)

LDFLAGS += $(shell $(JL_SHARE)/julia-config.jl --ldflags)

LDLIBS += $(shell $(JL_SHARE)/julia-config.jl --ldlibs)

all: embed_example

Now the build command is simply make.

33.2 Converting Types

Realapplicationswill not justneedtoexecuteexpressions, butalsoreturntheirvalues tothehostprogram. jl_eval_string

returns a jl_value_t*, which is a pointer to a heap-allocated Julia object. Storing simple data types like Float64 in

this way is called boxing, and extracting the stored primitive data is called unboxing. Our improved sample program

that calculates the square root of 2 in Julia and reads back the result in C looks as follows:

jl_value_t *ret = jl_eval_string("sqrt(2.0)");

if (jl_typeis(ret, jl_float64_type)) {

double ret_unboxed = jl_unbox_float64(ret);

printf("sqrt(2.0) in C: %e \n", ret_unboxed);

}

else {

printf("ERROR: unexpected return type from sqrt(::Float64)\n");

}

In order to checkwhether ret is of a specific Julia type, we can use the jl_isa, jl_typeis, or jl_is_... functions.

By typingtypeof(sqrt(2.0)) into theJulia shellwecansee that the return type isFloat64 (double inC).Toconvert

the boxed Julia value into a C double the jl_unbox_float64 function is used in the above code snippet.

Corresponding jl_box_... functions are used to convert the other way:

jl_value_t *a = jl_box_float64(3.0);

jl_value_t *b = jl_box_float32(3.0f);

jl_value_t *c = jl_box_int32(3);

Aswewill see next, boxing is required to call Julia functions with specific arguments.

33.3 Calling Julia Functions

While jl_eval_string allows C to obtain the result of a Julia expression, it does not allow passing arguments com-

puted in C to Julia. For this youwill need to invoke Julia functions directly, using jl_call:

jl_function_t *func = jl_get_function(jl_base_module, "sqrt");

jl_value_t *argument = jl_box_float64(2.0);

jl_value_t *ret = jl_call1(func, argument);

320 CHAPTER 33. EMBEDDING JULIA

In thefirst step, ahandle to theJulia functionsqrt is retrievedbycallingjl_get_function. Thefirstargumentpassed

to jl_get_function is a pointer to the Basemodule in which sqrt is defined. Then, the double value is boxed using

jl_box_float64. Finally, in the last step, the function is calledusingjl_call1. jl_call0,jl_call2, andjl_call3

functions also exist, to conveniently handle different numbers of arguments. To pass more arguments, use jl_call:

jl_value_t *jl_call(jl_function_t *f, jl_value_t **args, int32_t nargs)

Its second argument args is an array of jl_value_t* arguments and nargs is the number of arguments.

33.4 MemoryManagement

Aswehave seen, Julia objects are represented inCaspointers. This raises thequestionofwho is responsible for freeing

these objects.

Typically, Juliaobjectsare freedbyagarbagecollector (GC), but theGCdoesnotautomaticallyknowthatweareholding

a reference to a Julia value fromC. This means the GC can free objects out from under you, rendering pointers invalid.

The GC can only run when Julia objects are allocated. Calls like jl_box_float64 perform allocation, and allocation

might also happen at any point in running Julia code. However, it is generally safe to use pointers in between jl_...

calls. But in order to make sure that values can survive jl_... calls, we have to tell Julia that we hold a reference to a

Julia value. This can be done using the JL_GC_PUSHmacros:

jl_value_t *ret = jl_eval_string("sqrt(2.0)");

JL_GC_PUSH1(&ret);

// Do something with ret

JL_GC_POP();

TheJL_GC_POP call releases the references established by the previousJL_GC_PUSH. Note thatJL_GC_PUSH iswork-

ing on the stack, so it must be exactly paired with a JL_GC_POP before the stack frame is destroyed.

Several Julia values canbepushedatonceusing theJL_GC_PUSH2 ,JL_GC_PUSH3 , andJL_GC_PUSH4macros. Topush

an array of Julia values one can use the JL_GC_PUSHARGSmacro, which can be used as follows:

jl_value_t **args;

JL_GC_PUSHARGS(args, 2); // args can now hold 2 `jl_value_t*` objects

args[0] = some_value;

args[1] = some_other_value;

// Do something with args (e.g. call jl_... functions)

JL_GC_POP();

The garbage collector also operates under the assumption that it is aware of every old-generation object pointing to a

young-generationone. Any timeapointer is updatedbreaking that assumption, itmust be signaled to the collectorwith

the jl_gc_wb (write barrier) function like so:

jl_value_t *parent = some_old_value, *child = some_young_value;

((some_specific_type*)parent)->field = child;

jl_gc_wb(parent, child);

It is in general impossible to predict which values will be old at runtime, so the write barrier must be inserted after all

explicit stores. One notable exception is if the parent object was just allocated and garbage collection was not run

since then. Remember that most jl_... functions can sometimes invoke garbage collection.

The write barrier is also necessary for arrays of pointers when updating their data directly. For example:

jl_array_t *some_array = ...; // e.g. a Vector{Any}

void **data = (void**)jl_array_data(some_array);

jl_value_t *some_value = ...;

data[0] = some_value;

jl_gc_wb(some_array, some_value);

33.5. WORKINGWITH ARRAYS 321

Manipulating the Garbage Collector

There are some functions to control the GC. In normal use cases, these should not be necessary.

Function Description

jl_gc_collect() Force a GC run

jl_gc_enable(0) Disable the GC, return previous state as int

jl_gc_enable(1) Enable the GC, return previous state as int

jl_gc_is_enabled() Return current state as int

33.5 Workingwith Arrays

Julia and C can share array data without copying. The next example will show how this works.

Julia arrays are represented in C by the datatype jl_array_t*. Basically, jl_array_t is a struct that contains:

• Information about the datatype

• A pointer to the data block

• Information about the sizes of the array

To keep things simple, we start with a 1D array. Creating an array containing Float64 elements of length 10 is done by:

jl_value_t* array_type = jl_apply_array_type(jl_float64_type, 1);

jl_array_t* x = jl_alloc_array_1d(array_type, 10);

Alternatively, if you have already allocated the array you can generate a thin wrapper around its data:

double *existingArray = (double*)malloc(sizeof(double)*10);

jl_array_t *x = jl_ptr_to_array_1d(array_type, existingArray, 10, 0);

The last argument is a boolean indicatingwhether Julia should take ownership of the data. If this argument is non-zero,

the GCwill call free on the data pointer when the array is no longer referenced.

In order to access the data of x, we can use jl_array_data:

double *xData = (double*)jl_array_data(x);

Nowwe can fill the array:

for(size_t i=0; i<jl_array_len(x); i++)

xData[i] = i;

Now let us call a Julia function that performs an in-place operation on x:

jl_function_t *func = jl_get_function(jl_base_module, "reverse!");

jl_call1(func, (jl_value_t*)x);

By printing the array, one can verify that the elements of x are now reversed.

Accessing Returned Arrays

If a Julia function returns an array, the return value of jl_eval_string and jl_call can be cast to a jl_array_t*:

jl_function_t *func = jl_get_function(jl_base_module, "reverse");

jl_array_t *y = (jl_array_t*)jl_call1(func, (jl_value_t*)x);

Now the content of y can be accessed as before using jl_array_data. As always, be sure to keep a reference to the

array while it is in use.

322 CHAPTER 33. EMBEDDING JULIA

Multidimensional Arrays

Julia'smultidimensional arrays are stored inmemory in column-major order. Here is some code that creates a 2D array

and accesses its properties:

// Create 2D array of float64 type

jl_value_t *array_type = jl_apply_array_type(jl_float64_type, 2);

jl_array_t *x = jl_alloc_array_2d(array_type, 10, 5);

// Get array pointer

double *p = (double*)jl_array_data(x);

// Get number of dimensions

int ndims = jl_array_ndims(x);

// Get the size of the i-th dim

size_t size0 = jl_array_dim(x,0);

size_t size1 = jl_array_dim(x,1);

// Fill array with data

for(size_t i=0; i<size1; i++)

for(size_t j=0; j<size0; j++)

p[j + size0*i] = i + j;

Notice thatwhileJuliaarraysuse1-based indexing, theCAPIuses0-based indexing (forexample incallingjl_array_dim)

in order to read as idiomatic C code.

33.6 Exceptions

Julia code can throw exceptions. For example, consider:

jl_eval_string("this_function_does_not_exist()");

This call will appear to do nothing. However, it is possible to check whether an exception was thrown:

if (jl_exception_occurred())

printf("%s \n", jl_typeof_str(jl_exception_occurred()));

If you are using the Julia C API from a language that supports exceptions (e.g. Python, C#, C++), it makes sense to wrap

eachcall intolibjuliawitha function that checkswhetheranexceptionwas thrown, and then rethrows theexception

in the host language.

Throwing Julia Exceptions

When writing Julia callable functions, it might be necessary to validate arguments and throw exceptions to indicate

errors. A typical type check looks like:

if (!jl_typeis(val, jl_float64_type)) {

jl_type_error(function_name, (jl_value_t*)jl_float64_type, val);

}

General exceptions can be raised using the functions:

void jl_error(const char *str);

void jl_errorf(const char *fmt, ...);

jl_error takes a C string, and jl_errorf is called like printf:

jl_errorf("argument x = %d is too large", x);

where in this example x is assumed to be an integer.

Chapter 34

Packages

Julia has a built-in package manager for installing add-on functionality written in Julia. It can also install external li-

braries using your operating system's standard system for doing so, or by compiling from source. The list of registered

Julia packages can be found at http://pkg.julialang.org. All package manager commands are found in the Pkgmodule,

included in Julia's Base install.

First we'll go over the mechanics of the Pkg family of commands and then we'll provide some guidance on how to get

your package registered. Be sure to read the section below on package naming conventions, tagging versions and the

importance of a REQUIRE file for when you're ready to add your code to the curatedMETADATA repository.

34.1 Package Status

The Pkg.status() function prints out a summary of the state of packages you have installed. Initially, you'll have no

packages installed:

julia> Pkg.status()

INFO: Initializing package repository /Users/stefan/.julia/v0.6

INFO: Cloning METADATA from git://github.com/JuliaLang/METADATA.jl

No packages installed.

Your package directory is automatically initialized the first time you run a Pkg command that expects it to exist –which

includes Pkg.status(). Here's an example non-trivial set of required and additional packages:

julia> Pkg.status()

Required packages:

- Distributions 0.2.8

- SHA 0.3.2

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.6

These packages are all on registered versions, managed by Pkg. Packages can be inmore complicated states, indicated

by annotations to the right of the installed package version; we will explain these states and annotations as we en-

counter them. For programmatic usage, Pkg.installed() returns a dictionary, mapping installed package names to

the version of that package which is installed:

julia> Pkg.installed()

Dict{String,VersionNumber} with 4 entries:

323

http://pkg.julialang.org

324 CHAPTER 34. PACKAGES

"Distributions" => v"0.2.8"

"Stats" => v"0.2.6"

"SHA" => v"0.3.2"

"NumericExtensions" => v"0.2.17"

34.2 Adding and Removing Packages

Julia's package manager is a little unusual in that it is declarative rather than imperative. This means that you tell it

what you want and it figures out what versions to install (or remove) to satisfy those requirements optimally – and

minimally. So rather than installing a package, you just add it to the list of requirements and then "resolve" what needs

to be installed. In particular, this means that if some package had been installed because it was needed by a previous

version of something you wanted, and a newer version doesn't have that requirement anymore, updating will actually

remove that package.

Yourpackagerequirementsare in thefile~/.julia/v0.6/REQUIRE. Youcanedit thisfilebyhandandthencallPkg.resolve()

to install, upgrade or remove packages to optimally satisfy the requirements, or you can do Pkg.edit(), which will

open REQUIRE in your editor (configured via the EDITOR or VISUAL environment variables), and then automatically

call Pkg.resolve() afterwards if necessary. If you only want to add or remove the requirement for a single package,

you can also use the non-interactive Pkg.add() and Pkg.rm() commands, which add or remove a single requirement

to REQUIRE and then call Pkg.resolve().

You can add a package to the list of requirements with the Pkg.add() function, and the package and all the packages

that it depends onwill be installed:

julia> Pkg.status()

No packages installed.

julia> Pkg.add("Distributions")

INFO: Cloning cache of Distributions from git://github.com/JuliaStats/Distributions.jl.git

INFO: Cloning cache of NumericExtensions from git://github.com/lindahua/NumericExtensions.jl.git

INFO: Cloning cache of Stats from git://github.com/JuliaStats/Stats.jl.git

INFO: Installing Distributions v0.2.7

INFO: Installing NumericExtensions v0.2.17

INFO: Installing Stats v0.2.6

INFO: REQUIRE updated.

julia> Pkg.status()

Required packages:

- Distributions 0.2.7

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.6

What this is doing is first adding Distributions to your ~/.julia/v0.6/REQUIRE file:

$ cat ~/.julia/v0.6/REQUIRE

Distributions

It then runs Pkg.resolve() using these new requirements, which leads to the conclusion that the Distributions

package should be installed since it is required but not installed. As stated before, you can accomplish the same thing

by editing your ~/.julia/v0.6/REQUIRE file by hand and then running Pkg.resolve() yourself:

$ echo SHA >> ~/.julia/v0.6/REQUIRE

34.2. ADDING AND REMOVING PACKAGES 325

julia> Pkg.resolve()

INFO: Cloning cache of SHA from git://github.com/staticfloat/SHA.jl.git

INFO: Installing SHA v0.3.2

julia> Pkg.status()

Required packages:

- Distributions 0.2.7

- SHA 0.3.2

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.6

This is functionally equivalent to callingPkg.add("SHA"), except thatPkg.add()doesn't changeREQUIREuntil after

installationhascompleted, so if thereareproblems,REQUIREwill be left as itwasbeforecallingPkg.add(). The format

of the REQUIRE file is described in Requirements Specification; it allows, among other things, requiring specific ranges

of versions of packages.

When you decide that you don't want to have a package around any more, you can use Pkg.rm() to remove the re-

quirement for it from the REQUIRE file:

julia> Pkg.rm("Distributions")

INFO: Removing Distributions v0.2.7

INFO: Removing Stats v0.2.6

INFO: Removing NumericExtensions v0.2.17

INFO: REQUIRE updated.

julia> Pkg.status()

Required packages:

- SHA 0.3.2

julia> Pkg.rm("SHA")

INFO: Removing SHA v0.3.2

INFO: REQUIRE updated.

julia> Pkg.status()

No packages installed.

Once again, this is equivalent to editing the REQUIRE file to remove the linewith each package name on it then running

Pkg.resolve() toupdate the set of installedpackages tomatch. WhilePkg.add()andPkg.rm()are convenient for

addingandremoving requirements forasinglepackage,whenyouwant toaddor removemultiplepackages, youcancall

Pkg.edit() to manually change the contents of REQUIRE and then update your packages accordingly. Pkg.edit()

does not roll back the contents of REQUIRE if Pkg.resolve() fails – rather, you have to run Pkg.edit() again to fix

the files contents yourself.

Because the package manager uses libgit2 internally to manage the package git repositories, users may run into pro-

tocol issues (if behind a firewall, for example), when running Pkg.add(). By default, all GitHub-hosted packages wil

be accessed via 'https'; this default can be modified by calling Pkg.setprotocol!(). The following command can be

run from the command line in order to tell git to use 'https' instead of the 'git' protocol when cloning all repositories,

wherever they are hosted:

git config --global url."https://".insteadOf git://

However, this changewill be system-wide and thus the use of Pkg.setprotocol!() is preferable.

326 CHAPTER 34. PACKAGES

Note

Thepackagemanager functions also accept the.jl suffixonpackagenames, though the suffix is stripped

internally. For example:

Pkg.add("Distributions.jl")

Pkg.rm("Distributions.jl")

34.3 Offline Installation of Packages

For machines with no Internet connection, packages may be installed by copying the package root directory (given by

Pkg.dir()) from amachine with the same operating system and environment.

Pkg.add() does the following within the package root directory:

1. Adds the name of the package to REQUIRE.

2. Downloads the package to .cache, then copies the package to the package root directory.

3. Recursively performs step 2 against all the packages listed in the package's REQUIRE file.

4. Runs Pkg.build()

Warning

Copying installed packages from a different machine is brittle for packages requiring binary external de-

pendencies. Such packages may break due to differences in operating system versions, build environ-

ments, and/or absolute path dependencies.

34.4 Installing Unregistered Packages

Julia packages are simply git repositories, clonable via any of the protocols that git supports, and containing Julia code

that follows certain layout conventions. Official Julia packages are registered in theMETADATA.jl repository, available

at a well-known location 1. The Pkg.add() and Pkg.rm() commands in the previous section interact with registered

packages, but the package manager can install and work with unregistered packages too. To install an unregistered

package, use Pkg.clone(url), where url is a git URL fromwhich the package can be cloned:

julia> Pkg.clone("git://example.com/path/to/Package.jl.git")

INFO: Cloning Package from git://example.com/path/to/Package.jl.git

Cloning into 'Package'...

remote: Counting objects: 22, done.

remote: Compressing objects: 100% (10/10), done.

remote: Total 22 (delta 8), reused 22 (delta 8)

Receiving objects: 100% (22/22), 2.64 KiB, done.

Resolving deltas: 100% (8/8), done.

By convention, Julia repository names endwith.jl (the additional.git indicates a "bare" git repository), which keeps

them from collidingwith repositories for other languages, and alsomakes Julia packages easy to find in search engines.

When packages are installed in your .julia/v0.6 directory, however, the extension is redundant so we leave it off.

https://www.kernel.org/pub/software/scm/git/docs/git-clone.html#URLS
https://github.com/JuliaLang/METADATA.jl

34.5. UPDATING PACKAGES 327

If unregistered packages contain a REQUIRE file at the top of their source tree, that filewill be used to determinewhich

registered packages the unregistered package depends on, and theywill automatically be installed. Unregistered pack-

ages participate in the same version resolution logic as registered packages, so installed package versions will be ad-

justed as necessary to satisfy the requirements of both registered and unregistered packages.

34.5 Updating Packages

When package developers publish new registered versions of packages that you're using, you will, of course, want the

new shiny versions. To get the latest and greatest versions of all your packages, just do Pkg.update():

julia> Pkg.update()

INFO: Updating METADATA...

INFO: Computing changes...

INFO: Upgrading Distributions: v0.2.8 => v0.2.10

INFO: Upgrading Stats: v0.2.7 => v0.2.8

Thefirst step of updating packages is to pull newchanges to~/.julia/v0.6/METADATA and see if any new registered

package versions have been published. After this, Pkg.update() attempts to update packages that are checked out

on a branch and not dirty (i.e. no changes have beenmade to files tracked by git) by pulling changes from the package's

upstream repository. Upstream changes will only be applied if no merging or rebasing is necessary – i.e. if the branch

can be "fast-forwarded". If the branch cannot be fast-forwarded, it is assumed that you'reworking on it andwill update

the repository yourself.

Finally, the update process recomputes an optimal set of package versions to have installed to satisfy your top-level

requirements and the requirements of "fixed" packages. A package is considered fixed if it is one of the following:

1. Unregistered: the package is not in METADATA – you installed it with Pkg.clone().

2. Checked out: the package repo is on a development branch.

3. Dirty: changes have beenmade to files in the repo.

If any of these are the case, the package manager cannot freely change the installed version of the package, so its re-

quirements must be satisfied by whatever other package versions it picks. The combination of top-level requirements

in ~/.julia/v0.6/REQUIRE and the requirement of fixed packages are used to determine what should be installed.

You can also update only a subset of the installed packages, by providing arguments to the Pkg.update function. In

that case, only the packages provided as arguments and their dependencies will be updated:

julia> Pkg.update("Example")

INFO: Updating METADATA...

INFO: Computing changes...

INFO: Upgrading Example: v0.4.0 => 0.4.1

This partial update process still computes the new set of package versions according to top-level requirements and

"fixed" packages, but it additionally considers all other packages except those explicitly provided, and their dependen-

cies, as fixed.

1The official set of packages is at https://github.com/JuliaLang/METADATA.jl, but individuals and organizations can easily use a different meta-

data repository. This allows control which packages are available for automatic installation. One can allow only audited and approved package ver-

sions, andmake private packages or forks available. See CustomMETADATARepository for details.

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://github.com/JuliaLang/METADATA.jl

328 CHAPTER 34. PACKAGES

34.6 Checkout, Pin and Free

You may want to use the master version of a package rather than one of its registered versions. There might be fixes

or functionality on master that you need that aren't yet published in any registered versions, or you may be a devel-

oper of the package and need to make changes on master or some other development branch. In such cases, you can

do Pkg.checkout(pkg) to checkout the master branch of pkg or Pkg.checkout(pkg,branch) to checkout some

other branch:

julia> Pkg.add("Distributions")

INFO: Installing Distributions v0.2.9

INFO: Installing NumericExtensions v0.2.17

INFO: Installing Stats v0.2.7

INFO: REQUIRE updated.

julia> Pkg.status()

Required packages:

- Distributions 0.2.9

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.7

julia> Pkg.checkout("Distributions")

INFO: Checking out Distributions master...

INFO: No packages to install, update or remove.

julia> Pkg.status()

Required packages:

- Distributions 0.2.9+ master

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.7

Immediately after installing Distributions with Pkg.add() it is on the current most recent registered version –

0.2.9 at the time of writing this. Then after running Pkg.checkout("Distributions"), you can see from the

output of Pkg.status() that Distributions is on an unregistered version greater than 0.2.9, indicated by the

"pseudo-version" number 0.2.9+.

Whenyou checkout anunregistered version of a package, the copyof theREQUIREfile in the package repo takes prece-

dence over any requirements registered in METADATA, so it is important that developers keep this file accurate and up-

to-date, reflecting the actual requirements of the current version of the package. If the REQUIRE file in the package

repo is incorrect or missing, dependencies may be removed when the package is checked out. This file is also used to

populate newly published versions of the package if you use the API that Pkg provides for this (described below).

When you decide that you no longer want to have a package checked out on a branch, you can "free" it back to the

control of the packagemanager with Pkg.free(pkg):

julia> Pkg.free("Distributions")

INFO: Freeing Distributions...

INFO: No packages to install, update or remove.

julia> Pkg.status()

Required packages:

- Distributions 0.2.9

Additional packages:

34.6. CHECKOUT, PIN AND FREE 329

- NumericExtensions 0.2.17

- Stats 0.2.7

After this, since the package is on a registered version andnot on a branch, its versionwill be updated as new registered

versions of the package are published.

If you want to pin a package at a specific version so that calling Pkg.update()won't change the version the package

is on, you can use the Pkg.pin() function:

julia> Pkg.pin("Stats")

INFO: Creating Stats branch pinned.47c198b1.tmp

julia> Pkg.status()

Required packages:

- Distributions 0.2.9

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.7 pinned.47c198b1.tmp

After this, theStatspackagewill remainpinnedatversion0.2.7–ormore specifically, at commit47c198b1, but since

versionsarepermanentlyassociatedagivengithash, this is thesamething. Pkg.pin()worksbycreatinga throw-away

branch for the commit you want to pin the package at and then checking that branch out. By default, it pins a package

at the current commit, but you can choose a different version by passing a second argument:

julia> Pkg.pin("Stats",v"0.2.5")

INFO: Creating Stats branch pinned.1fd0983b.tmp

INFO: No packages to install, update or remove.

julia> Pkg.status()

Required packages:

- Distributions 0.2.9

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.5 pinned.1fd0983b.tmp

Now the Stats package is pinned at commit 1fd0983b, which corresponds to version 0.2.5. When you decide to

"unpin" a package and let the packagemanager update it again, you can use Pkg.free() like youwould tomove off of

any branch:

julia> Pkg.free("Stats")

INFO: Freeing Stats...

INFO: No packages to install, update or remove.

julia> Pkg.status()

Required packages:

- Distributions 0.2.9

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.7

After this, theStatspackage ismanagedbythepackagemanageragain, and futurecalls toPkg.update()will upgrade

it to newer versions when they are published. The throw-away pinned.1fd0983b.tmp branch remains in your local

330 CHAPTER 34. PACKAGES

Stats repo, but since git branches are extremely lightweight, this doesn't really matter; if you feel like cleaning them

up, you can go into the repo and delete those branches 2.

34.7 CustomMETADATARepository

By default, Julia assumes you will be using the official METADATA.jl repository for downloading and installing pack-

ages. You can also provide a differentmetadata repository location. A commonapproach is to keep yourmetadata-v2

branch up to date with the Julia official branch and add another branch with your custom packages. You can initialize

your localmetadata repository using that custom location andbranch and then periodically rebase your custombranch

with the official metadata-v2 branch. In order to use a custom repository and branch, issue the following command:

julia> Pkg.init("https://me.example.com/METADATA.jl.git", "branch")

The branch argument is optional and defaults to metadata-v2. Once initialized, a file named META_BRANCH in your

~/.julia/vX.Y/pathwill trackthebranchthatyourMETADATArepositorywas initializedwith. If youwant tochange

branches, youwill need to either modify the META_BRANCH file directly (be careful!) or remove the vX.Y directory and

re-initialize yourMETADATA repository using the Pkg.init command.

2Packages that aren't on branches will also bemarked as dirty if youmake changes in the repo, but that's a less common thing to do.

https://github.com/JuliaLang/METADATA.jl

Chapter 35

Package Development

Julia's package manager is designed so that when you have a package installed, you are already in a position to look at

its source code and full development history. You are also able to make changes to packages, commit them using git,

and easily contribute fixes and enhancements upstream. Similarly, the system is designed so that if you want to create

a new package, the simplest way to do so is within the infrastructure provided by the packagemanager.

35.1 Initial Setup

Since packages are git repositories, before doing any package development you should setup the following standard

global git configuration settings:

$ git config --global user.name "FULL NAME"

$ git config --global user.email "EMAIL"

where FULL NAME is your actual full name (spaces are allowed between the double quotes) and EMAIL is your actual

email address. Although it isn't necessary to use GitHub to create or publish Julia packages, most Julia packages as of

writing this are hosted onGitHub and the packagemanager knows how to format origin URLs correctly and otherwise

work with the service smoothly. We recommend that you create a free account on GitHub and then do:

$ git config --global github.user "USERNAME"

where USERNAME is your actual GitHub user name. Once you do this, the package manager knows your GitHub user

name and can configure things accordingly. You should also upload your public SSH key to GitHub and set up an SSH

agent on your development machine so that you can push changes with minimal hassle. In the future, we will make

this system extensible and support other common git hosting options like BitBucket and allow developers to choose

their favorite. Since the package development functions has been moved to the PkgDev package, you need to run

Pkg.add("PkgDev"); import PkgDev to access the functions starting with PkgDev. in the document below.

35.2 Making changes to an existing package

Documentation changes

If you want to improve the online documentation of a package, the easiest approach (at least for small changes) is to

use GitHub's online editing functionality. First, navigate to the repository's GitHub "home page," find the file (e.g.,

README.md) within the repository's folder structure, and click on it. You'll see the contents displayed, along with a

small "pencil" icon in the upper right hand corner. Clicking that icon opens the file in edit mode. Make your changes,

write a brief summary describing the changes youwant tomake (this is your commitmessage), and then hit "Propose file

change." Your changes will be submitted for consideration by the package owner(s) and collaborators.

For larger documentation changes–and especially ones that you expect to have to update in response to feedback–you

might find it easier to use the procedure for code changes described below.

331

https://github.com/
https://github.com/join
https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fsettings%2Fssh
https://linux.die.net/man/1/ssh-agent
https://linux.die.net/man/1/ssh-agent
https://bitbucket.org
https://github.com/JuliaLang/PkgDev.jl

332 CHAPTER 35. PACKAGEDEVELOPMENT

Code changes

Executive summary

Here we assume you've already set up git on your local machine and have a GitHub account (see above). Let's imagine

you're fixing a bug in the Images package:

Pkg.checkout("Images") # check out the master branch

<here, make sure your bug is still a bug and hasn't been fixed already>

cd(Pkg.dir("Images"))

;git checkout -b myfixes # create a branch for your changes

<edit code> # be sure to add a test for your bug

Pkg.test("Images") # make sure everything works now

;git commit -a -m "Fix foo by calling bar" # write a descriptive message

using PkgDev

PkgDev.submit("Images")

The last line will present youwith a link to submit a pull request to incorporate your changes.

Detailed description

If you want to fix a bug or add new functionality, you want to be able to test your changes before you submit them for

consideration. Youalsoneed tohaveaneasyway toupdate yourproposal in response to thepackageowner's feedback.

Consequently, in this case the strategy is towork locally onyourownmachine; onceyouare satisfiedwith your changes,

yousubmit themfor consideration. Thisprocess is calledapull requestbecauseyouareasking to "pull" your changes into

the project's main repository. Because the online repository can't see the code on your private machine, you first push

your changes to a publicly-visible location, your own online fork of the package (hosted on your own personal GitHub

account).

Let's assume you already have the Foo package installed. In the description below, anything starting with Pkg. or

PkgDev. is meant to be typed at the Julia prompt; anything starting with git is meant to be typed in julia's shell mode

(or using the shell that comes with your operating system). Within Julia, you can combine these twomodes:

julia> cd(Pkg.dir("Foo")) # go to Foo's folder

shell> git command arguments... # command will apply to Foo

Now suppose you're ready tomake some changes to Foo. While there are several possible approaches, here is one that

is widely used:

• From the Julia prompt, type Pkg.checkout("Foo"). This ensures you're running the latest code (the master

branch), rather than just whatever "official release" version you have installed. (If you're planning to fix a bug, at

this point it's a good idea to check again whether the bug has already been fixed by someone else. If it has, you

can request that a new official release be tagged so that the fix gets distributed to the rest of the community.) If

you receive an error Foo is dirty, bailing, see Dirty packages below.

• Createabranchforyourchanges: navigate tothepackage folder (theonethatJulia reports fromPkg.dir("Foo"))

and (in shell mode) create a new branch using git checkout -b <newbranch>, where <newbranch>might

be some descriptive name (e.g., fixbar). By creating a branch, you ensure that you can easily go back and forth

between your new work and the current master branch (see https://git-scm.com/book/en/v2/Git-Branching-

Branches-in-a-Nutshell).

If you forget to do this step until after you've already made some changes, don't worry: see more detail about

branching below.

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

35.2. MAKING CHANGES TO AN EXISTING PACKAGE 333

• Make your changes. Whether it's fixing a bug or adding new functionality, in most cases your change should

include updates to both the src/ and test/ folders. If you're fixing a bug, add your minimal example demon-

strating the bug (on the current code) to the test suite; by contributing a test for the bug, you ensure that the bug

won't accidentally reappear at some later timedue to other changes. If you're adding new functionality, creating

tests demonstrates to the package owner that you'vemade sure your codeworks as intended.

• Run the package's tests andmake sure they pass. There are several ways to run the tests:

– From Julia, run Pkg.test("Foo"): this will run your tests in a separate (new) julia process.

– From Julia, include("runtests.jl") from the package's test/ folder (it's possible the file has a dif-

ferent name, look for one that runs all the tests): this allows you to run the tests repeatedly in the same

session without reloading all the package code; for packages that take a while to load, this can be much

faster. With this approach, you do have to do some extra work tomake changes in the package code.

– From the shell, run julia ../test/runtests.jl fromwithin the package's src/ folder.

• Commit your changes: see https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository.

• Submit your changes: From the Julia prompt, type PkgDev.submit("Foo"). This will push your changes to

your GitHub fork, creating it if it doesn't already exist. (If you encounter an error, make sure you've set up your

SSH keys.) Julia will then give you a hyperlink; open that link, edit the message, and then click "submit." At that

point, the package owner will be notified of your changes and may initiate discussion. (If you are comfortable

with git, you can also do these stepsmanually from the shell.)

• The package owner may suggest additional improvements. To respond to those suggestions, you can easily up-

date the pull request (this only works for changes that have not already beenmerged; for merged pull requests,

make new changes by starting a new branch):

– If you'vechangedbranches in themeantime,makesureyougobacktothesamebranchwithgit checkout

fixbar (from shell mode) or Pkg.checkout("Foo", "fixbar") (from the Julia prompt).

– As above, make your changes, run the tests, and commit your changes.

– From the shell, type git push. This will add your new commit(s) to the same pull request; you should see

them appear automatically on the page holding the discussion of your pull request.

One potential type of change the ownermay request is that you squash your commits. See Squashing below.

Dirty packages

If you can't change branches because the package manager complains that your package is dirty, it means you have

some changes that have not been committed. From the shell, use git diff to see what these changes are; you can

eitherdiscard them(git checkout changedfile.jl) or commit thembefore switchingbranches. If youcan't easily

resolve the problems manually, as a last resort you can delete the entire "Foo" folder and reinstall a fresh copy with

Pkg.add("Foo"). Naturally, this deletes any changes you'vemade.

Making a branch post hoc

Especially for newcomers to git, one often forgets to create a new branch until after some changes have already been

made. If you haven't yet staged or committed your changes, you can create a new branch with git checkout -b

<newbranch> just as usual–git will kindly show you that some files have beenmodified and create the new branch for

you. Your changes have not yet been committed to this new branch, so the normal work rules still apply.

However, if you'vealreadymadeacommit tomasterbutwishtogobacktotheofficialmaster (calledorigin/master),

use the following procedure:

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

334 CHAPTER 35. PACKAGEDEVELOPMENT

• Create a new branch. This branchwill hold your changes.

• Make sure everything is committed to this branch.

• git checkout master. If this fails, do not proceed further until you have resolved the problems, or you may

lose your changes.

• Resetmaster (your current branch) back to an earlier state with git reset --hard origin/master (see

https://git-scm.com/blog/2011/07/11/reset.html).

This requires a bit more familiarity with git, so it's much better to get in the habit of creating a branch at the outset.

Squashing and rebasing

Depending on the tastes of the package owner (s)he may ask you to "squash" your commits. This is especially likely if

your change is quite simple but your commit history looks like this:

WIP: add new 1-line whizbang function (currently breaks package)

Finish whizbang function

Fix typo in variable name

Oops, don't forget to supply default argument

Split into two 1-line functions

Rats, forgot to export the second function

...

Thisgets into the territoryofmoreadvancedgitusage, andyou'reencouragedtodosomereading (https://git-scm.com/-

book/en/v2/Git-Branching-Rebasing). However, a brief summary of the procedure is as follows:

• To protect yourself from error, start from your fixbar branch and create a new branch with git checkout

-b fixbar_backup. Since you started from fixbar, this will be a copy. Now go back to the one you intend to

modify with git checkout fixbar.

• From the shell, type git rebase -i origin/master.

• To combine commits, change pick to squash (for additional options, consult other sources). Save the file and

close the editor window.

• Edit the combined commit message.

If the rebase goes badly, you can go back to the beginning to try again like this:

git checkout fixbar

git reset --hard fixbar_backup

Now let's assume you've rebased successfully. Since your fixbar repository has now diverged from the one in your

GitHub fork, you're going to have to do a force push:

• Tomake iteasytorefer toyourGitHubfork, createa"handle" for itwithgit remote add myfork https://github.com/myaccount/Foo.jl.git,

where the URL comes from the "clone URL" on your GitHub fork's page.

• Force-push toyour forkwithgit push myfork +fixbar. The+ indicates that this should replace thefixbar

branch found at myfork.

https://git-scm.com/blog/2011/07/11/reset.html
https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://git-scm.com/book/en/v2/Git-Branching-Rebasing

35.3. CREATING ANEWPACKAGE 335

35.3 Creating a newPackage

REQUIRE speaks for itself

You should have a REQUIRE file in your package repository, with a bare minimum directive of what Julia version you

expect your users to be running for the package to work. Putting a floor on what Julia version your package supports

is done by simply adding julia 0.x in this file. While this line is partly informational, it also has the consequence of

whether Pkg.update()will update code found in .julia version directories. It will not update code found in version

directories beneath the floor of what's specified in your REQUIRE.

As the development version 0.y matures, you may find yourself using it more frequently, and wanting your package

to support it. Be warned, the development branch of Julia is the land of breakage, and you can expect things to break.

Whenyougo about fixingwhatever broke your package in thedevelopment0.ybranch, youwill likely find that you just

broke your package on the stable version.

There is amechanism found in theCompat package thatwill enable you to support both the stable version andbreaking

changes found in the development version. Should you decide to use this solution, youwill need to add Compat to your

REQUIREfile. In this case, youwill still havejulia 0.x in yourREQUIRE. Thex is thefloorversionofwhatyourpackage

supports.

Youmight alsohaveno interest in supporting thedevelopment versionof Julia. Just as you canaddafloor to the version

you expect your users to be on, you can set an upper bound. In this case, you would put julia 0.x 0.y- in your

REQUIRE file. The - at the end of the version numbermeans pre-release versions of that specific version from the very

first commit. By setting it as the ceiling, you mean the code supports everything up to but not including the ceiling

version.

Another scenario is that you arewriting the bulk of the code for your packagewith Julia0.y anddonotwant to support

the current stable version of Julia. If you choose to do this, simply add julia 0.y- to your REQUIRE. Just remember

to change thejulia 0.y- tojulia 0.y in yourREQUIREfile once0.y is officially released. If you don't edit the dash

cruft you are suggesting that you support both the development and stable versions of the same version number! That

would bemadness. See the Requirements Specification for the full format of REQUIRE.

Lastly, in many cases you may need extra packages for testing. Additional packages which are only required for tests

should be specified in the test/REQUIRE file. This REQUIRE file has the same specification as the standard REQUIRE

file.

Guidelines for naming a package

Package names should be sensible to most Julia users, even to those who are not domain experts. When you submit your

package toMETADATA, you can expect a little back and forth about the package namewith collaborators, especially if

it's ambiguous or can be confused with something other than what it is. During this bike-shedding, it's not uncommon

to get a range of different name suggestions. These are only suggestions though, with the intent being to keep a tidy

namespace in the curated METADATA repository. Since this repository belongs to the entire community, there will

likely be a few collaborators who care about your package name. Here are some guidelines to follow in naming your

package:

1. Avoid jargon. In particular, avoid acronyms unless there is minimal possibility of confusion.

– It's ok to say USA if you're talking about the USA.

– It's not ok to say PMA, even if you're talking about positivemental attitude.

2. Avoid using Julia in your package name.

– It is usually clear from context and to your users that the package is a Julia package.

https://github.com/JuliaLang/Compat.jl

336 CHAPTER 35. PACKAGEDEVELOPMENT

– Having Julia in the name can imply that the package is connected to, or endorsed by, contributors to the

Julia language itself.

3. Packages that providemost of their functionality in association with a new type should have pluralized names.

– DataFrames provides the DataFrame type.

– BloomFilters provides the BloomFilter type.

– Incontrast,JuliaParserprovidesnonewtype, but insteadnewfunctionality in theJuliaParser.parse()

function.

4. Err on the side of clarity, even if clarity seems long-winded to you.

– RandomMatrices is a less ambiguous name than RndMat or RMT, even though the latter are shorter.

5. A less systematic namemay suit a package that implements one of several possible approaches to its domain.

– Julia does not have a single comprehensive plotting package. Instead, Gadfly, PyPlot, Winston and

other packages each implement a unique approach based on a particular design philosophy.

– In contrast, SortingAlgorithms provides a consistent interface to use many well-established sorting

algorithms.

6. Packages that wrap external libraries or programs should be named after those libraries or programs.

– CPLEX.jlwraps the CPLEX library, which can be identified easily in a web search.

– MATLAB.jl provides an interface to call theMATLAB engine fromwithin Julia.

Generating the package

Supposeyouwant to create anewJulia package calledFooBar. To get started, doPkgDev.generate(pkg,license)

where pkg is the new package name and license is the name of a license that the package generator knows about:

julia> PkgDev.generate("FooBar","MIT")

INFO: Initializing FooBar repo: /Users/stefan/.julia/v0.6/FooBar

INFO: Origin: git://github.com/StefanKarpinski/FooBar.jl.git

INFO: Generating LICENSE.md

INFO: Generating README.md

INFO: Generating src/FooBar.jl

INFO: Generating test/runtests.jl

INFO: Generating REQUIRE

INFO: Generating .travis.yml

INFO: Generating appveyor.yml

INFO: Generating .gitignore

INFO: Committing FooBar generated files

This creates the directory ~/.julia/v0.6/FooBar, initializes it as a git repository, generates a bunch of files that all

packages should have, and commits them to the repository:

$ cd ~/.julia/v0.6/FooBar && git show --stat

commit 84b8e266dae6de30ab9703150b3bf771ec7b6285

Author: Stefan Karpinski <stefan@karpinski.org>

Date: Wed Oct 16 17:57:58 2013 -0400

35.3. CREATING ANEWPACKAGE 337

FooBar.jl generated files.

license: MIT

authors: Stefan Karpinski

years: 2013

user: StefanKarpinski

Julia Version 0.3.0-prerelease+3217 [5fcfb13*]

.gitignore | 2 ++

.travis.yml | 13 +++++++++++++

LICENSE.md | 22 +++++++++++++++++++++++

README.md | 3 +++

REQUIRE | 1 +

appveyor.yml | 34 ++++++++++++++++++++++++++++++++++

src/FooBar.jl | 5 +++++

test/runtests.jl | 5 +++++

8 files changed, 85 insertions(+)

At the moment, the package manager knows about the MIT "Expat" License, indicated by "MIT", the Simplified BSD

License, indicated by "BSD", and version 2.0 of the Apache Software License, indicated by "ASL". If you want to use a

different license, you can ask us to add it to the package generator, or just pick one of these three and then modify the

~/.julia/v0.6/PACKAGE/LICENSE.md file after it has been generated.

If youcreatedaGitHubaccountandconfiguredgit toknowabout it,PkgDev.generate()will setanappropriateorigin

URL for you. It will also automatically generate a .travis.yml file for using the Travis automated testing service, and

anappveyor.ymlfile for usingAppVeyor. Youwill have to enable testingon theTravis andAppVeyorwebsites for your

package repository, but once you've done that, it will already haveworking tests. Of course, all the default testing does

is verify that using FooBar in Julia works.

Loading Static Non-Julia Files

If your package code needs to load static files which are not Julia code, e.g. an external library or data files, and are

located within the package directory, use the @__DIR__ macro to determine the directory of the current source file.

For example if FooBar/src/FooBar.jl needs to load FooBar/data/foo.csv, use the following code:

datapath = joinpath(@__DIR__, "..", "data")

foo = readcsv(joinpath(datapath, "foo.csv"))

Making Your Package Available

Onceyou'vemadesomecommitsandyou'rehappywithhowFooBar isworking, youmaywant toget someotherpeople

to try it out. First you'll need to create the remote repository and push your code to it; we don't yet automatically do

this for you, but we will in the future and it's not too hard to figure out 3. Once you've done this, letting people try out

your code is as simple as sending them the URL of the published repo – in this case:

git://github.com/StefanKarpinski/FooBar.jl.git

For your package, itwill be yourGitHubuser nameand the nameof your package, but you get the idea. People you send

this URL to can use Pkg.clone() to install the package and try it out:

julia> Pkg.clone("git://github.com/StefanKarpinski/FooBar.jl.git")

INFO: Cloning FooBar from git@github.com:StefanKarpinski/FooBar.jl.git

https://travis-ci.org
https://www.appveyor.com

338 CHAPTER 35. PACKAGEDEVELOPMENT

Tagging and Publishing Your Package

Tip

If you are hosting your package on GitHub, you can use the attobot integration to handle package regis-

tration, tagging and publishing.

Once you've decided that FooBar is ready to be registered as an official package, you can add it to your local copy of

METADATA using PkgDev.register():

julia> PkgDev.register("FooBar")

INFO: Registering FooBar at git://github.com/StefanKarpinski/FooBar.jl.git

INFO: Committing METADATA for FooBar

This creates a commit in the ~/.julia/v0.6/METADATA repo:

$ cd ~/.julia/v0.6/METADATA && git show

commit 9f71f4becb05cadacb983c54a72eed744e5c019d

Author: Stefan Karpinski <stefan@karpinski.org>

Date: Wed Oct 16 18:46:02 2013 -0400

Register FooBar

diff --git a/FooBar/url b/FooBar/url

new file mode 100644

index 0000000..30e525e

--- /dev/null

+++ b/FooBar/url

@@ -0,0 +1 @@

+git://github.com/StefanKarpinski/FooBar.jl.git

This commit is only locally visible, however. To make it visible to the Julia community, you need to merge your local

METADATA upstream into the official repo. The PkgDev.publish() command will fork the METADATA repository on

GitHub, push your changes to your fork, and open a pull request:

julia> PkgDev.publish()

INFO: Validating METADATA

INFO: No new package versions to publish

INFO: Submitting METADATA changes

INFO: Forking JuliaLang/METADATA.jl to StefanKarpinski

INFO: Pushing changes as branch pull-request/ef45f54b

INFO: To create a pull-request open:

https://github.com/StefanKarpinski/METADATA.jl/compare/pull-request/ef45f54b

Tip

If PkgDev.publish() fails with error:

ERROR: key not found: "token"

3Installing and using GitHub's "hub" tool is highly recommended. It allows you to do things like run hub create in the package repo and have

it automatically created via GitHub's API.

https://github.com/attobot/attobot
https://github.com/github/hub

35.3. CREATING ANEWPACKAGE 339

then youmay have encountered an issue from using the GitHub API on multiple systems. The solution is

to delete the "Julia PackageManager" personal access token from your Github account and try again.

Other failures may require you to circumvent PkgDev.publish() by creating a pull request on GitHub.

See: PublishingMETADATAmanually below.

Once the package URL for FooBar is registered in the official METADATA repo, people know where to clone the pack-

age from, but there still aren't any registered versions available. You can tag and register it with the PkgDev.tag()

command:

julia> PkgDev.tag("FooBar")

INFO: Tagging FooBar v0.0.1

INFO: Committing METADATA for FooBar

This tags v0.0.1 in the FooBar repo:

$ cd ~/.julia/v0.6/FooBar && git tag

v0.0.1

It also creates a new version entry in your local METADATA repo for FooBar:

$ cd ~/.julia/v0.6/FooBar && git show

commit de77ee4dc0689b12c5e8b574aef7f70e8b311b0e

Author: Stefan Karpinski <stefan@karpinski.org>

Date: Wed Oct 16 23:06:18 2013 -0400

Tag FooBar v0.0.1

diff --git a/FooBar/versions/0.0.1/sha1 b/FooBar/versions/0.0.1/sha1

new file mode 100644

index 0000000..c1cb1c1

--- /dev/null

+++ b/FooBar/versions/0.0.1/sha1

@@ -0,0 +1 @@

+84b8e266dae6de30ab9703150b3bf771ec7b6285

The PkgDev.tag() command takes an optional second argument that is either an explicit version number object like

v"0.0.1" or one of the symbols :patch, :minor or :major. These increment the patch,minor ormajor version num-

ber of your package intelligently.

Adding a tagged version of your package will expedite the official registration into METADATA.jl by collaborators. It

is strongly recommended that you complete this process, regardless if your package is completely ready for an official

release.

As a general rule, packages should be tagged 0.0.1 first. Since Julia itself hasn't achieved 1.0 status, it's best to be

conservative in your package's tagged versions.

As with PkgDev.register(), these changes to METADATA aren't available to anyone else until they've been included

upstream. Again, use the PkgDev.publish() command, which first makes sure that individual package repos have

been tagged, pushes them if they haven't already been, and then opens a pull request to METADATA:

julia> PkgDev.publish()

INFO: Validating METADATA

INFO: Pushing FooBar permanent tags: v0.0.1

INFO: Submitting METADATA changes

INFO: Forking JuliaLang/METADATA.jl to StefanKarpinski

https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fsettings%2Ftokens
https://help.github.com/articles/creating-a-pull-request/

340 CHAPTER 35. PACKAGEDEVELOPMENT

INFO: Pushing changes as branch pull-request/3ef4f5c4

INFO: To create a pull-request open:

https://github.com/StefanKarpinski/METADATA.jl/compare/pull-request/3ef4f5c4

PublishingMETADATAmanually

If PkgDev.publish() fails you can follow these instructions tomanually publish your package.

By "forking" the main METADATA repository, you can create a personal copy (of METADATA.jl) under your GitHub

account. Once that copy exists, you can push your local changes to your copy (just like any other GitHub project).

1. Create a fork ofMETADATA.jl.

2. Add your fork as a remote repository for the METADATA repository on your local computer (in the terminal

where USERNAME is your github username):

cd ~/.julia/v0.6/METADATA

git remote add USERNAME https://github.com/USERNAME/METADATA.jl.git

3. Push your changes to your fork:

git push USERNAME metadata-v2

4. If all of that works, then go back to the GitHub page for your fork, and click the "pull request" link.

35.4 Fixing Package Requirements

If you need to fix the registered requirements of an already-published package version, you can do so just by editing the

metadata for that version,whichwill still have the same commit hash– thehash associatedwith a version is permanent:

$ cd ~/.julia/v0.6/METADATA/FooBar/versions/0.0.1 && cat requires

julia 0.3-

$ vi requires

Sincethecommithashstays thesame, thecontentsof theREQUIREfile thatwill becheckedout in therepowillnotmatch

the requirements in METADATA after such a change; this is unavoidable. When you fix the requirements in METADATA

for a previous version of a package, however, you should also fix the REQUIRE file in the current version of the package.

35.5 Requirements Specification

The ~/.julia/v0.6/REQUIRE file, the REQUIRE file inside packages, and the METADATA package requires files use

a simple line-based format to express the ranges of package versions which need to be installed. Package REQUIRE

and METADATA requires files should also include the range of versions of julia the package is expected to work

with. Additionally, packages can include a test/REQUIRE file to specify additional packages which are only required

for testing.

Here's how these files are parsed and interpreted.

• Everything after a #mark is stripped from each line as a comment.

• If nothing but whitespace is left, the line is ignored.

• If there are non-whitespace characters remaining, the line is a requirement and the is split on whitespace into

words.

https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2FJuliaLang%2FMETADATA.jl%2Ffork

35.5. REQUIREMENTS SPECIFICATION 341

The simplest possible requirement is just the name of a package name on a line by itself:

Distributions

This requirement is satisfiedbyanyversionof theDistributionspackage. Thepackagenamecanbe followedbyzero

or more version numbers in ascending order, indicating acceptable intervals of versions of that package. One version

opens an interval, while the next closes it, and the next opens a new interval, and so on; if an odd number of version

numbers are given, then arbitrarily large versions will satisfy; if an even number of version numbers are given, the last

one is an upper limit on acceptable version numbers. For example, the line:

Distributions 0.1

is satisfied by any version of Distributions greater than or equal to 0.1.0. Suffixing a version with - allows any

pre-release versions as well. For example:

Distributions 0.1-

is satisfied by pre-release versions such as 0.1-dev or 0.1-rc1, or by any version greater than or equal to 0.1.0.

This requirement entry:

Distributions 0.1 0.2.5

is satisfied by versions from 0.1.0 up to, but not including 0.2.5. If you want to indicate that any 0.1.x version will

do, youwill want to write:

Distributions 0.1 0.2-

If youwant to start accepting versions after 0.2.7, you canwrite:

Distributions 0.1 0.2- 0.2.7

If a requirement line has leadingwords that beginwith@, it is a system-dependent requirement. If your systemmatches

these system conditionals, the requirement is included, if not, the requirement is ignored. For example:

@osx Homebrew

will require the Homebrew package only on systems where the operating system is OS X. The system conditions that

are currently supported are (hierarchically):

• @unix

– @linux

– @bsd

* @osx

• @windows

The @unix condition is satisfied on all UNIX systems, including Linux and BSD. Negated system conditionals are also

supported by adding a ! after the leading @. Examples:

@!windows

@unix @!osx

342 CHAPTER 35. PACKAGEDEVELOPMENT

The first condition applies to any system but Windows and the second condition applies to any UNIX system besides

OS X.

Runtimechecks for thecurrentversionofJuliacanbemadeusingthebuilt-inVERSIONvariable,which isof typeVersionNumber.

Such code is occasionally necessary to keep track of newor deprecated functionality between various releases of Julia.

Examples of runtime checks:

VERSION < v"0.3-" #exclude all pre-release versions of 0.3

v"0.2-" <= VERSION < v"0.3-" #get all 0.2 versions, including pre-releases, up to the above

v"0.2" <= VERSION < v"0.3-" #To get only stable 0.2 versions (Note v"0.2" == v"0.2.0")

VERSION >= v"0.2.1" #get at least version 0.2.1

See the section on version number literals for amore complete description.

Chapter 36

Profiling

The Profile module provides tools to help developers improve the performance of their code. When used, it takes

measurements on running code, and produces output that helps you understand howmuch time is spent on individual

line(s). Themost common usage is to identify "bottlenecks" as targets for optimization.

Profile implements what is known as a "sampling" or statistical profiler. It works by periodically taking a backtrace

during the execution of any task. Each backtrace captures the currently-running function and line number, plus the

complete chain of function calls that led to this line, and hence is a "snapshot" of the current state of execution.

If much of your run time is spent executing a particular line of code, this line will show up frequently in the set of all

backtraces. In other words, the "cost" of a given line–or really, the cost of the sequence of function calls up to and

including this line–is proportional to how often it appears in the set of all backtraces.

A sampling profiler does not provide complete line-by-line coverage, because the backtraces occur at intervals (by de-

fault, 1ms onUnix systems and 10ms onWindows, although the actual scheduling is subject to operating system load).

Moreover, as discussed further below, because samples are collected at a sparse subset of all execution points, the data

collected by a sampling profiler is subject to statistical noise.

Despite these limitations, sampling profilers have substantial strengths:

• You do not have to make any modifications to your code to take timing measurements (in contrast to the alter-

native instrumenting profiler).

• It can profile into Julia's core code and even (optionally) into C and Fortran libraries.

• By running "infrequently" there is very little performance overhead; while profiling, your code can run at nearly

native speed.

For these reasons, it's recommended that you try using the built-in sampling profiler before considering any alterna-

tives.

36.1 Basic usage

Let's work with a simple test case:

julia> function myfunc()

A = rand(200, 200, 400)

maximum(A)

end

343

https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://github.com/timholy/IProfile.jl

344 CHAPTER 36. PROFILING

It's a good idea to first run the code you intend to profile at least once (unless youwant to profile Julia's JIT-compiler):

julia> myfunc() # run once to force compilation

Nowwe're ready to profile this function:

julia> @profile myfunc()

To see the profiling results, there is a graphical browser available, but here we'll use the text-based display that comes

with the standard library:

julia> Profile.print()

80 ./event.jl:73; (::Base.REPL.##1#2{Base.REPL.REPLBackend})()

80 ./REPL.jl:97; macro expansion

80 ./REPL.jl:66; eval_user_input(::Any, ::Base.REPL.REPLBackend)

80 ./boot.jl:235; eval(::Module, ::Any)

80 ./<missing>:?; anonymous

80 ./profile.jl:23; macro expansion

52 ./REPL[1]:2; myfunc()

38 ./random.jl:431; rand!(::MersenneTwister, ::Array{Float64,3}, ::Int64, ::Type{B...

38 ./dSFMT.jl:84; dsfmt_fill_array_close_open!(::Base.dSFMT.DSFMT_state, ::Ptr{F...

14 ./random.jl:278; rand

14 ./random.jl:277; rand

14 ./random.jl:366; rand

14 ./random.jl:369; rand

28 ./REPL[1]:3; myfunc()

28 ./reduce.jl:270; _mapreduce(::Base.#identity, ::Base.#scalarmax, ::IndexLinear,...

3 ./reduce.jl:426; mapreduce_impl(::Base.#identity, ::Base.#scalarmax, ::Array{F...

25 ./reduce.jl:428; mapreduce_impl(::Base.#identity, ::Base.#scalarmax, ::Array{F...

Each line of this display represents a particular spot (line number) in the code. Indentation is used to indicate thenested

sequence of function calls, with more-indented lines being deeper in the sequence of calls. In each line, the first "field"

is the number of backtraces (samples) taken at this line or in any functions executed by this line. The second field is the file

nameand line number and the third field is the function name. Note that the specific line numbersmay change as Julia's

code changes; if youwant to follow along, it's best to run this example yourself.

In this example, we can see that the top level function called is in the file event.jl. This is the function that runs the

REPLwhenyou launchJulia. If youexamine line97ofREPL.jl, you'll see this iswherethe functioneval_user_input()

is called. This is the function that evaluates what you type at the REPL, and since we're working interactively these

functions were invokedwhenwe entered @profile myfunc(). The next line reflects actions taken in the @profile

macro.

The first line shows that 80 backtraces were taken at line 73 of event.jl, but it's not that this line was "expensive" on

itsown: the third line reveals thatall 80of thesebacktraceswereactually triggered inside its call toeval_user_input,

and so on. To find out which operations are actually taking the time, we need to look deeper in the call chain.

The first "important" line in this output is this one:

52 ./REPL[1]:2; myfunc()

REPL refers to the fact thatwedefinedmyfunc in theREPL, rather thanputting it in afile; ifwehadusedafile, thiswould

show the file name. The [1] shows that the function myfuncwas the first expression evaluated in this REPL session.

Line 2 ofmyfunc() contains the call torand, and therewere 52 (out of 80) backtraces that occurred at this line. Below

that, you can see a call to dsfmt_fill_array_close_open! inside dSFMT.jl.

A little further down, you see:

https://github.com/timholy/ProfileView.jl

36.1. BASIC USAGE 345

28 ./REPL[1]:3; myfunc()

Line 3 of myfunc contains the call to maximum, and there were 28 (out of 80) backtraces taken here. Below that, you

can see the specific places in base/reduce.jl that carry out the time-consuming operations in the maximum function

for this type of input data.

Overall,wecantentativelyconcludethatgenerating therandomnumbers isapproximately twiceasexpensiveasfinding

themaximum element. We could increase our confidence in this result by collectingmore samples:

julia> @profile (for i = 1:100; myfunc(); end)

julia> Profile.print()

[....]

3821 ./REPL[1]:2; myfunc()

3511 ./random.jl:431; rand!(::MersenneTwister, ::Array{Float64,3}, ::Int64, ::Type...

3511 ./dSFMT.jl:84; dsfmt_fill_array_close_open!(::Base.dSFMT.DSFMT_state, ::Ptr...

310 ./random.jl:278; rand

[....]

2893 ./REPL[1]:3; myfunc()

2893 ./reduce.jl:270; _mapreduce(::Base.#identity, ::Base.#scalarmax, ::IndexLinea...

[....]

In general, if you have N samples collected at a line, you can expect an uncertainty on the order of sqrt(N) (barring

other sources of noise, like how busy the computer is with other tasks). The major exception to this rule is garbage

collection, which runs infrequently but tends to be quite expensive. (Since Julia's garbage collector is written in C, such

events can be detected using the C=true output mode described below, or by using ProfileView.jl.)

This illustrates the default "tree" dump; an alternative is the "flat" dump, which accumulates counts independent of

their nesting:

julia> Profile.print(format=:flat)

Count File Line Function

6714 ./<missing> -1 anonymous

6714 ./REPL.jl 66 eval_user_input(::Any, ::Base.REPL.REPLBackend)

6714 ./REPL.jl 97 macro expansion

3821 ./REPL[1] 2 myfunc()

2893 ./REPL[1] 3 myfunc()

6714 ./REPL[7] 1 macro expansion

6714 ./boot.jl 235 eval(::Module, ::Any)

3511 ./dSFMT.jl 84 dsfmt_fill_array_close_open!(::Base.dSFMT.DSFMT_s...

6714 ./event.jl 73 (::Base.REPL.##1#2{Base.REPL.REPLBackend})()

6714 ./profile.jl 23 macro expansion

3511 ./random.jl 431 rand!(::MersenneTwister, ::Array{Float64,3}, ::In...

310 ./random.jl 277 rand

310 ./random.jl 278 rand

310 ./random.jl 366 rand

310 ./random.jl 369 rand

2893 ./reduce.jl 270 _mapreduce(::Base.#identity, ::Base.#scalarmax, :...

5 ./reduce.jl 420 mapreduce_impl(::Base.#identity, ::Base.#scalarma...

253 ./reduce.jl 426 mapreduce_impl(::Base.#identity, ::Base.#scalarma...

2592 ./reduce.jl 428 mapreduce_impl(::Base.#identity, ::Base.#scalarma...

43 ./reduce.jl 429 mapreduce_impl(::Base.#identity, ::Base.#scalarma...

If your codehas recursion, onepotentially-confusingpoint is that a line ina "child" functioncanaccumulatemorecounts

than there are total backtraces. Consider the following function definitions:

https://github.com/timholy/ProfileView.jl

346 CHAPTER 36. PROFILING

dumbsum(n::Integer) = n == 1 ? 1 : 1 + dumbsum(n-1)

dumbsum3() = dumbsum(3)

If you were to profile dumbsum3, and a backtrace was taken while it was executing dumbsum(1), the backtrace would

look like this:

dumbsum3

dumbsum(3)

dumbsum(2)

dumbsum(1)

Consequently, this child function gets 3 counts, even though the parent only gets one. The "tree" representationmakes

this much clearer, and for this reason (among others) is probably themost useful way to view the results.

36.2 Accumulation and clearing

Results from@profileaccumulate inabuffer; if yourunmultiplepiecesofcodeunder@profile, thenProfile.print()

will show you the combined results. This can be very useful, but sometimes you want to start fresh; you can do so with

Profile.clear().

36.3 Options for controlling the display of profile results

Profile.print() hasmore options thanwe've described so far. Let's see the full declaration:

function print(io::IO = STDOUT, data = fetch(); kwargs...)

Let's first discuss the two positional arguments, and later the keyword arguments:

• io – Allows you to save the results to a buffer, e.g. a file, but the default is to print to STDOUT (the console).

• data – Contains the data youwant to analyze; by default that is obtained from Profile.fetch(), which pulls

out the backtraces from a pre-allocated buffer. For example, if youwant to profile the profiler, you could say:

data = copy(Profile.fetch())

Profile.clear()

@profile Profile.print(STDOUT, data) # Prints the previous results

Profile.print() # Prints results from Profile.print()

The keyword arguments can be any combination of:

• format–Introducedabove, determineswhetherbacktracesareprintedwith (default,:tree)orwithout (:flat)

indentation indicating tree structure.

• C – If true, backtraces from C and Fortran code are shown (normally they are excluded). Try running the intro-

ductory examplewithProfile.print(C = true). This canbeextremelyhelpful in decidingwhether it's Julia

code or C code that is causing a bottleneck; setting C = true also improves the interpretability of the nesting,

at the cost of longer profile dumps.

36.4. CONFIGURATION 347

• combine – Some lines of code containmultiple operations; for example, s += A[i] contains both an array ref-

erence (A[i]) and a sum operation. These correspond to different lines in the generated machine code, and

hence theremay be two ormore different addresses captured during backtraces on this line. combine = true

lumps them together, and is probably what you typically want, but you can generate an output separately for

each unique instruction pointer with combine = false.

• maxdepth – Limits frames at a depth higher than maxdepth in the :tree format.

• sortedby – Controls the order in :flat format. :filefuncline (default) sorts by the source line, whereas

:count sorts in order of number of collected samples.

• noisefloor–Limits framesthatarebelowtheheuristicnoisefloorof thesample (onlyapplies to format:tree).

Asuggestedvaluetotry for this is2.0 (thedefault is0). Thisparameterhidessamples forwhichn <= noisefloor

* √N, where n is the number of samples on this line, and N is the number of samples for the callee.

• mincount – Limits frames with less than mincount occurrences.

File/functionnamesare sometimes truncated (with...), and indentation is truncatedwitha+nat thebeginning,where

n is the number of extra spaces that would have been inserted, had there been room. If you want a complete profile of

deeply-nested code, often a good idea is to save to a file using a wide displaysize in an IOContext:

open("/tmp/prof.txt", "w") do s

Profile.print(IOContext(s, :displaysize => (24, 500)))

end

36.4 Configuration

@profile just accumulatesbacktraces, and theanalysishappenswhenyoucallProfile.print(). Fora long-running

computation, it's entirely possible that the pre-allocated buffer for storing backtraceswill be filled. If that happens, the

backtraces stop but your computation continues. As a consequence, you may miss some important profiling data (you

will get a warning when that happens).

You can obtain and configure the relevant parameters this way:

Profile.init() # returns the current settings

Profile.init(n = 10^7, delay = 0.01)

n is the total number of instruction pointers you can store, with a default value of 10^6. If your typical backtrace is 20

instruction pointers, then you can collect 50000 backtraces, which suggests a statistical uncertainty of less than 1%.

This may be good enough for most applications.

Consequently, you are more likely to need to modify delay, expressed in seconds, which sets the amount of time that

Julia gets between snapshots toperform the requested computations. Avery long-running jobmight not need frequent

backtraces. The default setting is delay = 0.001. Of course, you can decrease the delay as well as increase it; how-

ever, the overhead of profiling grows once the delay becomes similar to the amount of time needed to take a backtrace

(~30microseconds on the author's laptop).

Chapter 37

Memory allocation analysis

One of the most common techniques to improve performance is to reduce memory allocation. The total amount of

allocation can bemeasured with @time and @allocated, and specific lines triggering allocation can often be inferred

fromprofilingvia thecostof garbagecollection that these lines incur. However, sometimes it ismoreefficient todirectly

measure the amount of memory allocated by each line of code.

To measure allocation line-by-line, start Julia with the --track-allocation=<setting> command-line option, for

which you can choose none (the default, do not measure allocation), user (measure memory allocation everywhere

except Julia's core code), or all (measure memory allocation at each line of Julia code). Allocation gets measured for

each line of compiled code. When you quit Julia, the cumulative results are written to text files with .mem appended

after the file name, residing in the same directory as the source file. Each line lists the total number of bytes allocated.

The Coverage package contains some elementary analysis tools, for example to sort the lines in order of number of

bytes allocated.

In interpreting the results, there are a few important details. Under the user setting, the first line of any function di-

rectly called from the REPLwill exhibit allocation due to events that happen in the REPL code itself. More significantly,

JIT-compilation also adds to allocation counts, becausemuch of Julia's compiler iswritten in Julia (and compilation usu-

ally requires memory allocation). The recommended procedure is to force compilation by executing all the commands

you want to analyze, then call Profile.clear_malloc_data() to reset all allocation counters. Finally, execute the

desired commands and quit Julia to trigger the generation of the .mem files.

349

https://github.com/JuliaCI/Coverage.jl

Chapter 38

Stack Traces

The StackTracesmodule provides simple stack traces that are both human readable and easy to use programmati-

cally.

38.1 Viewing a stack trace

The primary function used to obtain a stack trace is stacktrace():

julia> stacktrace()

4-element Array{StackFrame,1}:

eval(::Module, ::Any) at boot.jl:236

eval_user_input(::Any, ::Base.REPL.REPLBackend) at REPL.jl:66

macro expansion at REPL.jl:97 [inlined]

(::Base.REPL.##1#2{Base.REPL.REPLBackend})() at event.jl:73

Calling stacktrace() returns a vector of StackFrame s. For ease of use, the alias StackTrace can be used in place

of Vector{StackFrame}. (Examples with [...] indicate that output may vary depending on how the code is run.)

julia> example() = stacktrace()

example (generic function with 1 method)

julia> example()

5-element Array{StackFrame,1}:

example() at REPL[1]:1

eval(::Module, ::Any) at boot.jl:236

[...]

julia> @noinline child() = stacktrace()

child (generic function with 1 method)

julia> @noinline parent() = child()

parent (generic function with 1 method)

julia> grandparent() = parent()

grandparent (generic function with 1 method)

julia> grandparent()

7-element Array{StackFrame,1}:

child() at REPL[3]:1

351

352 CHAPTER 38. STACK TRACES

parent() at REPL[4]:1

grandparent() at REPL[5]:1

[...]

Notethatwhencallingstacktrace()you'll typically seea framewitheval(...) at boot.jl. Whencallingstacktrace()

from the REPL you'll also have a few extra frames in the stack from REPL.jl, usually looking something like this:

julia> example() = stacktrace()

example (generic function with 1 method)

julia> example()

5-element Array{StackFrame,1}:

example() at REPL[1]:1

eval(::Module, ::Any) at boot.jl:236

eval_user_input(::Any, ::Base.REPL.REPLBackend) at REPL.jl:66

macro expansion at REPL.jl:97 [inlined]

(::Base.REPL.##1#2{Base.REPL.REPLBackend})() at event.jl:73

38.2 Extracting useful information

Each StackFrame contains the function name, file name, line number, lambda info, a flag indicating whether the frame

has been inlined, a flag indicatingwhether it is a C function (by default C functions do not appear in the stack trace), and

an integer representation of the pointer returned by backtrace():

julia> top_frame = stacktrace()[1]

eval(::Module, ::Any) at boot.jl:236

julia> top_frame.func

:eval

julia> top_frame.file

Symbol("./boot.jl")

julia> top_frame.line

236

julia> top_frame.linfo

Nullable{Core.MethodInstance}(MethodInstance for eval(::Module, ::Any))

julia> top_frame.inlined

false

julia> top_frame.from_c

false

julia> top_frame.pointer

0x00007f390d152a59

This makes stack trace information available programmatically for logging, error handling, andmore.

38.3. ERRORHANDLING 353

38.3 Error handling

While having easy access to information about the current state of the callstack can be helpful inmany places, themost

obvious application is in error handling and debugging.

julia> @noinline bad_function() = undeclared_variable

bad_function (generic function with 1 method)

julia> @noinline example() = try

bad_function()

catch

stacktrace()

end

example (generic function with 1 method)

julia> example()

5-element Array{StackFrame,1}:

example() at REPL[2]:4

eval(::Module, ::Any) at boot.jl:236

[...]

You may notice that in the example above the first stack frame points points at line 4, where stacktrace() is called,

rather than line 2, where bad_function is called, and bad_function's frame is missing entirely. This is understandable,

given that stacktrace() is called from the context of the catch. While in this example it's fairly easy to find the actual

source of the error, in complex cases tracking down the source of the error becomes nontrivial.

This can be remedied by calling catch_stacktrace() instead of stacktrace(). Instead of returning callstack in-

formation for the current context,catch_stacktrace() returns stack information for the context of themost recent

exception:

julia> @noinline bad_function() = undeclared_variable

bad_function (generic function with 1 method)

julia> @noinline example() = try

bad_function()

catch

catch_stacktrace()

end

example (generic function with 1 method)

julia> example()

6-element Array{StackFrame,1}:

bad_function() at REPL[1]:1

example() at REPL[2]:2

[...]

Notice that the stack trace now indicates the appropriate line number and themissing frame.

julia> @noinline child() = error("Whoops!")

child (generic function with 1 method)

julia> @noinline parent() = child()

parent (generic function with 1 method)

354 CHAPTER 38. STACK TRACES

julia> @noinline function grandparent()

try

parent()

catch err

println("ERROR: ", err.msg)

catch_stacktrace()

end

end

grandparent (generic function with 1 method)

julia> grandparent()

ERROR: Whoops!

7-element Array{StackFrame,1}:

child() at REPL[1]:1

parent() at REPL[2]:1

grandparent() at REPL[3]:3

[...]

38.4 Comparisonwith backtrace()

A call to backtrace() returns a vector of Ptr{Void}, whichmay then be passed into stacktrace() for translation:

julia> trace = backtrace()

21-element Array{Ptr{Void},1}:

Ptr{Void} @0x00007f10049d5b2f

Ptr{Void} @0x00007f0ffeb4d29c

Ptr{Void} @0x00007f0ffeb4d2a9

Ptr{Void} @0x00007f1004993fe7

Ptr{Void} @0x00007f10049a92be

Ptr{Void} @0x00007f10049a823a

Ptr{Void} @0x00007f10049a9fb0

Ptr{Void} @0x00007f10049aa718

Ptr{Void} @0x00007f10049c0d5e

Ptr{Void} @0x00007f10049a3286

Ptr{Void} @0x00007f0ffe9ba3ba

Ptr{Void} @0x00007f0ffe9ba3d0

Ptr{Void} @0x00007f1004993fe7

Ptr{Void} @0x00007f0ded34583d

Ptr{Void} @0x00007f0ded345a87

Ptr{Void} @0x00007f1004993fe7

Ptr{Void} @0x00007f0ded34308f

Ptr{Void} @0x00007f0ded343320

Ptr{Void} @0x00007f1004993fe7

Ptr{Void} @0x00007f10049aeb67

Ptr{Void} @0x0000000000000000

julia> stacktrace(trace)

5-element Array{StackFrame,1}:

backtrace() at error.jl:46

eval(::Module, ::Any) at boot.jl:236

eval_user_input(::Any, ::Base.REPL.REPLBackend) at REPL.jl:66

macro expansion at REPL.jl:97 [inlined]

(::Base.REPL.##1#2{Base.REPL.REPLBackend})() at event.jl:73

Notice that the vector returned by backtrace() had 21 pointers, while the vector returned by stacktrace() only

38.4. COMPARISONWITH BACKTRACE() 355

has 5. This is because, by default, stacktrace() removes any lower-level C functions from the stack. If you want to

include stack frames fromC calls, you can do it like this:

julia> stacktrace(trace, true)

27-element Array{StackFrame,1}:

jl_backtrace_from_here at stackwalk.c:103

backtrace() at error.jl:46

backtrace() at sys.so:?

jl_call_method_internal at julia_internal.h:248 [inlined]

jl_apply_generic at gf.c:2215

do_call at interpreter.c:75

eval at interpreter.c:215

eval_body at interpreter.c:519

jl_interpret_toplevel_thunk at interpreter.c:664

jl_toplevel_eval_flex at toplevel.c:592

jl_toplevel_eval_in at builtins.c:614

eval(::Module, ::Any) at boot.jl:236

eval(::Module, ::Any) at sys.so:?

jl_call_method_internal at julia_internal.h:248 [inlined]

jl_apply_generic at gf.c:2215

eval_user_input(::Any, ::Base.REPL.REPLBackend) at REPL.jl:66

ip:0x7f1c707f1846

jl_call_method_internal at julia_internal.h:248 [inlined]

jl_apply_generic at gf.c:2215

macro expansion at REPL.jl:97 [inlined]

(::Base.REPL.##1#2{Base.REPL.REPLBackend})() at event.jl:73

ip:0x7f1c707ea1ef

jl_call_method_internal at julia_internal.h:248 [inlined]

jl_apply_generic at gf.c:2215

jl_apply at julia.h:1411 [inlined]

start_task at task.c:261

ip:0xffffffffffffffff

Individualpointers returnedbybacktrace()canbetranslated intoStackFramesbypassing themintoStackTraces.lookup():

julia> pointer = backtrace()[1];

julia> frame = StackTraces.lookup(pointer)

1-element Array{StackFrame,1}:

jl_backtrace_from_here at stackwalk.c:103

julia> println("The top frame is from $(frame[1].func)!")

The top frame is from jl_backtrace_from_here!

Chapter 39

Performance Tips

In the following sections, we briefly go through a few techniques that can help make your Julia code run as fast as pos-

sible.

39.1 Avoid global variables

A global variable might have its value, and therefore its type, change at any point. This makes it difficult for the com-

piler to optimize code using global variables. Variables should be local, or passed as arguments to functions, whenever

possible.

Any code that is performance critical or being benchmarked should be inside a function.

We find that global names are frequently constants, and declaring them as such greatly improves performance:

const DEFAULT_VAL = 0

Uses of non-constant globals can be optimized by annotating their types at the point of use:

global x

y = f(x::Int + 1)

Writing functions is better style. It leads tomore reusable code and clarifies what steps are being done, andwhat their

inputs and outputs are.

Note

All code in the REPL is evaluated in global scope, so a variable defined and assigned at toplevel will be a

global variable.

In the following REPL session:

julia> x = 1.0

is equivalent to:

julia> global x = 1.0

so all the performance issues discussed previously apply.

357

358 CHAPTER 39. PERFORMANCE TIPS

39.2 Measure performancewith @time and pay attention tomemory allocation

A useful tool for measuring performance is the @timemacro. The following example illustrates goodworking style:

julia> function f(n)

s = 0

for i = 1:n

s += i/2

end

s

end

f (generic function with 1 method)

julia> @time f(1)

0.012686 seconds (2.09 k allocations: 103.421 KiB)

0.5

julia> @time f(10^6)

0.021061 seconds (3.00 M allocations: 45.777 MiB, 11.69% gc time)

2.5000025e11

On the first call (@time f(1)), f gets compiled. (If you've not yet used @time in this session, it will also compile func-

tions needed for timing.) You should not take the results of this run seriously. For the second run, note that in addition

to reporting the time, it also indicated that a large amountofmemorywas allocated. This is the single biggest advantage

of @time vs. functions like tic() and toc(), which only report time.

Unexpected memory allocation is almost always a sign of some problem with your code, usually a problem with type-

stability. Consequently, in addition to the allocation itself, it's very likely that the code generated for your function is far

from optimal. Take such indications seriously and follow the advice below.

For more serious benchmarking, consider the BenchmarkTools.jl package which evaluates the function multiple times

in order to reduce noise.

As a teaser, an improved version of this function allocates no memory (the allocation reported below is due to running

the @timemacro in global scope) and has an order of magnitude faster execution after the first call:

julia> @time f_improved(1)

0.007008 seconds (1.32 k allocations: 63.640 KiB)

0.5

julia> @time f_improved(10^6)

0.002997 seconds (6 allocations: 192 bytes)

2.5000025e11

Below you'll learn how to spot the problemwith f and how to fix it.

In some situations, your function may need to allocate memory as part of its operation, and this can complicate the

simple picture above. In such cases, consider using one of the tools below to diagnose problems, or write a version of

your function that separates allocation from its algorithmic aspects (see Pre-allocating outputs).

39.3 Tools

Julia and its package ecosystem includes tools that may help you diagnose problems and improve the performance of

your code:

https://github.com/JuliaCI/BenchmarkTools.jl

39.4. AVOID CONTAINERSWITH ABSTRACT TYPE PARAMETERS 359

• Profiling allows you to measure the performance of your running code and identify lines that serve as bottle-

necks. For complex projects, the ProfileView package can help you visualize your profiling results.

• Unexpectedly-large memory allocations–as reported by @time, @allocated, or the profiler (through calls to

the garbage-collection routines)–hint that theremight be issueswith your code. If you don't see another reason

for the allocations, suspect a type problem. You can also start Julia with the --track-allocation=user op-

tion and examine the resulting *.mem files to see information aboutwhere those allocations occur. SeeMemory

allocation analysis.

• @code_warntype generates a representation of your code that can be helpful in finding expressions that result

in type uncertainty. See @code_warntype below.

• The Lint package can also warn you of certain types of programming errors.

39.4 Avoid containers with abstract type parameters

Whenworkingwith parameterized types, including arrays, it is best to avoid parameterizingwith abstract typeswhere

possible.

Consider the following:

a = Real[] # typeof(a) = Array{Real,1}

if (f = rand()) < .8

push!(a, f)

end

Because a is a an array of abstract type Real, it must be able to hold any Real value. Since Real objects can be of arbi-

trary size and structure, amust be represented as an array of pointers to individually allocated Real objects. Because

fwill always be a Float64, we should instead, use:

a = Float64[] # typeof(a) = Array{Float64,1}

which will create a contiguous block of 64-bit floating-point values that can bemanipulated efficiently.

See also the discussion under Parametric Types.

39.5 Type declarations

In many languages with optional type declarations, adding declarations is the principal way to make code run faster.

This is not the case in Julia. In Julia, the compiler generally knows the types of all function arguments, local variables,

and expressions. However, there are a few specific instances where declarations are helpful.

Avoid fields with abstract type

Types can be declared without specifying the types of their fields:

julia> struct MyAmbiguousType

a

end

Thisallowsa tobeofanytype. Thiscanoftenbeuseful, but itdoeshaveadownside: forobjectsof typeMyAmbiguousType,

the compiler will not be able to generate high-performance code. The reason is that the compiler uses the types of ob-

jects, not their values, to determine how to build code. Unfortunately, very little can be inferred about an object of type

MyAmbiguousType:

https://github.com/timholy/ProfileView.jl
https://github.com/tonyhffong/Lint.jl

360 CHAPTER 39. PERFORMANCE TIPS

julia> b = MyAmbiguousType("Hello")

MyAmbiguousType("Hello")

julia> c = MyAmbiguousType(17)

MyAmbiguousType(17)

julia> typeof(b)

MyAmbiguousType

julia> typeof(c)

MyAmbiguousType

b and c have the same type, yet their underlying representation of data in memory is very different. Even if you stored

just numeric values in field a, the fact that the memory representation of a UInt8 differs from a Float64 also means

that the CPU needs to handle them using two different kinds of instructions. Since the required information is not

available in the type, such decisions have to bemade at run-time. This slows performance.

You can do better by declaring the type of a. Here, we are focused on the case where a might be any one of several

types, in which case the natural solution is to use parameters. For example:

julia> mutable struct MyType{T<:AbstractFloat}

a::T

end

This is a better choice than

julia> mutable struct MyStillAmbiguousType

a::AbstractFloat

end

because the first version specifies the type of a from the type of the wrapper object. For example:

julia> m = MyType(3.2)

MyType{Float64}(3.2)

julia> t = MyStillAmbiguousType(3.2)

MyStillAmbiguousType(3.2)

julia> typeof(m)

MyType{Float64}

julia> typeof(t)

MyStillAmbiguousType

The type of field a can be readily determined from the type of m, but not from the type of t. Indeed, in t it's possible to

change the type of field a:

julia> typeof(t.a)

Float64

julia> t.a = 4.5f0

4.5f0

julia> typeof(t.a)

Float32

In contrast, once m is constructed, the type of m.a cannot change:

39.5. TYPE DECLARATIONS 361

julia> m.a = 4.5f0

4.5f0

julia> typeof(m.a)

Float64

The fact that the type ofm.a is known fromm's type–coupledwith the fact that its type cannot changemid-function–al-

lows the compiler to generate highly-optimized code for objects like m but not for objects like t.

Of course, all of this is true only if we construct mwith a concrete type. We can break this by explicitly constructing it

with an abstract type:

julia> m = MyType{AbstractFloat}(3.2)

MyType{AbstractFloat}(3.2)

julia> typeof(m.a)

Float64

julia> m.a = 4.5f0

4.5f0

julia> typeof(m.a)

Float32

For all practical purposes, such objects behave identically to those of MyStillAmbiguousType.

It's quite instructive to compare the sheer amount code generated for a simple function

func(m::MyType) = m.a+1

using

code_llvm(func,Tuple{MyType{Float64}})

code_llvm(func,Tuple{MyType{AbstractFloat}})

code_llvm(func,Tuple{MyType})

For reasons of length the results are not shown here, but you may wish to try this yourself. Because the type is fully-

specified in the first case, the compiler doesn't need to generate any code to resolve the type at run-time. This results

in shorter and faster code.

Avoid fields with abstract containers

The same best practices also work for container types:

julia> mutable struct MySimpleContainer{A<:AbstractVector}

a::A

end

julia> mutable struct MyAmbiguousContainer{T}

a::AbstractVector{T}

end

For example:

362 CHAPTER 39. PERFORMANCE TIPS

julia> c = MySimpleContainer(1:3);

julia> typeof(c)

MySimpleContainer{UnitRange{Int64}}

julia> c = MySimpleContainer([1:3;]);

julia> typeof(c)

MySimpleContainer{Array{Int64,1}}

julia> b = MyAmbiguousContainer(1:3);

julia> typeof(b)

MyAmbiguousContainer{Int64}

julia> b = MyAmbiguousContainer([1:3;]);

julia> typeof(b)

MyAmbiguousContainer{Int64}

For MySimpleContainer, the object is fully-specified by its type and parameters, so the compiler can generate opti-

mized functions. In most instances, this will probably suffice.

While the compiler can now do its job perfectly well, there are cases where you might wish that your code could do

different thingsdependingontheelement typeofa. Usually thebestwaytoachievethis is towrapyourspecificoperation

(here, foo) in a separate function:

julia> function sumfoo(c::MySimpleContainer)

s = 0

for x in c.a

s += foo(x)

end

s

end

sumfoo (generic function with 1 method)

julia> foo(x::Integer) = x

foo (generic function with 1 method)

julia> foo(x::AbstractFloat) = round(x)

foo (generic function with 2 methods)

This keeps things simple, while allowing the compiler to generate optimized code in all cases.

However, there are caseswhere youmay need to declare different versions of the outer function for different element

types of a. You could do it like this:

function myfun(c::MySimpleContainer{Vector{T}}) where T<:AbstractFloat

...

end

function myfun(c::MySimpleContainer{Vector{T}}) where T<:Integer

...

end

Thisworksfine forVector{T}, butwe'd alsohave towrite explicit versions forUnitRange{T}orother abstract types.

To prevent such tedium, you can use two parameters in the declaration of MyContainer:

julia> mutable struct MyContainer{T, A<:AbstractVector}

39.5. TYPE DECLARATIONS 363

a::A

end

julia> MyContainer(v::AbstractVector) = MyContainer{eltype(v), typeof(v)}(v)

MyContainer

julia> b = MyContainer(1:5);

julia> typeof(b)

MyContainer{Int64,UnitRange{Int64}}

Note the somewhat surprising fact that T doesn't appear in the declaration of field a, a point that we'll return to in a

moment. With this approach, one canwrite functions such as:

julia> function myfunc(c::MyContainer{<:Integer, <:AbstractArray})

return c.a[1]+1

end

myfunc (generic function with 1 method)

julia> function myfunc(c::MyContainer{<:AbstractFloat})

return c.a[1]+2

end

myfunc (generic function with 2 methods)

julia> function myfunc(c::MyContainer{T,Vector{T}}) where T<:Integer

return c.a[1]+3

end

myfunc (generic function with 3 methods)

Note

Becausewe can only define MyContainer for A<:AbstractArray, and any unspecified parameters are

arbitrary, thefirst functionabovecouldhavebeenwrittenmoresuccinctlyasfunction myfunc{T<:Integer}(c::MyContainer{T})

julia> myfunc(MyContainer(1:3))

2

julia> myfunc(MyContainer(1.0:3))

3.0

julia> myfunc(MyContainer([1:3;]))

4

As you can see, with this approach it's possible to specialize on both the element type T and the array type A.

However, there's one remaining hole: we haven't enforced that A has element type T, so it's perfectly possible to con-

struct an object like this:

julia> b = MyContainer{Int64, UnitRange{Float64}}(UnitRange(1.3, 5.0));

julia> typeof(b)

MyContainer{Int64,UnitRange{Float64}}

To prevent this, we can add an inner constructor:

364 CHAPTER 39. PERFORMANCE TIPS

julia> mutable struct MyBetterContainer{T<:Real, A<:AbstractVector}

a::A

MyBetterContainer{T,A}(v::AbstractVector{T}) where {T,A} = new(v)

end

julia> MyBetterContainer(v::AbstractVector) = MyBetterContainer{eltype(v),typeof(v)}(v)

MyBetterContainer

julia> b = MyBetterContainer(UnitRange(1.3, 5.0));

julia> typeof(b)

MyBetterContainer{Float64,UnitRange{Float64}}

julia> b = MyBetterContainer{Int64, UnitRange{Float64}}(UnitRange(1.3, 5.0));

ERROR: MethodError: Cannot `convert` an object of type UnitRange{Float64} to an object of type

MyBetterContainer{Int64,UnitRange{Float64}}

[...]

The inner constructor requires that the element type of A be T.

Annotate values taken from untyped locations

It is often convenient to work with data structures that may contain values of any type (arrays of type Array{Any}).

But, if you're using one of these structures and happen to know the type of an element, it helps to share this knowledge

with the compiler:

function foo(a::Array{Any,1})

x = a[1]::Int32

b = x+1

...

end

Here,wehappened to know that thefirst element ofawouldbe anInt32. Making an annotation like this has the added

benefit that itwill raise a run-timeerror if the value is not of the expected type, potentially catching certain bugs earlier.

Declare types of keyword arguments

Keyword arguments can have declared types:

function with_keyword(x; name::Int = 1)

...

end

Functions are specialized on the types of keyword arguments, so these declarationswill not affect performance of code

inside the function. However, they will reduce the overhead of calls to the function that include keyword arguments.

Functions with keyword arguments have near-zero overhead for call sites that pass only positional arguments.

Passingdynamic listsofkeywordarguments, as inf(x; keywords...), canbeslowandshouldbeavoided inperformance-

sensitive code.

39.6. BREAK FUNCTIONS INTOMULTIPLE DEFINITIONS 365

39.6 Break functions intomultiple definitions

Writing a function asmany small definitions allows the compiler to directly call themost applicable code, or even inline

it.

Here is an example of a "compound function" that should really be written asmultiple definitions:

function norm(A)

if isa(A, Vector)

return sqrt(real(dot(A,A)))

elseif isa(A, Matrix)

return maximum(svd(A)[2])

else

error("norm: invalid argument")

end

end

This can bewrittenmore concisely and efficiently as:

norm(x::Vector) = sqrt(real(dot(x,x)))

norm(A::Matrix) = maximum(svd(A)[2])

39.7 Write "type-stable" functions

When possible, it helps to ensure that a function always returns a value of the same type. Consider the following defi-

nition:

pos(x) = x < 0 ? 0 : x

Although this seems innocent enough, the problem is that 0 is an integer (of type Int) and xmight be of any type. Thus,

depending on the value of x, this functionmight return a value of either of two types. This behavior is allowed, andmay

be desirable in some cases. But it can easily be fixed as follows:

pos(x) = x < 0 ? zero(x) : x

There is also a one() function, and a more general oftype(x, y) function, which returns y converted to the type of

x.

39.8 Avoid changing the type of a variable

An analogous "type-stability" problem exists for variables used repeatedly within a function:

function foo()

x = 1

for i = 1:10

x = x/bar()

end

return x

end

366 CHAPTER 39. PERFORMANCE TIPS

Local variable x starts as an integer, and after one loop iteration becomes a floating-point number (the result of / oper-

ator). This makes it more difficult for the compiler to optimize the body of the loop. There are several possible fixes:

• Initialize xwith x = 1.0

• Declare the type of x: x::Float64 = 1

• Use an explicit conversion: x = oneunit(T)

• Initialize with the first loop iteration, to x = 1/bar(), then loop for i = 2:10

39.9 Separate kernel functions (aka, function barriers)

Many functions follow a pattern of performing some set-up work, and then running many iterations to perform a core

computation. Where possible, it is a good idea to put these core computations in separate functions. For example, the

following contrived function returns an array of a randomly-chosen type:

julia> function strange_twos(n)

a = Vector{rand(Bool) ? Int64 : Float64}(n)

for i = 1:n

a[i] = 2

end

return a

end

strange_twos (generic function with 1 method)

julia> strange_twos(3)

3-element Array{Float64,1}:

2.0

2.0

2.0

This should bewritten as:

julia> function fill_twos!(a)

for i=1:length(a)

a[i] = 2

end

end

fill_twos! (generic function with 1 method)

julia> function strange_twos(n)

a = Array{rand(Bool) ? Int64 : Float64}(n)

fill_twos!(a)

return a

end

strange_twos (generic function with 1 method)

julia> strange_twos(3)

3-element Array{Float64,1}:

2.0

2.0

2.0

39.10. TYPESWITH VALUES-AS-PARAMETERS 367

Julia's compiler specializes code for argument types at function boundaries, so in the original implementation it does

not know the type of a during the loop (since it is chosen randomly). Therefore the second version is generally faster

since the inner loop can be recompiled as part of fill_twos! for different types of a.

The second form is also often better style and can lead tomore code reuse.

This pattern is used in several places in the standard library. For example, see hvcat_fill in abstractarray.jl, or

the fill! function, which we could have used instead of writing our own fill_twos!.

Functions like strange_twos occur when dealing with data of uncertain type, for example data loaded from an input

file that might contain either integers, floats, strings, or something else.

39.10 Typeswith values-as-parameters

Let's say youwant to create an N-dimensional array that has size 3 along each axis. Such arrays can be created like this:

julia> A = fill(5.0, (3, 3))

3×3 Array{Float64,2}:

5.0 5.0 5.0

5.0 5.0 5.0

5.0 5.0 5.0

This approachworks verywell: the compiler can figure out that A is an Array{Float64,2} because it knows the type

of the fill value (5.0::Float64) and the dimensionality ((3, 3)::NTuple{2,Int}). This implies that the compiler

can generate very efficient code for any future usage of A in the same function.

Butnow let's say youwant towrite a function that creates a3×3×... array in arbitrarydimensions; youmight be tempted

to write a function

julia> function array3(fillval, N)

fill(fillval, ntuple(d->3, N))

end

array3 (generic function with 1 method)

julia> array3(5.0, 2)

3×3 Array{Float64,2}:

5.0 5.0 5.0

5.0 5.0 5.0

5.0 5.0 5.0

Thisworks, but (as you can verify for yourself using@code_warntype array3(5.0, 2)) the problem is that the out-

put type cannot be inferred: the argument N is a value of type Int, and type-inference does not (and cannot) predict its

value in advance. This means that code using the output of this function has to be conservative, checking the type on

each access of A; such codewill be very slow.

Now, one very goodway to solve such problems is by using the function-barrier technique. However, in some cases you

might want to eliminate the type-instability altogether. In such cases, one approach is to pass the dimensionality as a

parameter, for example through Val{T} (see "Value types"):

julia> function array3(fillval, ::Type{Val{N}}) where N

fill(fillval, ntuple(d->3, Val{N}))

end

array3 (generic function with 1 method)

https://github.com/JuliaLang/julia/blob/master/base/abstractarray.jl

368 CHAPTER 39. PERFORMANCE TIPS

julia> array3(5.0, Val{2})

3×3 Array{Float64,2}:

5.0 5.0 5.0

5.0 5.0 5.0

5.0 5.0 5.0

Julia has a specialized version of ntuple that accepts a Val{::Int} as the second parameter; by passing N as a type-

parameter, you make its "value" known to the compiler. Consequently, this version of array3 allows the compiler to

predict the return type.

However, making use of such techniques can be surprisingly subtle. For example, it would be of no help if you called

array3 from a function like this:

function call_array3(fillval, n)

A = array3(fillval, Val{n})

end

Here, you've created the same problem all over again: the compiler can't guess the type of n, so it doesn't know the

typeofVal{n}. Attempting to useVal, but doing so incorrectly, can easilymakeperformanceworse inmany situations.

(Only in situations where you're effectively combining Valwith the function-barrier trick, to make the kernel function

more efficient, should code like the above be used.)

An example of correct usage of Valwould be:

function filter3(A::AbstractArray{T,N}) where {T,N}

kernel = array3(1, Val{N})

filter(A, kernel)

end

In this example,N is passed as a parameter, so its "value" is known to the compiler. Essentially,Val{T}works onlywhen

T is either hard-coded (Val{3}) or already specified in the type-domain.

39.11 The dangers of abusingmultiple dispatch (aka, more on types with values-as-parameters)

Once one learns to appreciate multiple dispatch, there's an understandable tendency to go crazy and try to use it for

everything. For example, youmight imagine using it to store information, e.g.

struct Car{Make,Model}

year::Int

...more fields...

end

and then dispatch on objects like Car{:Honda,:Accord}(year, args...).

This might be worthwhile when the following are true:

• You require CPU-intensive processing on each Car, and it becomes vastly more efficient if you know the Make

and Model at compile time.

• Youhavehomogenous listsof thesametypeofCar toprocess, so thatyoucanstore themall inanArray{Car{:Honda,:Accord},N}.

39.12. ACCESS ARRAYS INMEMORYORDER, ALONGCOLUMNS 369

When the latter holds, a function processing such a homogenous array can be productively specialized: Julia knows the

type of each element in advance (all objects in the container have the same concrete type), so Julia can "look up" the

correct method calls when the function is being compiled (obviating the need to check at run-time) and thereby emit

efficient code for processing the whole list.

When thesedonothold, then it's likely that you'll get nobenefit;worse, the resulting "combinatorial explosionof types"

will be counterproductive. If items[i+1] has a different type than item[i], Julia has to look up the type at run-

time, search for the appropriatemethod inmethod tables, decide (via type intersection)which onematches, determine

whether it has been JIT-compiled yet (and do so if not), and then make the call. In essence, you're asking the full type-

systemand JIT-compilationmachinery to basically execute the equivalent of a switch statement or dictionary lookup in

your own code.

Some run-time benchmarks comparing (1) type dispatch, (2) dictionary lookup, and (3) a "switch" statement can be

found on themailing list.

Perhaps even worse than the run-time impact is the compile-time impact: Julia will compile specialized functions for

each different Car{Make, Model}; if you have hundreds or thousands of such types, then every function that accepts

such an object as a parameter (from a custom get_year function youmight write yourself, to the generic push! func-

tion in the standard library)will have hundreds or thousands of variants compiled for it. Each of these increases the size

of the cache of compiled code, the length of internal lists of methods, etc. Excess enthusiasm for values-as-parameters

can easily waste enormous resources.

39.12 Access arrays inmemory order, along columns

Multidimensional arrays in Julia are stored in column-major order. This means that arrays are stacked one column at a

time. This can be verified using the vec function or the syntax [:] as shown below (notice that the array is ordered [1

3 2 4], not [1 2 3 4]):

julia> x = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> x[:]

4-element Array{Int64,1}:

1

3

2

4

This convention for ordering arrays is common in many languages like Fortran, Matlab, and R (to name a few). The

alternative to column-major ordering is row-major ordering, which is the convention adopted byC andPython (numpy)

among other languages. Remembering the ordering of arrays can have significant performance effects when looping

over arrays. A rule of thumb to keep in mind is that with column-major arrays, the first index changes most rapidly.

Essentially this means that looping will be faster if the inner-most loop index is the first to appear in a slice expression.

Consider the following contrived example. Imaginewewanted towrite a function that accepts a Vector and returns a

squareMatrixwitheither the rowsor the columnsfilledwith copiesof the input vector. Assume that it is not important

whether rows or columns are filled with these copies (perhaps the rest of the code can be easily adapted accordingly).

We could conceivably do this in at least four ways (in addition to the recommended call to the built-in repmat()):

function copy_cols(x::Vector{T}) where T

n = size(x, 1)

out = Array{T}(n, n)

https://groups.google.com/forum/#!msg/julia-users/jUMu9A3QKQQ/qjgVWr7vAwAJ

370 CHAPTER 39. PERFORMANCE TIPS

for i = 1:n

out[:, i] = x

end

out

end

function copy_rows(x::Vector{T}) where T

n = size(x, 1)

out = Array{T}(n, n)

for i = 1:n

out[i, :] = x

end

out

end

function copy_col_row(x::Vector{T}) where T

n = size(x, 1)

out = Array{T}(n, n)

for col = 1:n, row = 1:n

out[row, col] = x[row]

end

out

end

function copy_row_col(x::Vector{T}) where T

n = size(x, 1)

out = Array{T}(n, n)

for row = 1:n, col = 1:n

out[row, col] = x[col]

end

out

end

Nowwewill time each of these functions using the same random 10000 by 1 input vector:

julia> x = randn(10000);

julia> fmt(f) = println(rpad(string(f)*": ", 14, ' '), @elapsed f(x))

julia> map(fmt, Any[copy_cols, copy_rows, copy_col_row, copy_row_col]);

copy_cols: 0.331706323

copy_rows: 1.799009911

copy_col_row: 0.415630047

copy_row_col: 1.721531501

Notice that copy_cols is much faster than copy_rows. This is expected because copy_cols respects the column-

basedmemory layout of the Matrix and fills it one column at a time. Additionally, copy_col_row is much faster than

copy_row_col because it follows our rule of thumb that the first element to appear in a slice expression should be

coupled with the inner-most loop.

39.13 Pre-allocating outputs

If your function returns an Array or some other complex type, it may have to allocate memory. Unfortunately, often-

times allocation and its converse, garbage collection, are substantial bottlenecks.

39.13. PRE-ALLOCATINGOUTPUTS 371

Sometimes you can circumvent the need to allocate memory on each function call by preallocating the output. As a

trivial example, compare

function xinc(x)

return [x, x+1, x+2]

end

function loopinc()

y = 0

for i = 1:10^7

ret = xinc(i)

y += ret[2]

end

y

end

with

function xinc!(ret::AbstractVector{T}, x::T) where T

ret[1] = x

ret[2] = x+1

ret[3] = x+2

nothing

end

function loopinc_prealloc()

ret = Array{Int}(3)

y = 0

for i = 1:10^7

xinc!(ret, i)

y += ret[2]

end

y

end

Timing results:

julia> @time loopinc()

0.529894 seconds (40.00 M allocations: 1.490 GiB, 12.14% gc time)

50000015000000

julia> @time loopinc_prealloc()

0.030850 seconds (6 allocations: 288 bytes)

50000015000000

Preallocation has other advantages, for example by allowing the caller to control the "output" type from an algorithm.

In the example above, we could have passed a SubArray rather than an Array, had we so desired.

Taken to its extreme, pre-allocation canmake your code uglier, so performancemeasurements and some judgmentmay

be required. However, for "vectorized" (element-wise) functions, the convenient syntax x .= f.(y) can be used for

in-place operations with fused loops and no temporary arrays (see the dot syntax for vectorizing functions).

372 CHAPTER 39. PERFORMANCE TIPS

39.14 More dots: Fuse vectorized operations

Julia has a special dot syntax that converts any scalar function into a "vectorized" function call, and any operator into a

"vectorized" operator, with the special property that nested "dot calls" are fusing: they are combined at the syntax level

into a single loop, without allocating temporary arrays. If you use .= and similar assignment operators, the result can

also be stored in-place in a pre-allocated array (see above).

In a linear-algebra context, this means that even though operations like vector + vector and vector * scalar

aredefined, it canbeadvantageous to insteadusevector .+ vectorandvector .* scalarbecause the resulting

loops can be fusedwith surrounding computations. For example, consider the two functions:

f(x) = 3x.^2 + 4x + 7x.^3

fdot(x) = @. 3x^2 + 4x + 7x^3 # equivalent to 3 .* x.^2 .+ 4 .* x .+ 7 .* x.^3

Both f and fdot compute the same thing. However, fdot (definedwith the help of the @. macro) is significantly faster

when applied to an array:

julia> x = rand(10^6);

julia> @time f(x);

0.010986 seconds (18 allocations: 53.406 MiB, 11.45% gc time)

julia> @time fdot(x);

0.003470 seconds (6 allocations: 7.630 MiB)

julia> @time f.(x);

0.003297 seconds (30 allocations: 7.631 MiB)

That is, fdot(x) is three times faster and allocates 1/7 the memory of f(x), because each * and + operation in f(x)

allocates a new temporary array and executes in a separate loop. (Of course, if you just do f.(x) then it is as fast as

fdot(x) in this example, but in many contexts it is more convenient to just sprinkle some dots in your expressions

rather than defining a separate function for each vectorized operation.)

39.15 Consider using views for slices

In Julia, an array "slice" expression like array[1:5, :] creates a copy of that data (except on the left-hand side of an

assignment, where array[1:5, :] = ... assigns in-place to that portion of array). If you are doing many opera-

tions on the slice, this can be good for performance because it is more efficient to work with a smaller contiguous copy

than it would be to index into the original array. On the other hand, if you are just doing a few simple operations on the

slice, the cost of the allocation and copy operations can be substantial.

An alternative is to create a "view" of the array, which is an array object (a SubArray) that actually references the data

of the original array in-place, withoutmaking a copy. (If youwrite to a view, it modifies the original array's data aswell.)

This canbedone for individual slicesbycallingview(), ormoresimply forawholeexpressionorblockofcodebyputting

@views in front of that expression. For example:

julia> fcopy(x) = sum(x[2:end-1])

julia> @views fview(x) = sum(x[2:end-1])

julia> x = rand(10^6);

39.16. AVOID STRING INTERPOLATION FOR I/O 373

julia> @time fcopy(x);

0.003051 seconds (7 allocations: 7.630 MB)

julia> @time fview(x);

0.001020 seconds (6 allocations: 224 bytes)

Notice both the 3× speedup and the decreasedmemory allocation of the fview version of the function.

39.16 Avoid string interpolation for I/O

Whenwriting data to a file (or other I/O device), forming extra intermediate strings is a source of overhead. Instead of:

println(file, "$a $b")

use:

println(file, a, " ", b)

The first version of the code forms a string, then writes it to the file, while the second version writes values directly to

the file. Also notice that in some cases string interpolation can be harder to read. Consider:

println(file, "$(f(a))$(f(b))")

versus:

println(file, f(a), f(b))

39.17 Optimize network I/O during parallel execution

When executing a remote function in parallel:

responses = Vector{Any}(nworkers())

@sync begin

for (idx, pid) in enumerate(workers())

@async responses[idx] = remotecall_fetch(pid, foo, args...)

end

end

is faster than:

refs = Vector{Any}(nworkers())

for (idx, pid) in enumerate(workers())

refs[idx] = @spawnat pid foo(args...)

end

responses = [fetch(r) for r in refs]

The former results in a single network round-trip to every worker, while the latter results in two network calls - first

by the @spawnat and the second due to the fetch (or even a wait). The fetch/wait is also being executed serially

resulting in an overall poorer performance.

374 CHAPTER 39. PERFORMANCE TIPS

39.18 Fix deprecationwarnings

A deprecated function internally performs a lookup in order to print a relevant warning only once. This extra lookup

can cause a significant slowdown, so all uses of deprecated functions should bemodified as suggested by thewarnings.

39.19 Tweaks

These are someminor points that might help in tight inner loops.

• Avoid unnecessary arrays. For example, instead of sum([x,y,z]) use x+y+z.

• Useabs2(z) insteadofabs(z)^2 for complexz. In general, try to rewrite code touseabs2() insteadofabs()

for complex arguments.

• Use div(x,y) for truncating division of integers instead of trunc(x/y), fld(x,y) instead of floor(x/y),

and cld(x,y) instead of ceil(x/y).

39.20 Performance Annotations

Sometimes you can enable better optimization by promising certain program properties.

• Use @inbounds to eliminate array bounds checking within expressions. Be certain before doing this. If the sub-

scripts are ever out of bounds, youmay suffer crashes or silent corruption.

• Use @fastmath to allow floating point optimizations that are correct for real numbers, but lead to differences

for IEEE numbers. Be careful when doing this, as this may change numerical results. This corresponds to the

-ffast-math option of clang.

• Write @simd in front of for loops that are amenable to vectorization. This feature is experimental and could

change or disappear in future versions of Julia.

Note: While @simd needs to be placed directly in front of a loop, both @inbounds and @fastmath can be applied to

several statements at once, e.g. using begin ... end, or even to a whole function.

Here is an example with both @inbounds and @simdmarkup:

function inner(x, y)

s = zero(eltype(x))

for i=1:length(x)

@inbounds s += x[i]*y[i]

end

s

end

function innersimd(x, y)

s = zero(eltype(x))

@simd for i=1:length(x)

@inbounds s += x[i]*y[i]

end

s

end

function timeit(n, reps)

39.20. PERFORMANCE ANNOTATIONS 375

x = rand(Float32,n)

y = rand(Float32,n)

s = zero(Float64)

time = @elapsed for j in 1:reps

s+=inner(x,y)

end

println("GFlop/sec = ",2.0*n*reps/time*1E-9)

time = @elapsed for j in 1:reps

s+=innersimd(x,y)

end

println("GFlop/sec (SIMD) = ",2.0*n*reps/time*1E-9)

end

timeit(1000,1000)

On a computer with a 2.4GHz Intel Core i5 processor, this produces:

GFlop/sec = 1.9467069505224963

GFlop/sec (SIMD) = 17.578554163920018

(GFlop/secmeasures the performance, and larger numbers are better.) The range for a @simd for loop should be

a one-dimensional range. A variable used for accumulating, such as s in the example, is called a reduction variable. By

using @simd, you are asserting several properties of the loop:

• It is safe toexecute iterations inarbitraryoroverlappingorder,withspecial consideration for reductionvariables.

• Floating-point operations on reduction variables can be reordered, possibly causing different results thanwith-

out @simd.

• No iteration ever waits on another iteration tomake forward progress.

A loop containing break, continue, or @gotowill cause a compile-time error.

Using @simdmerely gives the compiler license to vectorize. Whether it actually does so depends on the compiler. To

actually benefit from the current implementation, your loop should have the following additional properties:

• The loopmust be an innermost loop.

• The loop bodymust be straight-line code. This is why @inbounds is currently needed for all array accesses. The

compiler can sometimes turn short &&, ||, and ?: expressions into straight-line code, if it is safe to evaluate all

operands unconditionally. Consider using ifelse() instead of ?: in the loop if it is safe to do so.

• Accesses must have a stride pattern and cannot be "gathers" (random-index reads) or "scatters" (random-index

writes).

• The stride should be unit stride.

• In some simple cases, for example with 2-3 arrays accessed in a loop, the LLVM auto-vectorization may kick in

automatically, leading to no further speedupwith @simd.

Here isanexamplewithall threekindsofmarkup. Thisprogramfirstcalculates thefinitedifferenceofaone-dimensional

array, and then evaluates the L2-norm of the result:

376 CHAPTER 39. PERFORMANCE TIPS

function init!(u)

n = length(u)

dx = 1.0 / (n-1)

@fastmath @inbounds @simd for i in 1:n

u[i] = sin(2pi*dx*i)

end

end

function deriv!(u, du)

n = length(u)

dx = 1.0 / (n-1)

@fastmath @inbounds du[1] = (u[2] - u[1]) / dx

@fastmath @inbounds @simd for i in 2:n-1

du[i] = (u[i+1] - u[i-1]) / (2*dx)

end

@fastmath @inbounds du[n] = (u[n] - u[n-1]) / dx

end

function norm(u)

n = length(u)

T = eltype(u)

s = zero(T)

@fastmath @inbounds @simd for i in 1:n

s += u[i]^2

end

@fastmath @inbounds return sqrt(s/n)

end

function main()

n = 2000

u = Array{Float64}(n)

init!(u)

du = similar(u)

deriv!(u, du)

nu = norm(du)

@time for i in 1:10^6

deriv!(u, du)

nu = norm(du)

end

println(nu)

end

main()

On a computer with a 2.7 GHz Intel Core i7 processor, this produces:

$ julia wave.jl;

elapsed time: 1.207814709 seconds (0 bytes allocated)

$ julia --math-mode=ieee wave.jl;

elapsed time: 4.487083643 seconds (0 bytes allocated)

Here, the option --math-mode=ieee disables the @fastmathmacro, so that we can compare results.

39.21. TREAT SUBNORMAL NUMBERS AS ZEROS 377

In this case, the speedup due to @fastmath is a factor of about 3.7. This is unusually large – in general, the speedupwill

be smaller. (In this particular example, the working set of the benchmark is small enough to fit into the L1 cache of the

processor, so thatmemory access latency does not play a role, and computing time is dominated byCPUusage. Inmany

real world programs this is not the case.) Also, in this case this optimization does not change the result – in general,

the result will be slightly different. In some cases, especially for numerically unstable algorithms, the result can be very

different.

The annotation @fastmath re-arranges floating point expressions, e.g. changing the order of evaluation, or assuming

that certain special cases (inf, nan) cannot occur. In this case (and on this particular computer), the main difference is

that the expression 1 / (2*dx) in the function deriv is hoisted out of the loop (i.e. calculated outside the loop), as

if one had written idx = 1 / (2*dx). In the loop, the expression ... / (2*dx) then becomes ... * idx, which

is much faster to evaluate. Of course, both the actual optimization that is applied by the compiler as well as the re-

sulting speedup depend very much on the hardware. You can examine the change in generated code by using Julia's

code_native() function.

39.21 Treat Subnormal Numbers as Zeros

Subnormal numbers, formerly called denormal numbers, are useful in many contexts, but incur a performance penalty

onsomehardware. Acallset_zero_subnormals(true)grantspermission forfloating-pointoperations to treat sub-

normal inputsoroutputsaszeros,whichmay improveperformanceonsomehardware. Acallset_zero_subnormals(false)

enforces strict IEEE behavior for subnormal numbers.

Below is an example where subnormals noticeably impact performance on some hardware:

function timestep(b::Vector{T}, a::Vector{T}, Δt::T) where T

@assert length(a)==length(b)

n = length(b)

b[1] = 1 # Boundary condition

for i=2:n-1

b[i] = a[i] + (a[i-1] - T(2)*a[i] + a[i+1]) * Δt

end

b[n] = 0 # Boundary condition

end

function heatflow(a::Vector{T}, nstep::Integer) where T

b = similar(a)

for t=1:div(nstep,2) # Assume nstep is even

timestep(b,a,T(0.1))

timestep(a,b,T(0.1))

end

end

heatflow(zeros(Float32,10),2) # Force compilation

for trial=1:6

a = zeros(Float32,1000)

set_zero_subnormals(iseven(trial)) # Odd trials use strict IEEE arithmetic

@time heatflow(a,1000)

end

This example generates many subnormal numbers because the values in a become an exponentially decreasing curve,

which slowly flattens out over time.

Treating subnormals as zeros should be usedwith caution, because doing so breaks some identities, such as x-y == 0

implies x == y:

https://en.wikipedia.org/wiki/Denormal_number

378 CHAPTER 39. PERFORMANCE TIPS

julia> x = 3f-38; y = 2f-38;

julia> set_zero_subnormals(true); (x - y, x == y)

(0.0f0, false)

julia> set_zero_subnormals(false); (x - y, x == y)

(1.0000001f-38, false)

In some applications, an alternative to zeroing subnormal numbers is to inject a tiny bit of noise. For example, instead

of initializing awith zeros, initialize it with:

a = rand(Float32,1000) * 1.f-9

39.22 @code_warntype

Themacro@code_warntype (or its function variantcode_warntype()) can sometimesbehelpful in diagnosing type-

related problems. Here's an example:

pos(x) = x < 0 ? 0 : x

function f(x)

y = pos(x)

sin(y*x+1)

end

julia> @code_warntype f(3.2)

Variables:

#self#::#f

x::Float64

y::UNION{FLOAT64,INT64}

fy::Float64

#temp#@_5::UNION{FLOAT64,INT64}

#temp#@_6::Core.MethodInstance

#temp#@_7::Float64

Body:

begin

$(Expr(:inbounds, false))

meta: location REPL[1] pos 1

meta: location float.jl < 487

fy::Float64 = (Core.typeassert)((Base.sitofp)(Float64,0)::Float64,Float64)::Float64

meta: pop location

unless

(Base.or_int)((Base.lt_float)(x::Float64,fy::Float64)::Bool,(Base.and_int)((Base.and_int)((Base.eq_float)(x::Float64,fy::Float64)::Bool,(Base.lt_float)(fy::Float64,9.223372036854776e18)::Bool)::Bool,(Base.slt_int)((Base.fptosi)(Int64,fy::Float64)::Int64,0)::Bool)::Bool)::Bool

goto 9

↪→

↪→

#temp#@_5::UNION{FLOAT64,INT64} = 0

goto 11

9:

#temp#@_5::UNION{FLOAT64,INT64} = x::Float64

11:

meta: pop location

$(Expr(:inbounds, :pop))

y::UNION{FLOAT64,INT64} = #temp#@_5::UNION{FLOAT64,INT64} # line 3:

unless (y::UNION{FLOAT64,INT64} isa Int64)::ANY goto 19

39.22. @CODE_WARNTYPE 379

#temp#@_6::Core.MethodInstance = MethodInstance for *(::Int64, ::Float64)

goto 28

19:

unless (y::UNION{FLOAT64,INT64} isa Float64)::ANY goto 23

#temp#@_6::Core.MethodInstance = MethodInstance for *(::Float64, ::Float64)

goto 28

23:

goto 25

25:

#temp#@_7::Float64 = (y::UNION{FLOAT64,INT64} * x::Float64)::Float64

goto 30

28:

#temp#@_7::Float64 = $(Expr(:invoke, :(#temp#@_6), :(Main.*), :(y), :(x)))

30:

return $(Expr(:invoke, MethodInstance for sin(::Float64), :(Main.sin),

:((Base.add_float)(#temp#@_7,(Base.sitofp)(Float64,1)::Float64)::Float64)))↪→

end::Float64

Interpreting the output of @code_warntype, like that of its cousins @code_lowered, @code_typed, @code_llvm,

and @code_native, takes a little practice. Your code is being presented in form that has been partially digested on

its way to generating compiled machine code. Most of the expressions are annotated by a type, indicated by the ::T

(whereTmightbeFloat64, for example). Themost important characteristic of@code_warntype is that non-concrete

types are displayed in red; in the above example, such output is shown in all-caps.

The top part of the output summarizes the type information for the different variables internal to the function. You can

see that y, one of the variables you created, is a Union{Int64,Float64}, due to the type-instability of pos. There is

another variable, _var4, which you can see also has the same type.

The next lines represent the body of f. The lines starting with a number followed by a colon (1:, 2:) are labels, and

represent targets for jumps (via goto) in your code. Looking at the body, you can see that pos has been inlined into

f–everything before 2: comes from code defined in pos.

Starting at 2:, the variable y is defined, and again annotated as a Union type. Next, we see that the compiler created

the temporary variable _var1 to hold the result of y*x. Because a Float64 times either an Int64 or Float64 yields

a Float64, all type-instability ends here. The net result is that f(x::Float64)will not be type-unstable in its output,

even if some of the intermediate computations are type-unstable.

Howyouuse this information isup toyou. Obviously, itwouldbe far andawaybest tofixpos tobe type-stable: if youdid

so, all of the variables infwould be concrete, and its performancewould be optimal. However, there are circumstances

where this kind of ephemeral type instability might not matter too much: for example, if pos is never used in isolation,

the fact that f's output is type-stable (for Float64 inputs) will shield later code from the propagating effects of type

instability. This is particularly relevant in cases where fixing the type instability is difficult or impossible: for example,

currently it's not possible to infer the return type of an anonymous function. In such cases, the tips above (e.g., adding

type annotations and/or breaking up functions) are your best tools to contain the "damage" from type instability.

The following examples may help you interpret expressionsmarked as containing non-leaf types:

• Function body ending in end::Union{T1,T2})

– Interpretation: function with unstable return type

– Suggestion: make the return value type-stable, even if you have to annotate it

• f(x::T)::Union{T1,T2}

– Interpretation: call to a type-unstable function

380 CHAPTER 39. PERFORMANCE TIPS

– Suggestion: fix the function, or if necessary annotate the return value

• (top(arrayref))(A::Array{Any,1},1)::Any

– Interpretation: accessing elements of poorly-typed arrays

– Suggestion: use arrays with better-defined types, or if necessary annotate the type of individual element

accesses

• (top(getfield))(A::ArrayContainer{Float64},:data)::Array{Float64,N}

– Interpretation: gettingafield that isofnon-leaf type. In thiscase,ArrayContainerhadafielddata::Array{T}.

But Array needs the dimension N, too, to be a concrete type.

– Suggestion: useconcrete types likeArray{T,3}orArray{T,N},whereN isnowaparameterofArrayContainer

Chapter 40

WorkflowTips

Here are some tips for working with Julia efficiently.

40.1 REPL-basedworkflow

As already elaborated in Interacting With Julia, Julia's REPL provides rich functionality that facilitates an efficient in-

teractive workflow. Here are some tips that might further enhance your experience at the command line.

A basic editor/REPLworkflow

The most basic Julia workflows involve using a text editor in conjunction with the julia command line. A common

pattern includes the following elements:

• Put code under development in a temporarymodule. Create a file, say Tmp.jl, and include within it

module Tmp

<your definitions here>

end

• Put your test code in another file. Create another file, say tst.jl, which begins with

import Tmp

and includes tests for thecontentsofTmp. Thevalueofusingimportversususing is thatyoucancallreload("Tmp")

instead of having to restart the REPL when your definitions change. Of course, the cost is the need to prepend

Tmp. to uses of names defined in yourmodule. (You can lower that cost by keeping yourmodule name short.)

Alternatively, you canwrap the contents of your test file in amodule, as

module Tst

using Tmp

<scratch work>

end

The advantage is that you can now do using Tmp in your test code and can therefore avoid prepending Tmp.

everywhere. Thedisadvantage is that code canno longer be selectively copied to theREPLwithout some tweak-

ing.

381

382 CHAPTER 40. WORKFLOWTIPS

• Lather. Rinse. Repeat. Explore ideas at the julia command prompt. Save good ideas in tst.jl. Occasionally

restart the REPL, issuing

reload("Tmp")

include("tst.jl")

Simplify initialization

To simplify restarting the REPL, put project-specific initialization code in a file, say _init.jl, which you can run on

startup by issuing the command:

julia -L _init.jl

If you further add the following to your .juliarc.jl file

isfile("_init.jl") && include(joinpath(pwd(), "_init.jl"))

then calling julia from that directory will run the initialization codewithout the additional command line argument.

40.2 Browser-basedworkflow

It is also possible to interact with a Julia REPL in the browser via IJulia. See the package home for details.

https://github.com/JuliaLang/IJulia.jl

Chapter 41

Style Guide

The following sections explain a few aspects of idiomatic Julia coding style. None of these rules are absolute; they are

only suggestions to help familiarize youwith the language and to help you choose among alternative designs.

41.1 Write functions, not just scripts

Writing code as a series of steps at the top level is a quick way to get started solving a problem, but you should try to

divide a program into functions as soon as possible. Functions are more reusable and testable, and clarify what steps

arebeingdoneandwhat their inputs andoutputs are. Furthermore, code inside functions tends to runmuch faster than

top level code, due to how Julia's compiler works.

It is also worth emphasizing that functions should take arguments, instead of operating directly on global variables

(aside from constants like pi).

41.2 Avoidwriting overly-specific types

Code should be as generic as possible. Instead of writing:

convert(Complex{Float64}, x)

it's better to use available generic functions:

complex(float(x))

The second version will convert x to an appropriate type, instead of always the same type.

This style point is especially relevant to function arguments. For example, don't declare an argument to be of type Int

or Int32 if it really could be any integer, expressedwith the abstract type Integer. In fact, inmany cases you can omit

the argument type altogether, unless it is needed todisambiguate fromothermethoddefinitions, since aMethodError

will be thrown anyway if a type is passed that does not support any of the requisite operations. (This is known as duck

typing.)

For example, consider the following definitions of a function addone that returns one plus its argument:

addone(x::Int) = x + 1 # works only for Int

addone(x::Integer) = x + oneunit(x) # any integer type

addone(x::Number) = x + oneunit(x) # any numeric type

addone(x) = x + oneunit(x) # any type supporting + and oneunit

383

https://en.wikipedia.org/wiki/Duck_typing
https://en.wikipedia.org/wiki/Duck_typing

384 CHAPTER 41. STYLE GUIDE

The last definitionofaddonehandles any type supportingoneunit (which returns1 in the same typeasx, which avoids

unwanted type promotion) and the + function with those arguments. The key thing to realize is that there is no perfor-

mance penalty to defining only the general addone(x) = x + oneunit(x), because Julia will automatically compile

specialized versions as needed. For example, the first time you call addone(12), Julia will automatically compile a spe-

cialized addone function for x::Int arguments, with the call to oneunit replaced by its inlined value 1. Therefore,

the first three definitions of addone above are completely redundant with the fourth definition.

41.3 Handle excess argument diversity in the caller

Instead of:

function foo(x, y)

x = Int(x); y = Int(y)

...

end

foo(x, y)

use:

function foo(x::Int, y::Int)

...

end

foo(Int(x), Int(y))

This is better style because foo does not really accept numbers of all types; it really needs Int s.

One issue here is that if a function inherently requires integers, it might be better to force the caller to decide how

non-integers should be converted (e.g. floor or ceiling). Another issue is that declaringmore specific types leavesmore

"space" for futuremethod definitions.

41.4 Append ! to names of functions thatmodify their arguments

Instead of:

function double(a::AbstractArray{<:Number})

for i = 1:endof(a)

a[i] *= 2

end

return a

end

use:

function double!(a::AbstractArray{<:Number})

for i = 1:endof(a)

a[i] *= 2

end

return a

end

The Julia standard library uses this convention throughout and contains examples of functions with both copying and

modifying forms (e.g.,sort() andsort!()), andotherswhich are justmodifying (e.g.,push!(),pop!(),splice!()).

It is typical for such functions to also return themodified array for convenience.

41.5. AVOID STRANGE TYPE UNIONS 385

41.5 Avoid strange type Unions

Types such as Union{Function,AbstractString} are often a sign that some design could be cleaner.

41.6 Avoid type Unions in fields

When creating a type such as:

mutable struct MyType

...

x::Union{Void,T}

end

ask whether the option for x to be nothing (of type Void) is really necessary. Here are some alternatives to consider:

• Find a safe default value to initialize xwith

• Introduce another type that lacks x

• If there aremany fields like x, store them in a dictionary

• Determinewhether there isasimplerule forwhenx isnothing. Forexample, oftenthefieldwill startasnothing

but get initialized at somewell-defined point. In that case, consider leaving it undefined at first.

• If x really needs to hold no value at some times, define it as ::Nullable{T} instead, as this guarantees type-

stability in the code accessing this field (see Nullable types).

41.7 Avoid elaborate container types

It is usually not much help to construct arrays like the following:

a = Array{Union{Int,AbstractString,Tuple,Array}}(n)

In this caseArray{Any}(n) is better. It is alsomore helpful to the compiler to annotate specific uses (e.g. a[i]::Int)

than to try to packmany alternatives into one type.

41.8 Use naming conventions consistent with Julia's base/

• modules and type names use capitalization and camel case: module SparseArrays, struct UnitRange.

• functions are lowercase (maximum(), convert()) and, when readable, with multiple words squashed together

(isequal(), haskey()). When necessary, use underscores as word separators. Underscores are also used to

indicateacombinationofconcepts (remotecall_fetch()asamoreefficient implementationoffetch(remotecall(...)))

or as modifiers (sum_kbn()).

• conciseness is valued, but avoid abbreviation (indexin() rather than indxin()) as it becomes difficult to re-

member whether and how particular words are abbreviated.

If a function name requires multiple words, consider whether it might represent more than one concept and might be

better split into pieces.

386 CHAPTER 41. STYLE GUIDE

41.9 Don't overuse try-catch

It is better to avoid errors than to rely on catching them.

41.10 Don't parenthesize conditions

Julia doesn't require parens around conditions in if and while. Write:

if a == b

instead of:

if (a == b)

41.11 Don't overuse ...

Splicing function arguments can be addictive. Instead of [a..., b...], use simply [a; b], which already concate-

nates arrays. collect(a) is better than [a...], but since a is already iterable it is often even better to leave it alone,

and not convert it to an array.

41.12 Don't use unnecessary static parameters

A function signature:

foo(x::T) where {T<:Real} = ...

should bewritten as:

foo(x::Real) = ...

instead, especially ifT is notused in the functionbody. Even ifT is used, it canbe replacedwithtypeof(x) if convenient.

There is no performance difference. Note that this is not a general caution against static parameters, just against uses

where they are not needed.

Note also that container types, specifically may need type parameters in function calls. See the FAQ Avoid fields with

abstract containers for more information.

41.13 Avoid confusion about whether something is an instance or a type

Sets of definitions like the following are confusing:

foo(::Type{MyType}) = ...

foo(::MyType) = foo(MyType)

Decide whether the concept in question will be written as MyType or MyType(), and stick to it.

The preferred style is to use instances by default, and only addmethods involving Type{MyType} later if they become

necessary to solve some problem.

If a type is effectively an enumeration, it should be defined as a single (ideally immutable struct or primitive) type, with

the enumeration values being instances of it. Constructors and conversions can check whether values are valid. This

design is preferred over making the enumeration an abstract type, with the "values" as subtypes.

41.14. DON'T OVERUSEMACROS 387

41.14 Don't overusemacros

Be aware of when amacro could really be a function instead.

Calling eval() inside a macro is a particularly dangerous warning sign; it means the macro will only work when called

at the top level. If such a macro is written as a function instead, it will naturally have access to the run-time values it

needs.

41.15 Don't expose unsafe operations at the interface level

If you have a type that uses a native pointer:

mutable struct NativeType

p::Ptr{UInt8}

...

end

don't write definitions like the following:

getindex(x::NativeType, i) = unsafe_load(x.p, i)

The problem is that users of this type canwritex[i]without realizing that the operation is unsafe, and then be suscep-

tible tomemory bugs.

Such a function should either check the operation to ensure it is safe, or have unsafe somewhere in its name to alert

callers.

41.16 Don't overloadmethods of base container types

It is possible to write definitions like the following:

show(io::IO, v::Vector{MyType}) = ...

Thiswouldprovidecustomshowingofvectorswitha specificnewelement type. While tempting, this shouldbeavoided.

The trouble is that userswill expect awell-known type likeVector() tobehave in a certainway, andoverly customizing

its behavior canmake it harder to work with.

41.17 Avoid type piracy

"Typepiracy" refers to thepracticeof extendingor redefiningmethods inBaseorotherpackageson types that youhave

not defined. In some cases, you can get away with type piracy with little ill effect. In extreme cases, however, you can

even crash Julia (e.g. if yourmethod extension or redefinition causes invalid input to be passed to a ccall). Type piracy

can complicate reasoning about code, andmay introduce incompatibilities that are hard to predict and diagnose.

As an example, suppose youwanted to definemultiplication on symbols in amodule:

module A

import Base.*

*(x::Symbol, y::Symbol) = Symbol(x,y)

end

388 CHAPTER 41. STYLE GUIDE

The problem is that now any other module that uses Base.* will also see this definition. Since Symbol is defined in

Base and is used by other modules, this can change the behavior of unrelated code unexpectedly. There are several

alternatives here, including using a different function name, or wrapping the Symbols in another type that you define.

Sometimes, coupled packages may engage in type piracy to separate features from definitions, especially when the

packages were designed by collaborating authors, and when the definitions are reusable. For example, one package

might provide some types useful for working with colors; another package could define methods for those types that

enable conversions between color spaces. Another examplemight be a package that acts as a thin wrapper for some C

code, which another packagemight then pirate to implement a higher-level, Julia-friendly API.

41.18 Be careful with type equality

You generally want to use isa() and <: (issubtype()) for testing types, not ==. Checking types for exact equality

typically onlymakes sensewhen comparing to a known concrete type (e.g. T == Float64), or if you really, really know

what you're doing.

41.19 Do not write x->f(x)

Since higher-order functions are often called with anonymous functions, it is easy to conclude that this is desirable or

even necessary. But any function can be passed directly, without being "wrapped" in an anonymous function. Instead

of writing map(x->f(x), a), write map(f, a).

41.20 Avoid using floats for numeric literals in generic codewhen possible

If you write generic code which handles numbers, and which can be expected to run with many different numeric type

arguments, try using literals of a numeric type that will affect the arguments as little as possible through promotion.

For example,

julia> f(x) = 2.0 * x

f (generic function with 1 method)

julia> f(1//2)

1.0

julia> f(1/2)

1.0

julia> f(1)

2.0

while

julia> g(x) = 2 * x

g (generic function with 1 method)

julia> g(1//2)

1//1

julia> g(1/2)

1.0

julia> g(1)

2

41.20. AVOID USING FLOATS FORNUMERIC LITERALS IN GENERIC CODEWHEN POSSIBLE 389

As you can see, the second version, where we used an Int literal, preserved the type of the input argument, while the

first didn't. This is becausee.g. promote_type(Int, Float64) == Float64, andpromotionhappenswith themul-

tiplication. Similarly, Rational literals are less type disruptive than Float64 literals, but more disruptive than Ints:

julia> h(x) = 2//1 * x

h (generic function with 1 method)

julia> h(1//2)

1//1

julia> h(1/2)

1.0

julia> h(1)

2//1

Thus, use Int literals when possible, with Rational{Int} for literal non-integer numbers, in order to make it easier

to use your code.

Chapter 42

Frequently AskedQuestions

42.1 Sessions and the REPL

Howdo I delete an object inmemory?

Julia does not have an analog of MATLAB's clear function; once a name is defined in a Julia session (technically, in

module Main), it is always present.

If memory usage is your concern, you can always replace objects with ones that consume less memory. For example, if

A is a gigabyte-sized array that you no longer need, you can free thememorywith A = 0. Thememorywill be released

the next time the garbage collector runs; you can force this to happenwith gc().

How can I modify the declaration of a type inmy session?

Perhaps you've defined a type and then realize you need to add a newfield. If you try this at theREPL, you get the error:

ERROR: invalid redefinition of constant MyType

Types in module Main cannot be redefined.

While this can be inconvenient when you are developing new code, there's an excellent workaround. Modules can be

replaced by redefining them, and so if youwrap all your newcode inside amodule you can redefine types and constants.

Youcan't import the typenames intoMainandthenexpect tobeable to redefinethemthere, butyoucanuse themodule

name to resolve the scope. In other words, while developing youmight use a workflow something like this:

include("mynewcode.jl") # this defines a module MyModule

obj1 = MyModule.ObjConstructor(a, b)

obj2 = MyModule.somefunction(obj1)

Got an error. Change something in "mynewcode.jl"

include("mynewcode.jl") # reload the module

obj1 = MyModule.ObjConstructor(a, b) # old objects are no longer valid, must reconstruct

obj2 = MyModule.somefunction(obj1) # this time it worked!

obj3 = MyModule.someotherfunction(obj2, c)

...

42.2 Functions

I passed an argument x to a function, modified it inside that function, but on the outside,

the variable x is still unchanged. Why?

Suppose you call a function like this:

391

392 CHAPTER 42. FREQUENTLY ASKEDQUESTIONS

julia> x = 10

10

julia> function change_value!(y)

y = 17

end

change_value! (generic function with 1 method)

julia> change_value!(x)

17

julia> x # x is unchanged!

10

InJulia, thebindingofavariablexcannotbechangedbypassingxasanargument toa function. Whencallingchange_value!(x)

in the above example,y is a newly created variable, bound initially to the value ofx, i.e. 10; theny is rebound to the con-

stant 17, while the variable x of the outer scope is left untouched.

But here is a thing you should pay attention to: suppose x is bound to an object of type Array (or any other mutable

type). Fromwithin the function, you cannot "unbind" x from this Array, but you can change its content. For example:

julia> x = [1,2,3]

3-element Array{Int64,1}:

1

2

3

julia> function change_array!(A)

A[1] = 5

end

change_array! (generic function with 1 method)

julia> change_array!(x)

5

julia> x

3-element Array{Int64,1}:

5

2

3

Here we created a function change_array!(), that assigns 5 to the first element of the passed array (bound to x at

the call site, and bound to Awithin the function). Notice that, after the function call, x is still bound to the same array,

but the content of that array changed: the variables A and xwere distinct bindings refering to the samemutable Array

object.

Can I use using or import inside a function?

No, you are not allowed to have a using or import statement inside a function. If you want to import a module but

only use its symbols inside a specific function or set of functions, you have two options:

1. Use import:

42.2. FUNCTIONS 393

import Foo

function bar(...)

... refer to Foo symbols via Foo.baz ...

end

This loads the module Foo and defines a variable Foo that refers to the module, but does not import any of the

other symbols from the module into the current namespace. You refer to the Foo symbols by their qualified

names Foo.bar etc.

2. Wrap your function in amodule:

module Bar

export bar

using Foo

function bar(...)

... refer to Foo.baz as simply baz

end

end

using Bar

This imports all the symbols from Foo, but only inside themodule Bar.

What does the ... operator do?

The two uses of the ... operator: slurping and splatting

Many newcomers to Julia find the use of ... operator confusing. Part of what makes the ... operator confusing is

that it means two different things depending on context.

... combinesmany arguments into one argument in function definitions

In the context of function definitions, the ... operator is used to combine many different arguments into a single ar-

gument. This use of ... for combiningmany different arguments into a single argument is called slurping:

julia> function printargs(args...)

@printf("%s\n", typeof(args))

for (i, arg) in enumerate(args)

@printf("Arg %d = %s\n", i, arg)

end

end

printargs (generic function with 1 method)

julia> printargs(1, 2, 3)

Tuple{Int64,Int64,Int64}

Arg 1 = 1

Arg 2 = 2

Arg 3 = 3

If Julia were a language that mademore liberal use of ASCII characters, the slurping operator might have beenwritten

as <-... instead of

394 CHAPTER 42. FREQUENTLY ASKEDQUESTIONS

... splits one argument intomany different arguments in function calls

In contrast to the use of the ... operator to denote slurpingmany different arguments into one argumentwhen defin-

ing a function, the ... operator is also used to cause a single function argument to be split apart into many different

arguments when used in the context of a function call. This use of ... is called splatting:

julia> function threeargs(a, b, c)

@printf("a = %s::%s\n", a, typeof(a))

@printf("b = %s::%s\n", b, typeof(b))

@printf("c = %s::%s\n", c, typeof(c))

end

threeargs (generic function with 1 method)

julia> vec = [1, 2, 3]

3-element Array{Int64,1}:

1

2

3

julia> threeargs(vec...)

a = 1::Int64

b = 2::Int64

c = 3::Int64

If Julia were a language thatmademore liberal use of ASCII characters, the splatting operatormight have beenwritten

as ...-> instead of

42.3 Types, type declarations, and constructors

What does "type-stable" mean?

It means that the type of the output is predictable from the types of the inputs. In particular, it means that the type of

the output cannot vary depending on the values of the inputs. The following code is not type-stable:

julia> function unstable(flag::Bool)

if flag

return 1

else

return 1.0

end

end

unstable (generic function with 1 method)

It returns either an Int or a Float64 depending on the value of its argument. Since Julia can't predict the return type

of this function at compile-time, any computation that uses it will have to guard against both types possibly occurring,

making generation of fast machine code difficult.

Why does Julia give a DomainError for certain seemingly-sensible operations?

Certain operationsmakemathematical sense but result in errors:

julia> sqrt(-2.0)

ERROR: DomainError:

42.3. TYPES, TYPE DECLARATIONS, AND CONSTRUCTORS 395

sqrt will only return a complex result if called with a complex argument. Try sqrt(complex(x)).

Stacktrace:

[1] sqrt(::Float64) at ./math.jl:425

julia> 2^-5

ERROR: DomainError:

Cannot raise an integer x to a negative power -n.

Make x a float by adding a zero decimal (e.g. 2.0^-n instead of 2^-n), or write 1/x^n,

float(x)^-n, or (x//1)^-n.↪→

Stacktrace:

[1] power_by_squaring(::Int64, ::Int64) at ./intfuncs.jl:173

[2] literal_pow(::Base.#^, ::Int64, ::Type{Val{-5}}) at ./intfuncs.jl:208

This behavior is an inconvenient consequence of the requirement for type-stability. In the case of sqrt(), most users

wantsqrt(2.0) togivearealnumber, andwouldbeunhappy if itproducedthecomplexnumber1.4142135623730951

+ 0.0im. Onecouldwrite thesqrt() function toswitch toacomplex-valuedoutputonlywhenpassedanegativenum-

ber (which iswhatsqrt() does in someother languages), but then the resultwould not be type-stable and thesqrt()

function would have poor performance.

In these and other cases, you can get the result you want by choosing an input type that conveys your willingness to

accept an output type in which the result can be represented:

julia> sqrt(-2.0+0im)

0.0 + 1.4142135623730951im

julia> 2.0^-5

0.03125

Why does Julia use nativemachine integer arithmetic?

Julia usesmachine arithmetic for integer computations. Thismeans that the range of Int values is bounded andwraps

around at either end so that adding, subtracting and multiplying integers can overflow or underflow, leading to some

results that can be unsettling at first:

julia> typemax(Int)

9223372036854775807

julia> ans+1

-9223372036854775808

julia> -ans

-9223372036854775808

julia> 2*ans

0

Clearly, this is far from thewaymathematical integers behave, and youmight think it less than ideal for a high-level pro-

gramming language to expose this to the user. For numericalworkwhere efficiency and transparency are at a premium,

however, the alternatives are worse.

One alternative to consider would be to check each integer operation for overflow and promote results to bigger inte-

ger types such as Int128 or BigInt in the case of overflow. Unfortunately, this introduces major overhead on every

integer operation (think incrementing a loop counter) – it requires emitting code to perform run-time overflow checks

396 CHAPTER 42. FREQUENTLY ASKEDQUESTIONS

after arithmetic instructions and branches to handle potential overflows. Worse still, this would cause every compu-

tation involving integers to be type-unstable. As wementioned above, type-stability is crucial for effective generation

of efficient code. If you can't count on the results of integer operations being integers, it's impossible to generate fast,

simple code the way C and Fortran compilers do.

A variation on this approach, which avoids the appearance of type instability is to merge the Int and BigInt types

into a single hybrid integer type, that internally changes representation when a result no longer fits into the size of a

machine integer. While this superficially avoids type-instability at the level of Julia code, it just sweeps the problemun-

der the rug by foisting all of the same difficulties onto the C code implementing this hybrid integer type. This approach

can be made to work and can even be made quite fast in many cases, but has several drawbacks. One problem is that

the in-memory representation of integers and arrays of integers no longermatch the natural representation used byC,

Fortran and other languages with native machine integers. Thus, to interoperate with those languages, we would ulti-

mately need to introduce native integer types anyway. Any unbounded representation of integers cannot have a fixed

number of bits, and thus cannot be stored inline in an array with fixed-size slots – large integer values will always re-

quire separate heap-allocated storage. And of course, nomatter how clever a hybrid integer implementation one uses,

there are always performance traps – situationswhere performance degrades unexpectedly. Complex representation,

lack of interoperability with C and Fortran, the inability to represent integer arrays without additional heap storage,

and unpredictable performance characteristics make even the cleverest hybrid integer implementations a poor choice

for high-performance numerical work.

An alternative to using hybrid integers or promoting to BigInts is to use saturating integer arithmetic, where adding

to the largest integer value leaves it unchanged and likewise for subtracting from the smallest integer value. This is

precisely whatMatlab™ does:

>> int64(9223372036854775807)

ans =

9223372036854775807

>> int64(9223372036854775807) + 1

ans =

9223372036854775807

>> int64(-9223372036854775808)

ans =

-9223372036854775808

>> int64(-9223372036854775808) - 1

ans =

-9223372036854775808

Atfirst blush, this seems reasonable enough since 9223372036854775807 ismuch closer to 9223372036854775808

than -9223372036854775808 is and integers are still represented with a fixed size in a natural way that is compati-

ble with C and Fortran. Saturated integer arithmetic, however, is deeply problematic. The first and most obvious is-

sue is that this is not the way machine integer arithmetic works, so implementing saturated operations requires emit-

ting instructions after each machine integer operation to check for underflow or overflow and replace the result with

typemin(Int)ortypemax(Int)asappropriate. Thisaloneexpandseach integeroperation fromasingle, fast instruc-

tion into half a dozen instructions, probably including branches. Ouch. But it getsworse – saturating integer arithmetic

isn't associative. Consider thisMatlab computation:

42.3. TYPES, TYPE DECLARATIONS, AND CONSTRUCTORS 397

>> n = int64(2)^62

4611686018427387904

>> n + (n - 1)

9223372036854775807

>> (n + n) - 1

9223372036854775806

This makes it hard to write many basic integer algorithms since a lot of common techniques depend on the fact that

machine additionwith overflow is associative. Consider finding themidpoint between integer values lo and hi in Julia

using the expression (lo + hi) >>> 1:

julia> n = 2^62

4611686018427387904

julia> (n + 2n) >>> 1

6917529027641081856

See? Noproblem. That's thecorrectmidpointbetween2^62and2^63,despite the fact thatn + 2n is -4611686018427387904.

Now try it inMatlab:

>> (n + 2*n)/2

ans =

4611686018427387904

Oops. Addinga>>>operator toMatlabwouldn't help, because saturation thatoccurswhenaddingnand2nhasalready

destroyed the information necessary to compute the correct midpoint.

Not only is lack of associativity unfortunate for programmers who cannot rely it for techniques like this, but it also

defeats almost anything compilers might want to do to optimize integer arithmetic. For example, since Julia integers

use normalmachine integer arithmetic, LLVM is free to aggressively optimize simple little functions likef(k) = 5k-1.

Themachine code for this function is just this:

julia> code_native(f, Tuple{Int})

.text

Filename: none

pushq %rbp

movq %rsp, %rbp

Source line: 1

leaq -1(%rdi,%rdi,4), %rax

popq %rbp

retq

nopl (%rax,%rax)

The actual body of the function is a single leaq instruction, which computes the integer multiply and add at once. This

is evenmore beneficial when f gets inlined into another function:

julia> function g(k, n)

for i = 1:n

k = f(k)

end

398 CHAPTER 42. FREQUENTLY ASKEDQUESTIONS

return k

end

g (generic function with 1 methods)

julia> code_native(g, Tuple{Int,Int})

.text

Filename: none

pushq %rbp

movq %rsp, %rbp

Source line: 2

testq %rsi, %rsi

jle L26

nopl (%rax)

Source line: 3

L16:

leaq -1(%rdi,%rdi,4), %rdi

Source line: 2

decq %rsi

jne L16

Source line: 5

L26:

movq %rdi, %rax

popq %rbp

retq

nop

Since the call to f gets inlined, the loop body ends up being just a single leaq instruction. Next, consider what happens

if wemake the number of loop iterations fixed:

julia> function g(k)

for i = 1:10

k = f(k)

end

return k

end

g (generic function with 2 methods)

julia> code_native(g,(Int,))

.text

Filename: none

pushq %rbp

movq %rsp, %rbp

Source line: 3

imulq $9765625, %rdi, %rax # imm = 0x9502F9

addq $-2441406, %rax # imm = 0xFFDABF42

Source line: 5

popq %rbp

retq

nopw %cs:(%rax,%rax)

Because the compiler knows that integer addition andmultiplication are associative and thatmultiplication distributes

over addition – neither of which is true of saturating arithmetic – it can optimize the entire loop down to just amultiply

and an add. Saturated arithmetic completely defeats this kind of optimization since associativity and distributivity can

fail at each loop iteration, causing different outcomes depending on which iteration the failure occurs in. The compiler

can unroll the loop, but it cannot algebraically reducemultiple operations into fewer equivalent operations.

42.3. TYPES, TYPE DECLARATIONS, AND CONSTRUCTORS 399

Themost reasonable alternative to having integer arithmetic silently overflow is to do checked arithmetic everywhere,

raising errors when adds, subtracts, and multiplies overflow, producing values that are not value-correct. In this blog

post, Dan Luu analyzes this and finds that rather than the trivial cost that this approach should in theory have, it ends

up having a substantial cost due to compilers (LLVM and GCC) not gracefully optimizing around the added overflow

checks. If this improves in the future, we could consider defaulting to checked integer arithmetic in Julia, but for now,

we have to live with the possibility of overflow.

What are the possible causes of an UndefVarError during remote execution?

As the error states, an immediate cause of an UndefVarError on a remote node is that a binding by that name does

not exist. Let us explore some of the possible causes.

julia> module Foo

foo() = remotecall_fetch(x->x, 2, "Hello")

end

julia> Foo.foo()

ERROR: On worker 2:

UndefVarError: Foo not defined

[...]

The closure x->x carries a reference to Foo, and since Foo is unavailable on node 2, an UndefVarError is thrown.

Globals undermodules other than Main are not serialized by value to the remote node. Only a reference is sent. Func-

tions which create global bindings (except under Main) may cause an UndefVarError to be thrown later.

julia> @everywhere module Foo

function foo()

global gvar = "Hello"

remotecall_fetch(()->gvar, 2)

end

end

julia> Foo.foo()

ERROR: On worker 2:

UndefVarError: gvar not defined

[...]

In the above example, @everywhere module Foo defined Foo on all nodes. However the call to Foo.foo() created

a new global binding gvar on the local node, but this was not found on node 2 resulting in an UndefVarError error.

Note that this doesnot apply to globals createdundermoduleMain. Globals undermoduleMain are serialized andnew

bindings created under Main on the remote node.

julia> gvar_self = "Node1"

"Node1"

julia> remotecall_fetch(()->gvar_self, 2)

"Node1"

julia> remotecall_fetch(whos, 2)

From worker 2: Base 41762 KB Module

From worker 2: Core 27337 KB Module

From worker 2: Foo 2477 bytes Module

http://danluu.com/integer-overflow/
http://danluu.com/integer-overflow/

400 CHAPTER 42. FREQUENTLY ASKEDQUESTIONS

From worker 2: Main 46191 KB Module

From worker 2: gvar_self 13 bytes String

This does not apply to function or type declarations. However, anonymous functions bound to global variables are

serialized as can be seen below.

julia> bar() = 1

bar (generic function with 1 method)

julia> remotecall_fetch(bar, 2)

ERROR: On worker 2:

UndefVarError: #bar not defined

[...]

julia> anon_bar = ()->1

(::#21) (generic function with 1 method)

julia> remotecall_fetch(anon_bar, 2)

1

42.4 Packages andModules

What is the difference between "using" and "importall"?

There is only one difference, and on the surface (syntax-wise) it may seem very minor. The difference between using

andimportall is thatwithusingyouneed tosayfunction Foo.bar(.. toextendmoduleFoo's functionbarwitha

newmethod, butwithimportallorimport Foo.bar, youonlyneed tosayfunction bar(... and it automatically

extendsmodule Foo's function bar.

If youuseimportall, thenfunction Foo.bar(... andfunction bar(... becomeequivalent. If youuseusing,

then they are different.

The reason this is important enough to have been given separate syntax is that you don't want to accidentally ex-

tend a function that you didn't know existed, because that could easily cause a bug. This is most likely to happen with

a method that takes a common type like a string or integer, because both you and the other module could define a

method to handle such a common type. If you use importall, then you'll replace the other module's implementation

of bar(s::AbstractString)with your new implementation, which could easily do something completely different

(and break all/many future usages of the other functions in module Foo that depend on calling bar).

42.5 Nothingness andmissing values

Howdoes "null" or "nothingness" work in Julia?

Unlikemany languages (for example, C and Java), Julia does not have a "null" value. When a reference (variable, object

field, or array element) is uninitialized, accessing itwill immediately throwanerror. This situation canbedetectedusing

the isdefined function.

Some functions are used only for their side effects, and do not need to return a value. In these cases, the convention is

to return the value nothing, which is just a singleton object of type Void. This is an ordinary typewith no fields; there

is nothing special about it except for this convention, and that the REPL does not print anything for it. Some language

constructs that would not otherwise have a value also yield nothing, for example if false; end.

Forsituationswhereavalueexistsonlysometimes (forexample,missingstatisticaldata), it isbest tousetheNullable{T}

type, which allows specifying the type of amissing value.

42.6. MEMORY 401

The empty tuple (()) is another formof nothingness. But, it should not really be thought of as nothing but rather a tuple

of zero values.

In code written for Julia prior to version 0.4 youmay occasionally see None, which is quite different. It is the empty (or

"bottom") type, a type with no values and no subtypes (except itself). This is nowwritten as Union{} (an empty union

type). Youwill generally not need to use this type.

42.6 Memory

Why does x += y allocatememorywhen x and y are arrays?

In Julia, x += y gets replaced during parsing by x = x + y. For arrays, this has the consequence that, rather than

storing the result in the same location inmemory as x, it allocates a new array to store the result.

While this behaviormight surprise some, the choice is deliberate. Themain reason is thepresenceof immutable objects

within Julia, which cannot change their value once created. Indeed, a number is an immutable object; the statements

x = 5; x += 1 do not modify themeaning of 5, theymodify the value bound to x. For an immutable, the only way to

change the value is to reassign it.

To amplify a bit further, consider the following function:

function power_by_squaring(x, n::Int)

ispow2(n) || error("This implementation only works for powers of 2")

while n >= 2

x *= x

n >>= 1

end

x

end

After a call like x = 5; y = power_by_squaring(x, 4), you would get the expected result: x == 5 && y ==

625. However, now suppose that *=, when usedwithmatrices, insteadmutated the left hand side. Therewould be two

problems:

• For general square matrices, A = A*B cannot be implemented without temporary storage: A[1,1] gets com-

puted and stored on the left hand side before you're done using it on the right hand side.

• Suppose youwerewilling to allocate a temporary for the computation (which would eliminatemost of the point

ofmaking *=work in-place); if you took advantage of themutability of x, then this functionwould behave differ-

ently formutable vs. immutable inputs. In particular, for immutable x, after the call you'd have (in general) y !=

x, but for mutable x you'd have y == x.

Because supporting generic programming is deemed more important than potential performance optimizations that

can be achieved by other means (e.g., using explicit loops), operators like += and *=work by rebinding new values.

42.7 Asynchronous IO and concurrent synchronouswrites

Why do concurrent writes to the same stream result in inter-mixed output?

While the streaming I/O API is synchronous, the underlying implementation is fully asynchronous.

Consider the printed output from the following:

402 CHAPTER 42. FREQUENTLY ASKEDQUESTIONS

julia> @sync for i in 1:3

@async write(STDOUT, string(i), " Foo ", " Bar ")

end

123 Foo Foo Foo Bar Bar Bar

This is happening because,while thewrite call is synchronous, thewriting of each argument yields to other taskswhile

waiting for that part of the I/O to complete.

print and println "lock" the stream during a call. Consequently changing write to println in the above example

results in:

julia> @sync for i in 1:3

@async println(STDOUT, string(i), " Foo ", " Bar ")

end

1 Foo Bar

2 Foo Bar

3 Foo Bar

You can lock your writes with a ReentrantLock like this:

julia> l = ReentrantLock()

ReentrantLock(Nullable{Task}(), Condition(Any[]), 0)

julia> @sync for i in 1:3

@async begin

lock(l)

try

write(STDOUT, string(i), " Foo ", " Bar ")

finally

unlock(l)

end

end

end

1 Foo Bar 2 Foo Bar 3 Foo Bar

42.8 Julia Releases

Do I want to use a release, beta, or nightly version of Julia?

You may prefer the release version of Julia if you are looking for a stable code base. Releases generally occur every 6

months, giving you a stable platform for writing code.

Youmay prefer the beta version of Julia if you don'tmind being slightly behind the latest bugfixes and changes, but find

the slightly faster rate of changes more appealing. Additionally, these binaries are tested before they are published to

ensure they are fully functional.

Youmayprefer the nightly versionof Julia if youwant to take advantage of the latest updates to the language, anddon't

mind if the version available today occasionally doesn't actually work.

Finally, youmay also consider building Julia from source for yourself. This option ismainly for those individualswho are

comfortable at the command line, or interested in learning. If this describes you, youmay also be interested in reading

our guidelines for contributing.

Links to each of these download types can be found on the download page at https://julialang.org/downloads/. Note

that not all versions of Julia are available for all platforms.

https://github.com/JuliaLang/julia/blob/master/CONTRIBUTING.md
https://julialang.org/downloads/

42.8. JULIA RELEASES 403

When are deprecated functions removed?

Deprecated functions are removed after the subsequent release. For example, functions marked as deprecated in the

0.1 release will not be available starting with the 0.2 release.

Chapter 43

Noteworthy Differences from other Languages

43.1 Noteworthy differences fromMATLAB

Although MATLAB users may find Julia's syntax familiar, Julia is not a MATLAB clone. There are major syntactic and

functional differences. The followingare somenoteworthydifferences thatmay tripup Julia users accustomed toMAT-

LAB:

• Julia arrays are indexedwith square brackets, A[i,j].

• Julia arrays are assigned by reference. After A=B, changing elements of Bwill modify A as well.

• Julia values are passed and assigned by reference. If a function modifies an array, the changes will be visible in

the caller.

• Julia does not automatically grow arrays in an assignment statement. Whereas in MATLAB a(4) = 3.2 can

create the array a = [0 0 0 3.2] and a(5) = 7 can grow it into a = [0 0 0 3.2 7], the corresponding

Julia statement a[5] = 7 throws an error if the length of a is less than 5 or if this statement is the first use of

the identifier a. Julia has push!() and append!(), which grow Vectorsmuchmore efficiently thanMATLAB's

a(end+1) = val.

• The imaginary unit sqrt(-1) is represented in Julia as im, not i or j as inMATLAB.

• In Julia, literal numbers without a decimal point (such as 42) create integers instead of floating point numbers.

Arbitrarily large integer literals are supported. As a result, some operations such as 2^-1 will throw a domain

error as the result is not an integer (see the FAQ entry on domain errors for details).

• In Julia, multiple values are returned and assigned as tuples, e.g. (a, b) = (1, 2) or a, b = 1, 2. MAT-

LAB's nargout, which is often used in MATLAB to do optional work based on the number of returned values,

does not exist in Julia. Instead, users can use optional and keyword arguments to achieve similar capabilities.

• Julia has true one-dimensional arrays. Column vectors are of size N, not Nx1. For example, rand(N) makes a

1-dimensional array.

• In Julia, [x,y,z]will always construct a 3-element array containing x, y and z.

– To concatenate in the first ("vertical") dimension use either vcat(x,y,z) or separate with semicolons

([x; y; z]).

– To concatenate in the second ("horizontal") dimension use either hcat(x,y,z) or separate with spaces

([x y z]).

– To construct block matrices (concatenating in the first two dimensions), use either hvcat() or combine

spaces and semicolons ([a b; c d]).

405

406 CHAPTER 43. NOTEWORTHYDIFFERENCES FROMOTHER LANGUAGES

• In Julia, a:b and a:b:c construct Range objects. To construct a full vector like inMATLAB, use collect(a:b).

Generally, there is no need to call collect though. Rangewill act like a normal array in most cases but is more

efficient because it lazily computes its values. This pattern of creating specialized objects instead of full arrays is

used frequently, and is also seen in functions such as linspace, or with iterators such as enumerate, and zip.

The special objects canmostly be used as if they were normal arrays.

• Functions in Julia return values from their last expression or the return keyword instead of listing the names of

variables to return in the function definition (see The return Keyword for details).

• A Julia script may contain any number of functions, and all definitions will be externally visible when the file is

loaded. Function definitions can be loaded from files outside the current working directory.

• In Julia, reductions suchassum(),prod(), andmax()areperformedovereveryelementof anarraywhencalled

with a single argument, as in sum(A), even if A hasmore than one dimension.

• In Julia, functions suchassort() thatoperatecolumn-wisebydefault (sort(A) is equivalent tosort(A,1)) do

nothave special behavior for1xNarrays; the argument is returnedunmodified since it still performssort(A,1).

To sort a 1xNmatrix like a vector, use sort(A,2).

• In Julia, if A is a 2-dimensional array, fft(A) computes a 2D FFT. In particular, it is not equivalent to fft(A,1),

which computes a 1D FFT acting column-wise.

• In Julia, parenthesesmust be used to call a function with zero arguments, like in tic() and toc().

• Julia discourages the used of semicolons to end statements. The results of statements are not automatically

printed (except at the interactive prompt), and lines of code do not need to endwith semicolons. println() or

@printf() can be used to print specific output.

• In Julia, if A and B are arrays, logical comparison operations like A == B do not return an array of booleans. In-

stead, use A .== B, and similarly for the other boolean operators like <, > and =.

• In Julia, the operators&,|, and (xor) perform the bitwise operations equivalent toand,or, andxor respectively

in MATLAB, and have precedence similar to Python's bitwise operators (unlike C). They can operate on scalars

or element-wise across arrays and can be used to combine logical arrays, but note the difference in order of

operations: parentheses may be required (e.g., to select elements of A equal to 1 or 2 use (A .== 1) | (A

.== 2)).

• In Julia, the elements of a collection can be passed as arguments to a function using the splat operator ..., as in

xs=[1,2]; f(xs...).

• Julia's svd() returns singular values as a vector instead of as a dense diagonal matrix.

• In Julia, ... is not used to continue lines of code. Instead, incomplete expressions automatically continue onto

the next line.

• In both Julia and MATLAB, the variable ans is set to the value of the last expression issued in an interactive

session. In Julia, unlikeMATLAB, ans is not set when Julia code is run in non-interactivemode.

• Julia's types do not support dynamically adding fields at runtime, unlike MATLAB's classes. Instead, use a

Dict.

• In Julia eachmodule has its own global scope/namespace, whereas inMATLAB there is just one global scope.

• InMATLAB, an idiomaticway to removeunwantedvalues is to use logical indexing, like in the expressionx(x>3)

or in the statement x(x>3) = [] to modify x in-place. In contrast, Julia provides the higher order functions

filter() and filter!(), allowing users towrite filter(z->z>3, x) and filter!(z->z>3, x) as alter-

natives to the corresponding transliterationsx[x.>3] andx = x[x.>3]. Usingfilter!() reduces the use of

temporary arrays.

43.2. NOTEWORTHYDIFFERENCES FROMR 407

• The analogue of extracting (or "dereferencing") all elements of a cell array, e.g. in vertcat(A{:}) in MATLAB,

is written using the splat operator in Julia, e.g. as vcat(A...).

43.2 Noteworthy differences fromR

One of Julia's goals is to provide an effective language for data analysis and statistical programming. For users coming

to Julia fromR, these are some noteworthy differences:

• Julia's single quotes enclose characters, not strings.

• Julia can create substrings by indexing into strings. In R, stringsmust be converted into character vectors before

creating substrings.

• In Julia, like Python but unlike R, strings can be created with triple quotes """ ... """. This syntax is conve-

nient for constructing strings that contain line breaks.

• In Julia, varargs are specified using the splat operator ..., which always follows the name of a specific variable,

unlike R, for which ... can occur in isolation.

• In Julia, modulus is mod(a, b), not a %% b. % in Julia is the remainder operator.

• In Julia, not all data structures support logical indexing. Furthermore, logical indexing in Julia is supported only

with vectors of length equal to the object being indexed. For example:

– In R, c(1, 2, 3, 4)[c(TRUE, FALSE)] is equivalent to c(1, 3).

– In R, c(1, 2, 3, 4)[c(TRUE, FALSE, TRUE, FALSE)] is equivalent to c(1, 3).

– In Julia, [1, 2, 3, 4][[true, false]] throws a BoundsError.

– In Julia, [1, 2, 3, 4][[true, false, true, false]] produces [1, 3].

• Like many languages, Julia does not always allow operations on vectors of different lengths, unlike R where the

vectors only need to share a common index range. For example, c(1, 2, 3, 4) + c(1, 2) is valid R but the

equivalent [1, 2, 3, 4] + [1, 2]will throw an error in Julia.

• Julia'smap() takes the function first, then its arguments, unlikelapply(<structure>, function, ...) in

R. Similarly Julia's equivalent of apply(X, MARGIN, FUN, ...) in R is mapslices()where the function is

the first argument.

• Multivariateapply inR,e.g. mapply(choose, 11:13, 1:3), canbewrittenasbroadcast(binomial, 11:13,

1:3) in Julia. Equivalently Juliaoffersa shorterdot syntax forvectorizing functionsbinomial.(11:13, 1:3).

• Julia usesend to denote the end of conditional blocks, likeif, loop blocks, likewhile/for, and functions. In lieu

of the one-line if (cond) statement, Julia allows statements of the form if cond; statement; end,

cond && statement and !cond || statement. Assignment statements in the latter two syntaxes must be

explicitly wrapped in parentheses, e.g. cond && (x = value).

• In Julia, <-, <<- and -> are not assignment operators.

• Julia's -> creates an anonymous function, like Python.

• Julia constructs vectors using brackets. Julia's [1, 2, 3] is the equivalent of R's c(1, 2, 3).

• Julia's * operator can perform matrix multiplication, unlike in R. If A and B are matrices, then A * B denotes a

matrixmultiplication in Julia, equivalent toR'sA %*% B. InR, this samenotationwouldperformanelement-wise

(Hadamard) product. To get the element-wisemultiplication operation, you need to write A .* B in Julia.

408 CHAPTER 43. NOTEWORTHYDIFFERENCES FROMOTHER LANGUAGES

• Julia performs matrix transposition using the .' operator and conjugated transposition using the ' operator.

Julia's A.' is therefore equivalent to R's t(A).

• Julia does not require parentheses when writing if statements or for/while loops: use for i in [1, 2,

3] instead of for (i in c(1, 2, 3)) and if i == 1 instead of if (i == 1).

• Julia does not treat the numbers 0 and 1 as Booleans. You cannot write if (1) in Julia, because if statements

accept only booleans. Instead, you canwrite if true, if Bool(1), or if 1==1.

• Julia does not provide nrow and ncol. Instead, use size(M, 1) for nrow(M) and size(M, 2) for ncol(M).

• Julia is careful to distinguish scalars, vectors and matrices. In R, 1 and c(1) are the same. In Julia, they cannot

be used interchangeably.

• Julia's diag and diagm are not like R's.

• Julia cannot assign to the results of function calls on the left hand side of an assignment operation: you cannot

write diag(M) = ones(n).

• Julia discourages populating themain namespacewith functions. Most statistical functionality for Julia is found

in packages under the JuliaStats organization. For example:

– Functions pertaining to probability distributions are provided by the Distributions package.

– TheDataFrames package provides data frames.

– Generalized linear models are provided by the GLMpackage.

• Julia provides tuples and real hash tables, but not R-style lists. When returning multiple items, you should typi-

cally use a tuple: instead of list(a = 1, b = 2), use (1, 2).

• Julia encourages users to write their own types, which are easier to use than S3 or S4 objects in R. Julia's multi-

ple dispatch systemmeans that table(x::TypeA) and table(x::TypeB) act like R's table.TypeA(x) and

table.TypeB(x).

• In Julia, values are passed and assigned by reference. If a functionmodifies an array, the changeswill be visible in

the caller. This is very different fromR and allows new functions to operate on large data structuresmuchmore

efficiently.

• In Julia, vectors and matrices are concatenated using hcat(), vcat() and hvcat(), not c, rbind and cbind

like in R.

• In Julia, a range likea:b is not shorthand for a vector like in R, but is a specializedRange that is used for iteration

without highmemory overhead. To convert a range into a vector, use collect(a:b).

• Julia's max() and min() are the equivalent of pmax and pmin respectively in R, but both arguments need to

have the same dimensions. While maximum() and minimum() replace max and min in R, there are important

differences.

• Julia's sum(), prod(), maximum(), and minimum() are different from their counterparts in R. They all accept

one or two arguments. The first argument is an iterable collection such as an array. If there is a second argu-

ment, then this argument indicates the dimensions, over which the operation is carried out. For instance, let

A=[[1 2],[3 4]] in Julia and B=rbind(c(1,2),c(3,4)) be the same matrix in R. Then sum(A) gives the

same result as sum(B), but sum(A, 1) is a row vector containing the sum over each column and sum(A, 2)

is a column vector containing the sum over each row. This contrasts to the behavior of R, where sum(B,1)=11

and sum(B,2)=12. If the second argument is a vector, then it specifies all the dimensions over which the sum

is performed, e.g., sum(A,[1,2])=10. It should be noted that there is no error checking regarding the second

argument.

http://pkg.julialang.org/
https://github.com/JuliaStats
https://github.com/JuliaStats/Distributions.jl
https://github.com/JuliaData/DataFrames.jl
https://github.com/JuliaStats/GLM.jl

43.3. NOTEWORTHYDIFFERENCES FROMPYTHON 409

• Julia has several functions that canmutate their arguments. For example, it has both sort() and sort!().

• In R, performance requires vectorization. In Julia, almost the opposite is true: the best performing code is often

achieved by using devectorized loops.

• Julia is eagerly evaluated and does not support R-style lazy evaluation. Formost users, thismeans that there are

very few unquoted expressions or column names.

• Julia does not support the NULL type.

• Julia lacks the equivalent of R's assign or get.

• In Julia, return does not require parentheses.

• InR, an idiomaticway to removeunwantedvalues is touse logical indexing, like in theexpressionx[x>3]or in the

statement x = x[x>3] to modify x in-place. In contrast, Julia provides the higher order functions filter()

and filter!(), allowing users to write filter(z->z>3, x) and filter!(z->z>3, x) as alternatives to

the corresponding transliterations x[x.>3] and x = x[x.>3]. Using filter!() reduces the use of tempo-

rary arrays.

43.3 Noteworthy differences fromPython

• Julia requires end to end a block. Unlike Python, Julia has no pass keyword.

• In Julia, indexing of arrays, strings, etc. is 1-based not 0-based.

• Julia's slice indexing includes the last element, unlike in Python. a[2:3] in Julia is a[1:3] in Python.

• Julia does not support negative indexes. In particular, the last element of a list or array is indexed with end in

Julia, not -1 as in Python.

• Julia's for, if, while, etc. blocks are terminated by the end keyword. Indentation level is not significant as it is

in Python.

• Julia has no line continuation syntax: if, at the end of a line, the input so far is a complete expression, it is consid-

ereddone; otherwise the inputcontinues. Onewayto forceanexpressiontocontinue is towrap it inparentheses.

• Julia arrays are columnmajor (Fortran ordered)whereasNumPyarrays are rowmajor (C-ordered) by default. To

get optimal performancewhen looping over arrays, the order of the loops should be reversed in Julia relative to

NumPy (see relevant section of Performance Tips).

• Julia's updating operators (e.g. +=, -=, ...) are not in-placewhereas NumPy's are. This means A = ones(4); B

= A; B += 3 doesn't change values in A, it rather rebinds the name B to the result of the right- hand side B =

B + 3, which is a new array. Use B[:] += 3, explicit loops, or InplaceOps.jl.

• Julia evaluates default values of function arguments every time the method is invoked, unlike in Python where

thedefault valuesareevaluatedonlyoncewhen the function isdefined. Forexample, the functionf(x=rand())

= x returns a new random number every time it is invoked without argument. On the other hand, the function

g(x=[1,2]) = push!(x,3) returns [1,2,3] every time it is called as g().

• In Julia % is the remainder operator, whereas in Python it is themodulus.

410 CHAPTER 43. NOTEWORTHYDIFFERENCES FROMOTHER LANGUAGES

43.4 Noteworthy differences fromC/C++

• Julia arrays are indexed with square brackets, and can have more than one dimension A[i,j]. This syntax is

not just syntactic sugar for a reference to a pointer or address as in C/C++. See the Julia documentation for the

syntax for array construction (it has changed between versions).

• In Julia, indexing of arrays, strings, etc. is 1-based not 0-based.

• Julia arrays are assigned by reference. After A=B, changing elements of Bwill modify A as well. Updating oper-

ators like += do not operate in-place, they are equivalent to A = A + Bwhich rebinds the left-hand side to the

result of the right-hand side expression.

• Julia arrays are column major (Fortran ordered) whereas C/C++ arrays are row major ordered by default. To

get optimal performancewhen looping over arrays, the order of the loops should be reversed in Julia relative to

C/C++ (see relevant section of Performance Tips).

• Julia values are passed and assigned by reference. If a function modifies an array, the changes will be visible in

the caller.

• In Julia, whitespace is significant, unlike C/C++, so care must be taken when adding/removing whitespace from

a Julia program.

• In Julia, literal numbers without a decimal point (such as 42) create signed integers, of type Int, but literals too

large to fit in themachineword sizewill automatically be promoted to a larger size type, such as Int64 (if Int is

Int32), Int128, or the arbitrarily large BigInt type. There are no numeric literal suffixes, such as L, LL, U, UL,

ULL to indicate unsigned and/or signed vs. unsigned. Decimal literals are always signed, and hexadecimal literals

(which start with 0x like C/C++), are unsigned. Hexadecimal literals also, unlike C/C++/Java and unlike decimal

literals in Julia, have a type based on the length of the literal, including leading 0s. For example, 0x0 and 0x00

have type UInt8, 0x000 and 0x0000 have type UInt16, then literals with 5 to 8 hex digits have type UInt32, 9

to 16 hex digits type UInt64 and 17 to 32 hex digits type UInt128. This needs to be taken into account when

defining hexadecimal masks, for example ~0xf == 0xf0 is very different from ~0x000f == 0xfff0. 64 bit

Float64 and32bitFloat32 bit literals are expressed as1.0 and1.0f0 respectively. Floating point literals are

rounded (and not promoted to the BigFloat type) if they can not be exactly represented. Floating point literals

are closer in behavior toC/C++. Octal (prefixedwith 0o) and binary (prefixedwith 0b) literals are also treated as

unsigned.

• String literals canbedelimitedwith either"or""","""delimited literals can contain" characterswithout quot-

ing it like "\"" String literals can have values of other variables or expressions interpolated into them, indicated

by $variablename or $(expression), which evaluates the variable name or the expression in the context of

the function.

• // indicates a Rational number, and not a single-line comment (which is # in Julia)

• #= indicates the start of a multiline comment, and =# ends it.

• Functions in Julia return values from their last expression(s) or the return keyword. Multiple values can be

returned from functions and assigned as tuples, e.g. (a, b) = myfunction() or a, b = myfunction(),

instead of having to pass pointers to values as onewould have to do in C/C++ (i.e. a = myfunction(&b).

• Julia does not require the use of semicolons to end statements. The results of expressions are not automatically

printed (except at the interactive prompt, i.e. the REPL), and lines of code do not need to end with semicolons.

println() or @printf() can be used to print specific output. In the REPL, ; can be used to suppress output. ;

also has a different meaning within [], something to watch out for. ; can be used to separate expressions on a

single line, but are not strictly necessary in many cases, and aremore an aid to readability.

43.4. NOTEWORTHYDIFFERENCES FROMC/C++ 411

• In Julia, the operator (xor) performs the bitwise XOR operation, i.e. ^ in C/C++. Also, the bitwise operators do

not have the same precedence as C/++, so parenthesis may be required.

• Julia's ^ is exponentiation (pow), not bitwise XOR as in C/C++ (use , or xor, in Julia)

• Julia has two right-shift operators, >> and >>>. >>> performs an arithmetic shift, >> always performs a logical

shift, unlike C/C++, where themeaning of >> depends on the type of the value being shifted.

• Julia's -> creates an anonymous function, it does not access amember via a pointer.

• Julia does not require parentheses when writing if statements or for/while loops: use for i in [1, 2,

3] instead of for (int i=1; i <= 3; i++) and if i == 1 instead of if (i == 1).

• Julia does not treat the numbers 0 and 1 as Booleans. You cannot write if (1) in Julia, because if statements

accept only booleans. Instead, you canwrite if true, if Bool(1), or if 1==1.

• Julia usesend to denote the end of conditional blocks, likeif, loop blocks, likewhile/for, and functions. In lieu

of the one-line if (cond) statement, Julia allows statements of the form if cond; statement; end,

cond && statement and !cond || statement. Assignment statements in the latter two syntaxes must be

explicitly wrapped in parentheses, e.g. cond && (x = value), because of the operator precedence.

• Julia has no line continuation syntax: if, at the end of a line, the input so far is a complete expression, it is consid-

ereddone; otherwise the inputcontinues. Onewayto forceanexpressiontocontinue is towrap it inparentheses.

• Julia macros operate on parsed expressions, rather than the text of the program, which allows them to perform

sophisticated transformations of Julia code. Macro names start with the @ character, and have both a function-

like syntax, @mymacro(arg1, arg2, arg3), and a statement-like syntax, @mymacro arg1 arg2 arg3. The

forms are interchangable; the function-like form is particularly useful if the macro appears within another ex-

pression, and is often clearest. The statement-like form is often used to annotate blocks, as in the parallel for

construct: @parallel for i in 1:n; #= body =#; end. Where the end of the macro construct may be

unclear, use the function-like form.

• Julia now has an enumeration type, expressed using the macro @enum(name, value1, value2, ...) For

example: @enum(Fruit, banana=1, apple, pear)

• By convention, functions that modify their arguments have a ! at the end of the name, for example push!.

• In C++, by default, you have static dispatch, i.e. you need to annotate a function as virtual, in order to have dy-

namic dispatch. On the other hand, in Julia every method is "virtual" (although it's more general than that since

methods are dispatched on every argument type, not only this, using themost-specific-declaration rule).

Chapter 44

Unicode Input

The following table lists Unicode characters that can be entered via tab completion of LaTeX-like abbreviations in the

JuliaREPL (and invariousothereditingenvironments). Youcanalsoget informationonhowtotypeasymbolbyentering

it in the REPL help, i.e. by typing ? and then entering the symbol in the REPL (e.g., by copy-paste from somewhere you

saw the symbol).

Warning

This table may appear to contain missing characters in the second column, or even show characters that

are inconsistent with the characters as they are rendered in the Julia REPL. In these cases, users are

stronglyadvised tocheck their choiceof fonts in theirbrowserandREPLenvironment, as thereareknown

issues with glyphs in many fonts.

Code

point(s)

Char-

ac-

ter(s)

Tab completion

sequence(s)

Unicode name(s)

U+000A1 ¡ \textexclamdown Inverted ExclamationMark

U+000A3 £ \sterling Pound Sign

U+000A5 ¥ \yen Yen Sign

U+000A6 ¦ \textbrokenbar Broken Bar / Broken Vertical Bar

U+000A7 § \S Section Sign

U+000A8 ¨ \textasciidieresis Diaeresis / Spacing Diaeresis

U+000A9 © \copyright, \:copyright: Copyright Sign

U+000AA ª \textordfeminine FeminineOrdinal Indicator

U+000AC ¬ \neg Not Sign

U+000AE ® \circledR, \:registered: Registered Sign / Registered TradeMark Sign

U+000AF ¯ \textasciimacron Macron / SpacingMacron

U+000B0 ° \degree Degree Sign

U+000B1 ± \pm Plus-minus Sign / Plus-or-minus Sign

U+000B2 ² \^2 Superscript Two / Superscript Digit Two

U+000B3 ³ \^3 Superscript Three / Superscript Digit Three

U+000B4 ´ \textasciiacute Acute Accent / Spacing Acute

U+000B6 ¶ \P Pilcrow Sign / Paragraph Sign

U+000B7 · \cdotp Middle Dot

U+000B9 ¹ \^1 Superscript One / Superscript Digit One

U+000BA º \textordmasculine Masculine Ordinal Indicator

U+000BC ¼ \textonequarter Vulgar FractionOneQuarter / FractionOneQuarter

U+000BD ½ \textonehalf Vulgar FractionOneHalf / FractionOneHalf

U+000BE ¾ \textthreequarters Vulgar Fraction ThreeQuarters / Fraction ThreeQuarters

U+000BF ¿ \textquestiondown InvertedQuestionMark

U+000C5 Å \AA Latin Capital Letter AWith Ring Above / Latin Capital

Letter A Ring

U+000C6 Æ \AE Latin Capital Letter Ae / Latin Capital Letter A E

U+000D0 Ð \DH Latin Capital Letter Eth

U+000D7 × \times Multiplication Sign

U+000D8 Ø \O Latin Capital Letter OWith Stroke / Latin Capital Letter O

Slash

U+000DE Þ \TH Latin Capital Letter Thorn

U+000DF ß \ss Latin Small Letter Sharp S

U+000E5 å \aa Latin Small Letter AWith Ring Above / Latin Small Letter A

Ring

U+000E6 æ \ae Latin Small Letter Ae / Latin Small Letter A E

U+000F0 ð \eth Latin Small Letter Eth

U+000F7 ÷ \div Division Sign

U+000F8 ø \o Latin Small Letter OWith Stroke / Latin Small Letter O

Slash

U+000FE þ \th Latin Small Letter Thorn

U+00110 \DJ Latin Capital Letter DWith Stroke / Latin Capital Letter D

Bar

U+00111 \dj Latin Small Letter DWith Stroke / Latin Small Letter D Bar

U+00127 \Elzxh, \hbar Latin Small Letter HWith Stroke / Latin Small Letter H Bar

U+00141 Ł \L Latin Capital Letter LWith Stroke / Latin Capital Letter L

Slash

U+00142 ł \l Latin Small Letter LWith Stroke / Latin Small Letter L Slash

U+0014A \NG Latin Capital Letter Eng

U+0014B \ng Latin Small Letter Eng

U+00152 Œ \OE Latin Capital Ligature Oe / Latin Capital Letter O E

U+00153 œ \oe Latin Small Ligature Oe / Latin Small Letter O E

U+00195 \texthvlig Latin Small Letter Hv / Latin Small Letter H V

U+0019E \textnrleg Latin Small Letter NWith Long Right Leg

U+001B5 \Zbar Latin Capital Letter ZWith Stroke / Latin Capital Letter Z

Bar

U+001C2 \textdoublepipe Latin Letter Alveolar Click / Latin Letter Pipe Double Bar

U+00250 \Elztrna Latin Small Letter Turned A

U+00252 \Elztrnsa Latin Small Letter Turned Alpha / Latin Small Letter Turned

Script A

U+00254 \Elzopeno Latin Small Letter OpenO

U+00256 \Elzrtld Latin Small Letter DWith Tail / Latin Small Letter D

Retroflex Hook

U+00259 \Elzschwa Latin Small Letter Schwa

U+00263 \Elzpgamma Latin Small Letter Gamma

U+00264 \Elzpbgam Latin Small Letter RamsHorn / Latin Small Letter Baby

Gamma

U+00265 \Elztrnh Latin Small Letter TurnedH

U+0026C \Elzbtdl Latin Small Letter LWith Belt / Latin Small Letter L Belt

U+0026D \Elzrtll Latin Small Letter LWith Retroflex Hook / Latin Small

Letter L Retroflex Hook

U+0026F \Elztrnm Latin Small Letter TurnedM

U+00270 \Elztrnmlr Latin Small Letter TurnedMWith Long Leg

U+00271 \Elzltlmr Latin Small LetterMWith Hook / Latin Small LetterM

Hook

U+00272 \Elzltln Latin Small Letter NWith Left Hook / Latin Small Letter N

Hook

U+00273 \Elzrtln Latin Small Letter NWith Retroflex Hook / Latin Small

Letter N Retroflex Hook

U+00277 \Elzclomeg Latin Small Letter ClosedOmega

U+00278 \textphi Latin Small Letter Phi

U+00279 \Elztrnr Latin Small Letter Turned R

U+0027A \Elztrnrl Latin Small Letter Turned RWith Long Leg

U+0027B \Elzrttrnr Latin Small Letter Turned RWith Hook / Latin Small Letter

Turned RHook

U+0027C \Elzrl Latin Small Letter RWith Long Leg

U+0027D \Elzrtlr Latin Small Letter RWith Tail / Latin Small Letter RHook

U+0027E \Elzfhr Latin Small Letter RWith Fishhook / Latin Small Letter

Fishhook R

U+00282 \Elzrtls Latin Small Letter SWith Hook / Latin Small Letter S Hook

U+00283 \Elzesh Latin Small Letter Esh

U+00287 \Elztrnt Latin Small Letter Turned T

U+00288 \Elzrtlt Latin Small Letter TWith Retroflex Hook / Latin Small

Letter T Retroflex Hook

U+0028A \Elzpupsil Latin Small Letter Upsilon

U+0028B \Elzpscrv Latin Small Letter VWithHook / Latin Small Letter Script V

U+0028C \Elzinvv Latin Small Letter Turned V

U+0028D \Elzinvw Latin Small Letter TurnedW

U+0028E \Elztrny Latin Small Letter Turned Y

U+00290 \Elzrtlz Latin Small Letter ZWith Retroflex Hook / Latin Small

Letter Z Retroflex Hook

U+00292 \Elzyogh Latin Small Letter Ezh / Latin Small Letter Yogh

U+00294 \Elzglst Latin Letter Glottal Stop

U+00295 \Elzreglst Latin Letter Pharyngeal Voiced Fricative / Latin Letter

Reversed Glottal Stop

U+00296 \Elzinglst Latin Letter Inverted Glottal Stop

U+0029E \textturnk Latin Small Letter Turned K

U+002A4 \Elzdyogh Latin Small Letter DezhDigraph / Latin Small Letter DYogh

U+002A7 \Elztesh Latin Small Letter Tesh Digraph / Latin Small Letter T Esh

U+002B0 \^h Modifier Letter Small H

U+002B2 \^j Modifier Letter Small J

U+002B3 \^r Modifier Letter Small R

U+002B7 \^w Modifier Letter SmallW

U+002B8 \^y Modifier Letter Small Y

U+002BC \rasp Modifier Letter Apostrophe

U+002C7 ˇ \textasciicaron Caron /Modifier Letter Hacek

U+002C8 \Elzverts Modifier Letter Vertical Line

U+002CC \Elzverti Modifier Letter LowVertical Line

U+002D0 \Elzlmrk Modifier Letter Triangular Colon

U+002D1 \Elzhlmrk Modifier Letter Half Triangular Colon

U+002D2 \Elzsbrhr Modifier Letter Centred Right Half Ring /Modifier Letter

Centered Right Half Ring

U+002D3 \Elzsblhr Modifier Letter Centred Left Half Ring /Modifier Letter

Centered Left Half Ring

U+002D4 \Elzrais Modifier Letter Up Tack

U+002D5 \Elzlow Modifier Letter Down Tack

U+002D8 ˘ \u Breve / Spacing Breve

U+002DC ˜ \texttildelow Small Tilde / Spacing Tilde

U+002E1 \^l Modifier Letter Small L

U+002E2 \^s Modifier Letter Small S

U+002E3 \^x Modifier Letter Small X

U+00300 \grave Combining Grave Accent / Non-spacing Grave

U+00301 \acute Combining Acute Accent / Non-spacing Acute

U+00302 \hat Combining Circumflex Accent / Non-spacing Circumflex

U+00303 \tilde Combining Tilde / Non-spacing Tilde

U+00304 \bar CombiningMacron / Non-spacingMacron

U+00305 \overbar CombiningOverline / Non-spacing Overscore

U+00306 \breve Combining Breve / Non-spacing Breve

U+00307 \dot Combining Dot Above / Non-spacing Dot Above

U+00308 \ddot Combining Diaeresis / Non-spacing Diaeresis

U+00309 \ovhook Combining Hook Above / Non-spacing Hook Above

U+0030A \ocirc Combining Ring Above / Non-spacing Ring Above

U+0030B \H Combining Double Acute Accent / Non-spacing Double

Acute

U+0030C \check Combining Caron / Non-spacing Hacek

U+00310 \candra Combining Candrabindu / Non-spacing Candrabindu

U+00312 \oturnedcomma Combining Turned CommaAbove / Non-spacing Turned

CommaAbove

U+00315 \ocommatopright Combining CommaAbove Right / Non-spacing Comma

Above Right

U+0031A \droang Combining Left Angle Above / Non-spacing Left Angle

Above

U+00321 \Elzpalh Combining Palatalized Hook Below / Non-spacing

Palatalized Hook Below

U+00322 \Elzrh Combining Retroflex Hook Below / Non-spacing Retroflex

Hook Below

U+00327 \c Combining Cedilla / Non-spacing Cedilla

U+00328 \k CombiningOgonek / Non-spacing Ogonek

U+0032A \Elzsbbrg Combining Bridge Below / Non-spacing Bridge Below

U+00330 \wideutilde Combining Tilde Below / Non-spacing Tilde Below

U+00332 \underbar Combining Low Line / Non-spacing Underscore

U+00335 \Elzxl Combining Short StrokeOverlay / Non-spacing Short Bar

Overlay

U+00336 \Elzbar, \sout Combining Long StrokeOverlay / Non-spacing Long Bar

Overlay

U+00338 \not Combining Long Solidus Overlay / Non-spacing Long Slash

Overlay

U+0034D \underleftrightarrow Combining Left Right Arrow Below

U+00391 \Alpha Greek Capital Letter Alpha

U+00392 \Beta Greek Capital Letter Beta

U+00393 \Gamma Greek Capital Letter Gamma

U+00394 \Delta Greek Capital Letter Delta

U+00395 \Epsilon Greek Capital Letter Epsilon

U+00396 \Zeta Greek Capital Letter Zeta

U+00397 \Eta Greek Capital Letter Eta

U+00398 \Theta Greek Capital Letter Theta

U+00399 \Iota Greek Capital Letter Iota

U+0039A \Kappa Greek Capital Letter Kappa

U+0039B \Lambda Greek Capital Letter Lamda / Greek Capital Letter Lambda

U+0039C \upMu Greek Capital LetterMu

U+0039D \upNu Greek Capital Letter Nu

U+0039E \Xi Greek Capital Letter Xi

U+0039F \upOmicron Greek Capital Letter Omicron

U+003A0 \Pi Greek Capital Letter Pi

U+003A1 \Rho Greek Capital Letter Rho

U+003A3 \Sigma Greek Capital Letter Sigma

U+003A4 \Tau Greek Capital Letter Tau

U+003A5 \Upsilon Greek Capital Letter Upsilon

U+003A6 \Phi Greek Capital Letter Phi

U+003A7 \Chi Greek Capital Letter Chi

U+003A8 \Psi Greek Capital Letter Psi

U+003A9 \Omega Greek Capital Letter Omega

U+003B1 \alpha Greek Small Letter Alpha

U+003B2 \beta Greek Small Letter Beta

U+003B3 \gamma Greek Small Letter Gamma

U+003B4 \delta Greek Small Letter Delta

U+003B5 \upepsilon, \varepsilon Greek Small Letter Epsilon

U+003B6 \zeta Greek Small Letter Zeta

U+003B7 \eta Greek Small Letter Eta

U+003B8 \theta Greek Small Letter Theta

U+003B9 \iota Greek Small Letter Iota

U+003BA \kappa Greek Small Letter Kappa

U+003BB \lambda Greek Small Letter Lamda / Greek Small Letter Lambda

U+003BC \mu Greek Small LetterMu

U+003BD \nu Greek Small Letter Nu

U+003BE \xi Greek Small Letter Xi

U+003BF \upomicron Greek Small Letter Omicron

U+003C0 π \pi Greek Small Letter Pi

U+003C1 \rho Greek Small Letter Rho

U+003C2 \varsigma Greek Small Letter Final Sigma

U+003C3 \sigma Greek Small Letter Sigma

U+003C4 \tau Greek Small Letter Tau

U+003C5 \upsilon Greek Small Letter Upsilon

U+003C6 \varphi Greek Small Letter Phi

U+003C7 \chi Greek Small Letter Chi

U+003C8 \psi Greek Small Letter Psi

U+003C9 \omega Greek Small Letter Omega

U+003D0 \upvarbeta Greek Beta Symbol / Greek Small Letter Curled Beta

U+003D1 \vartheta Greek Theta Symbol / Greek Small Letter Script Theta

U+003D5 \phi Greek Phi Symbol / Greek Small Letter Script Phi

U+003D6 \varpi Greek Pi Symbol / Greek Small Letter Omega Pi

U+003D8 \upoldKoppa Greek Letter Archaic Koppa

U+003D9 \upoldkoppa Greek Small Letter Archaic Koppa

U+003DA \Stigma Greek Letter Stigma / Greek Capital Letter Stigma

U+003DB \upstigma Greek Small Letter Stigma

U+003DC \Digamma Greek Letter Digamma / Greek Capital Letter Digamma

U+003DD \digamma Greek Small Letter Digamma

U+003DE \Koppa Greek Letter Koppa / Greek Capital Letter Koppa

U+003DF \upkoppa Greek Small Letter Koppa

U+003E0 \Sampi Greek Letter Sampi / Greek Capital Letter Sampi

U+003E1 \upsampi Greek Small Letter Sampi

U+003F0 \varkappa Greek Kappa Symbol / Greek Small Letter Script Kappa

U+003F1 \varrho Greek Rho Symbol / Greek Small Letter Tailed Rho

U+003F4 \textTheta Greek Capital Theta Symbol

U+003F5 \epsilon Greek Lunate Epsilon Symbol

U+003F6 \backepsilon Greek Reversed Lunate Epsilon Symbol

U+01D2C \^A Modifier Letter Capital A

U+01D2E \^B Modifier Letter Capital B

U+01D30 \^D Modifier Letter Capital D

U+01D31 \^E Modifier Letter Capital E

U+01D33 \^G Modifier Letter Capital G

U+01D34 \^H Modifier Letter Capital H

U+01D35 \^I Modifier Letter Capital I

U+01D36 \^J Modifier Letter Capital J

U+01D37 \^K Modifier Letter Capital K

U+01D38 \^L Modifier Letter Capital L

U+01D39 \^M Modifier Letter Capital M

U+01D3A \^N Modifier Letter Capital N

U+01D3C \^O Modifier Letter Capital O

U+01D3E \^P Modifier Letter Capital P

U+01D3F \^R Modifier Letter Capital R

U+01D40 \^T Modifier Letter Capital T

U+01D41 \^U Modifier Letter Capital U

U+01D42 \^W Modifier Letter CapitalW

U+01D43 \^a Modifier Letter Small A

U+01D45 \^alpha Modifier Letter Small Alpha

U+01D47 \^b Modifier Letter Small B

U+01D48 \^d Modifier Letter Small D

U+01D49 \^e Modifier Letter Small E

U+01D4B \^epsilon Modifier Letter Small Open E

U+01D4D \^g Modifier Letter Small G

U+01D4F \^k Modifier Letter Small K

U+01D50 \^m Modifier Letter Small M

U+01D52 \^o Modifier Letter Small O

U+01D56 \^p Modifier Letter Small P

U+01D57 \^t Modifier Letter Small T

U+01D58 \^u Modifier Letter Small U

U+01D5B \^v Modifier Letter Small V

U+01D5D \^beta Modifier Letter Small Beta

U+01D5E \^gamma Modifier Letter Small Greek Gamma

U+01D5F \^delta Modifier Letter Small Delta

U+01D60 \^phi Modifier Letter Small Greek Phi

U+01D61 \^chi Modifier Letter Small Chi

U+01D62 _i Latin Subscript Small Letter I

U+01D63 _r Latin Subscript Small Letter R

U+01D64 _u Latin Subscript Small Letter U

U+01D65 _v Latin Subscript Small Letter V

U+01D66 _beta Greek Subscript Small Letter Beta

U+01D67 _gamma Greek Subscript Small Letter Gamma

U+01D68 _rho Greek Subscript Small Letter Rho

U+01D69 _phi Greek Subscript Small Letter Phi

U+01D6A _chi Greek Subscript Small Letter Chi

U+01D9C \^c Modifier Letter Small C

U+01DA0 \^f Modifier Letter Small F

U+01DA5 \^iota Modifier Letter Small Iota

U+01DB2 \^Phi Modifier Letter Small Phi

U+01DBB \^z Modifier Letter Small Z

U+01DBF \^theta Modifier Letter Small Theta

U+02002 \enspace En Space

U+02003 \quad Em Space

U+02005 \thickspace Four-per-em Space

U+02009 \thinspace Thin Space

U+0200A \hspace Hair Space

U+02013 – \endash EnDash

U+02014 — \emdash EmDash

U+02016 \Vert Double Vertical Line / Double Vertical Bar

U+02018 ‘ \lq Left Single QuotationMark / Single Turned Comma

QuotationMark

U+02019 ’ \rq Right Single QuotationMark / Single CommaQuotation

Mark

U+0201B \Elzreapos Single High-reversed-9QuotationMark / Single Reversed

CommaQuotationMark

U+0201C “ \textquotedblleft Left Double QuotationMark / Double Turned Comma

QuotationMark

U+0201D ” \textquotedblright Right Double QuotationMark / Double CommaQuotation

Mark

U+02020 † \dagger Dagger

U+02021 ‡ \ddagger Double Dagger

U+02022 • \bullet Bullet

U+02026 … \dots, \ldots Horizontal Ellipsis

U+02030 ‰ \textperthousand PerMille Sign

U+02031 \textpertenthousand Per Ten Thousand Sign

U+02032 \prime Prime

U+02033 \pprime Double Prime

U+02034 \ppprime Triple Prime

U+02035 \backprime Reversed Prime

U+02036 \backpprime Reversed Double Prime

U+02037 \backppprime Reversed Triple Prime

U+02039 ‹ \guilsinglleft Single Left-pointing Angle QuotationMark / Left Pointing

Single Guillemet

U+0203A › \guilsinglright Single Right-pointing Angle QuotationMark / Right

Pointing Single Guillemet

U+0203C \:bangbang: Double ExclamationMark

U+02040 \tieconcat Character Tie

U+02049 \:interrobang: ExclamationQuestionMark

U+02057 \pppprime Quadruple Prime

U+02060 \nolinebreak Word Joiner

U+02070 \^0 Superscript Zero / Superscript Digit Zero

U+02071 \^i Superscript Latin Small Letter I

U+02074 \^4 Superscript Four / Superscript Digit Four

U+02075 \^5 Superscript Five / Superscript Digit Five

U+02076 \^6 Superscript Six / Superscript Digit Six

U+02077 \^7 Superscript Seven / Superscript Digit Seven

U+02078 \^8 Superscript Eight / Superscript Digit Eight

U+02079 \^9 Superscript Nine / Superscript Digit Nine

U+0207A \^+ Superscript Plus Sign

U+0207B \^- SuperscriptMinus / Superscript Hyphen-minus

U+0207C \^= Superscript Equals Sign

U+0207D \^(Superscript Left Parenthesis / Superscript Opening

Parenthesis

U+0207E \^) Superscript Right Parenthesis / Superscript Closing

Parenthesis

U+0207F \^n Superscript Latin Small Letter N

U+02080 _0 Subscript Zero / Subscript Digit Zero

U+02081 _1 Subscript One / Subscript Digit One

U+02082 _2 Subscript Two / Subscript Digit Two

U+02083 _3 Subscript Three / Subscript Digit Three

U+02084 _4 Subscript Four / Subscript Digit Four

U+02085 _5 Subscript Five / Subscript Digit Five

U+02086 _6 Subscript Six / Subscript Digit Six

U+02087 _7 Subscript Seven / Subscript Digit Seven

U+02088 _8 Subscript Eight / Subscript Digit Eight

U+02089 _9 Subscript Nine / Subscript Digit Nine

U+0208A _+ Subscript Plus Sign

U+0208B _- SubscriptMinus / Subscript Hyphen-minus

U+0208C _= Subscript Equals Sign

U+0208D _(Subscript Left Parenthesis / SubscriptOpening Parenthesis

U+0208E _) Subscript Right Parenthesis / Subscript Closing

Parenthesis

U+02090 _a Latin Subscript Small Letter A

U+02091 _e Latin Subscript Small Letter E

U+02092 _o Latin Subscript Small Letter O

U+02093 _x Latin Subscript Small Letter X

U+02094 _schwa Latin Subscript Small Letter Schwa

U+02095 _h Latin Subscript Small Letter H

U+02096 _k Latin Subscript Small Letter K

U+02097 _l Latin Subscript Small Letter L

U+02098 _m Latin Subscript Small LetterM

U+02099 _n Latin Subscript Small Letter N

U+0209A _p Latin Subscript Small Letter P

U+0209B _s Latin Subscript Small Letter S

U+0209C _t Latin Subscript Small Letter T

U+020A7 \Elzpes Peseta Sign

U+020AC € \euro Euro Sign

U+020D0 \leftharpoonaccent Combining Left Harpoon Above / Non-spacing Left

Harpoon Above

U+020D1 \rightharpoonaccent Combining Right Harpoon Above / Non-spacing Right

Harpoon Above

U+020D2 \vertoverlay Combining Long Vertical Line Overlay / Non-spacing Long

Vertical Bar Overlay

U+020D6 \overleftarrow Combining Left ArrowAbove / Non-spacing Left Arrow

Above

U+020D7 \vec Combining Right ArrowAbove / Non-spacing Right Arrow

Above

U+020DB \dddot Combining Three Dots Above / Non-spacing Three Dots

Above

U+020DC \ddddot Combining Four Dots Above / Non-spacing Four Dots

Above

U+020DD \enclosecircle Combining Enclosing Circle / Enclosing Circle

U+020DE \enclosesquare Combining Enclosing Square / Enclosing Square

U+020DF \enclosediamond Combining Enclosing Diamond / Enclosing Diamond

U+020E1 \overleftrightarrow Combining Left Right ArrowAbove / Non-spacing Left

Right ArrowAbove

U+020E4 \enclosetriangle Combining Enclosing Upward Pointing Triangle

U+020E7 \annuity Combining Annuity Symbol

U+020E8 \threeunderdot Combining Triple Underdot

U+020E9 \widebridgeabove CombiningWide Bridge Above

U+020EC \underrightharpoondown Combining Rightwards HarpoonWith Barb Downwards

U+020ED \underleftharpoondown Combining Leftwards HarpoonWith Barb Downwards

U+020EE \underleftarrow Combining Left Arrow Below

U+020EF \underrightarrow Combining Right Arrow Below

U+020F0 \asteraccent Combining Asterisk Above

U+02102 \BbbC Double-struck Capital C / Double-struck C

U+02107 \Eulerconst Euler Constant / Eulers

U+0210A \mscrg Script Small G

U+0210B \mscrH Script Capital H / Script H

U+0210C \mfrakH Black-letter Capital H / Black-letter H

U+0210D \BbbH Double-struck Capital H / Double-struck H

U+0210E \Planckconst Planck Constant

U+0210F \hslash Planck Constant Over Two Pi / Planck Constant Over 2 Pi

U+02110 \mscrI Script Capital I / Script I

U+02111 \Im Black-letter Capital I / Black-letter I

U+02112 \mscrL Script Capital L / Script L

U+02113 \ell Script Small L

U+02115 \BbbN Double-struck Capital N / Double-struck N

U+02116 \textnumero Numero Sign / Numero

U+02118 \wp Script Capital P / Script P

U+02119 \BbbP Double-struck Capital P / Double-struck P

U+0211A \BbbQ Double-struck Capital Q / Double-struckQ

U+0211B \mscrR Script Capital R / Script R

U+0211C \Re Black-letter Capital R / Black-letter R

U+0211D \BbbR Double-struck Capital R / Double-struck R

U+0211E \Elzxrat Prescription Take

U+02122 ™ \texttrademark, \:tm: TradeMark Sign / Trademark

U+02124 \BbbZ Double-struck Capital Z / Double-struck Z

U+02127 \mho InvertedOhm Sign /Mho

U+02128 \mfrakZ Black-letter Capital Z / Black-letter Z

U+02129 \turnediota Turned Greek Small Letter Iota

U+0212B \Angstrom Angstrom Sign / AngstromUnit

U+0212C \mscrB Script Capital B / Script B

U+0212D \mfrakC Black-letter Capital C / Black-letter C

U+0212F \mscre Script Small E

U+02130 \mscrE Script Capital E / Script E

U+02131 \mscrF Script Capital F / Script F

U+02132 \Finv Turned Capital F / Turned F

U+02133 \mscrM Script Capital M / ScriptM

U+02134 \mscro Script Small O

U+02135 \aleph Alef Symbol / First Transfinite Cardinal

U+02136 \beth Bet Symbol / Second Transfinite Cardinal

U+02137 \gimel Gimel Symbol / Third Transfinite Cardinal

U+02138 \daleth Dalet Symbol / Fourth Transfinite Cardinal

U+02139 \:information_source: Information Source

U+0213C \Bbbpi Double-struck Small Pi

U+0213D \Bbbgamma Double-struck Small Gamma

U+0213E \BbbGamma Double-struck Capital Gamma

U+0213F \BbbPi Double-struck Capital Pi

U+02140 \bbsum Double-struck N-ary Summation

U+02141 \Game Turned Sans-serif Capital G

U+02142 \sansLturned Turned Sans-serif Capital L

U+02143 \sansLmirrored Reversed Sans-serif Capital L

U+02144 \Yup Turned Sans-serif Capital Y

U+02145 \mitBbbD Double-struck Italic Capital D

U+02146 \mitBbbd Double-struck Italic Small D

U+02147 \mitBbbe Double-struck Italic Small E

U+02148 \mitBbbi Double-struck Italic Small I

U+02149 \mitBbbj Double-struck Italic Small J

U+0214A \PropertyLine Property Line

U+0214B \upand Turned Ampersand

U+02190 \leftarrow Leftwards Arrow / Left Arrow

U+02191 \uparrow Upwards Arrow / Up Arrow

U+02192 \to, \rightarrow Rightwards Arrow / Right Arrow

U+02193 \downarrow Downwards Arrow / DownArrow

U+02194 \leftrightarrow,

\:left_right_arrow:

Left Right Arrow

U+02195 \updownarrow,

\:arrow_up_down:

UpDownArrow

U+02196 \nwarrow,

\:arrow_upper_left:

NorthWest Arrow / Upper Left Arrow

U+02197 \nearrow,

\:arrow_upper_right:

North East Arrow / Upper Right Arrow

U+02198 \searrow,

\:arrow_lower_right:

South East Arrow / Lower Right Arrow

U+02199 \swarrow,

\:arrow_lower_left:

SouthWest Arrow / Lower Left Arrow

U+0219A \nleftarrow Leftwards ArrowWith Stroke / Left ArrowWith Stroke

U+0219B \nrightarrow Rightwards ArrowWith Stroke / Right ArrowWith Stroke

U+0219C \leftwavearrow LeftwardsWave Arrow / LeftWave Arrow

U+0219D \rightwavearrow RightwardsWave Arrow / RightWave Arrow

U+0219E \twoheadleftarrow Leftwards TwoHeaded Arrow / Left TwoHeaded Arrow

U+0219F \twoheaduparrow Upwards TwoHeaded Arrow / Up TwoHeaded Arrow

U+021A0 \twoheadrightarrow Rightwards TwoHeaded Arrow / Right TwoHeaded Arrow

U+021A1 \twoheaddownarrow Downwards TwoHeaded Arrow / Down TwoHeaded

Arrow

U+021A2 \leftarrowtail Leftwards ArrowWith Tail / Left ArrowWith Tail

U+021A3 \rightarrowtail Rightwards ArrowWith Tail / Right ArrowWith Tail

U+021A4 \mapsfrom Leftwards Arrow FromBar / Left Arrow FromBar

U+021A5 \mapsup Upwards Arrow FromBar / Up Arrow FromBar

U+021A6 \mapsto Rightwards Arrow FromBar / Right Arrow FromBar

U+021A7 \mapsdown Downwards Arrow FromBar / DownArrow FromBar

U+021A8 \updownarrowbar UpDownArrowWith Base

U+021A9 \hookleftarrow, \:left-

wards_arrow_with_hook:

Leftwards ArrowWith Hook / Left ArrowWith Hook

U+021AA \hookrightarrow,

\:arrow_right_hook:

Rightwards ArrowWith Hook / Right ArrowWith Hook

U+021AB \looparrowleft Leftwards ArrowWith Loop / Left ArrowWith Loop

U+021AC \looparrowright Rightwards ArrowWith Loop / Right ArrowWith Loop

U+021AD \leftrightsquigarrow Left RightWave Arrow

U+021AE \nleftrightarrow Left Right ArrowWith Stroke

U+021AF \downzigzagarrow Downwards Zigzag Arrow / Down Zigzag Arrow

U+021B0 \Lsh Upwards ArrowWith Tip Leftwards / Up ArrowWith Tip

Left

U+021B1 \Rsh Upwards ArrowWith Tip Rightwards / Up ArrowWith Tip

Right

U+021B2 \Ldsh Downwards ArrowWith Tip Leftwards / DownArrow

With Tip Left

U+021B3 \Rdsh Downwards ArrowWith Tip Rightwards / DownArrow

With Tip Right

U+021B4 \linefeed Rightwards ArrowWith Corner Downwards / Right Arrow

With Corner Down

U+021B5 \carriagereturn Downwards ArrowWith Corner Leftwards / DownArrow

With Corner Left

U+021B6 \curvearrowleft Anticlockwise Top Semicircle Arrow

U+021B7 \curvearrowright Clockwise Top Semicircle Arrow

U+021B8 \barovernorthwestarrow NorthWest Arrow To Long Bar / Upper Left Arrow To Long

Bar

U+021B9 \barleftarrowrightarrow-

bar

Leftwards Arrow To Bar Over Rightwards Arrow To Bar /

Left Arrow To Bar Over Right Arrow To Bar

U+021BA \circlearrowleft Anticlockwise Open Circle Arrow

U+021BB \circlearrowright Clockwise Open Circle Arrow

U+021BC \leftharpoonup Leftwards HarpoonWith Barb Upwards / Left Harpoon

With Barb Up

U+021BD \leftharpoondown Leftwards HarpoonWith Barb Downwards / Left Harpoon

With Barb Down

U+021BE \upharpoonleft Upwards HarpoonWith Barb Rightwards / UpHarpoon

With Barb Right

U+021BF \upharpoonright Upwards HarpoonWith Barb Leftwards / UpHarpoon

With Barb Left

U+021C0 \rightharpoonup Rightwards HarpoonWith Barb Upwards / Right Harpoon

With Barb Up

U+021C1 \rightharpoondown Rightwards HarpoonWith Barb Downwards / Right

HarpoonWith Barb Down

U+021C2 \downharpoonright Downwards HarpoonWith Barb Rightwards / Down

HarpoonWith Barb Right

U+021C3 \downharpoonleft Downwards HarpoonWith Barb Leftwards / Down

HarpoonWith Barb Left

U+021C4 \rightleftarrows Rightwards ArrowOver Leftwards Arrow / Right Arrow

Over Left Arrow

U+021C5 \dblarrowupdown Upwards Arrow Leftwards Of Downwards Arrow / Up

Arrow Left Of DownArrow

U+021C6 \leftrightarrows Leftwards ArrowOver Rightwards Arrow / Left Arrow

Over Right Arrow

U+021C7 \leftleftarrows Leftwards Paired Arrows / Left Paired Arrows

U+021C8 \upuparrows Upwards Paired Arrows / Up Paired Arrows

U+021C9 \rightrightarrows Rightwards Paired Arrows / Right Paired Arrows

U+021CA \downdownarrows Downwards Paired Arrows / Down Paired Arrows

U+021CB \leftrightharpoons Leftwards HarpoonOver Rightwards Harpoon / Left

HarpoonOver Right Harpoon

U+021CC \rightleftharpoons Rightwards HarpoonOver Leftwards Harpoon / Right

HarpoonOver Left Harpoon

U+021CD \nLeftarrow Leftwards Double ArrowWith Stroke / Left Double Arrow

With Stroke

U+021CE \nLeftrightarrow Left Right Double ArrowWith Stroke

U+021CF \nRightarrow Rightwards Double ArrowWith Stroke / Right Double

ArrowWith Stroke

U+021D0 \Leftarrow Leftwards Double Arrow / Left Double Arrow

U+021D1 \Uparrow Upwards Double Arrow / UpDouble Arrow

U+021D2 \Rightarrow Rightwards Double Arrow / Right Double Arrow

U+021D3 \Downarrow Downwards Double Arrow / DownDouble Arrow

U+021D4 \Leftrightarrow Left Right Double Arrow

U+021D5 \Updownarrow UpDownDouble Arrow

U+021D6 \Nwarrow NorthWest Double Arrow / Upper Left Double Arrow

U+021D7 \Nearrow North East Double Arrow / Upper Right Double Arrow

U+021D8 \Searrow South East Double Arrow / Lower Right Double Arrow

U+021D9 \Swarrow SouthWest Double Arrow / Lower Left Double Arrow

U+021DA \Lleftarrow Leftwards Triple Arrow / Left Triple Arrow

U+021DB \Rrightarrow Rightwards Triple Arrow / Right Triple Arrow

U+021DC \leftsquigarrow Leftwards Squiggle Arrow / Left Squiggle Arrow

U+021DD \rightsquigarrow Rightwards Squiggle Arrow / Right Squiggle Arrow

U+021DE \nHuparrow Upwards ArrowWith Double Stroke / Up ArrowWith

Double Stroke

U+021DF \nHdownarrow Downwards ArrowWith Double Stroke / DownArrow

With Double Stroke

U+021E0 \leftdasharrow Leftwards Dashed Arrow / Left Dashed Arrow

U+021E1 \updasharrow Upwards Dashed Arrow / UpDashed Arrow

U+021E2 \rightdasharrow Rightwards Dashed Arrow / Right Dashed Arrow

U+021E3 \downdasharrow Downwards Dashed Arrow / DownDashed Arrow

U+021E4 \barleftarrow Leftwards Arrow To Bar / Left Arrow To Bar

U+021E5 \rightarrowbar Rightwards Arrow To Bar / Right Arrow To Bar

U+021E6 \leftwhitearrow LeftwardsWhite Arrow /White Left Arrow

U+021E7 \upwhitearrow UpwardsWhite Arrow /White Up Arrow

U+021E8 \rightwhitearrow RightwardsWhite Arrow /White Right Arrow

U+021E9 \downwhitearrow DownwardsWhite Arrow /White DownArrow

U+021EA \whitearrowupfrombar UpwardsWhite Arrow FromBar /White Up Arrow From

Bar

U+021F4 \circleonrightarrow Right ArrowWith Small Circle

U+021F5 \DownArrowUpArrow Downwards Arrow Leftwards Of Upwards Arrow

U+021F6 \rightthreearrows Three Rightwards Arrows

U+021F7 \nvleftarrow Leftwards ArrowWith Vertical Stroke

U+021F8 \nvrightarrow Rightwards ArrowWith Vertical Stroke

U+021F9 \nvleftrightarrow Left Right ArrowWith Vertical Stroke

U+021FA \nVleftarrow Leftwards ArrowWith Double Vertical Stroke

U+021FB \nVrightarrow Rightwards ArrowWith Double Vertical Stroke

U+021FC \nVleftrightarrow Left Right ArrowWith Double Vertical Stroke

U+021FD \leftarrowtriangle Leftwards Open-headed Arrow

U+021FE \rightarrowtriangle Rightwards Open-headed Arrow

U+021FF \leftrightarrowtriangle Left Right Open-headed Arrow

U+02200 \forall For All

U+02201 \complement Complement

U+02202 ∂ \partial Partial Differential

U+02203 \exists There Exists

U+02204 \nexists There Does Not Exist

U+02205 \varnothing, \emptyset Empty Set

U+02206 ∆ \increment Increment

U+02207 \del, \nabla Nabla

U+02208 \in Element Of

U+02209 \notin Not An Element Of

U+0220A \smallin Small Element Of

U+0220B \ni Contains AsMember

U+0220C \nni Does Not Contain AsMember

U+0220D \smallni Small Contains AsMember

U+0220E \QED EndOf Proof

U+0220F ∏ \prod N-ary Product

U+02210 \coprod N-ary Coproduct

U+02211 ∑ \sum N-ary Summation

U+02212 − \minus Minus Sign

U+02213 \mp Minus-or-plus Sign

U+02214 \dotplus Dot Plus

U+02216 \setminus SetMinus

U+02217 \ast Asterisk Operator

U+02218 \circ RingOperator

U+02219 \vysmblkcircle Bullet Operator

U+0221A √ \surd, \sqrt Square Root

U+0221B \cbrt Cube Root

U+0221C \fourthroot Fourth Root

U+0221D \propto Proportional To

U+0221E ∞ \infty Infinity

U+0221F \rightangle Right Angle

U+02220 \angle Angle

U+02221 \measuredangle Measured Angle

U+02222 \sphericalangle Spherical Angle

U+02223 \mid Divides

U+02224 \nmid Does Not Divide

U+02225 \parallel Parallel To

U+02226 \nparallel Not Parallel To

U+02227 \wedge Logical And

U+02228 \vee Logical Or

U+02229 \cap Intersection

U+0222A \cup Union

U+0222B ∫ \int Integral

U+0222C \iint Double Integral

U+0222D \iiint Triple Integral

U+0222E \oint Contour Integral

U+0222F \oiint Surface Integral

U+02230 \oiiint Volume Integral

U+02231 \clwintegral Clockwise Integral

U+02232 \varointclockwise Clockwise Contour Integral

U+02233 \ointctrclockwise Anticlockwise Contour Integral

U+02234 \therefore Therefore

U+02235 \because Because

U+02237 \Colon Proportion

U+02238 \dotminus DotMinus

U+0223A \dotsminusdots Geometric Proportion

U+0223B \kernelcontraction Homothetic

U+0223C \sim Tilde Operator

U+0223D \backsim Reversed Tilde

U+0223E \lazysinv Inverted Lazy S

U+0223F \sinewave SineWave

U+02240 \wr Wreath Product

U+02241 \nsim Not Tilde

U+02242 \eqsim Minus Tilde

U+02242 +

U+00338

\neqsim Minus Tilde + Combining Long Solidus Overlay /

Non-spacing Long SlashOverlay

U+02243 \simeq Asymptotically Equal To

U+02244 \nsime Not Asymptotically Equal To

U+02245 \cong Approximately Equal To

U+02246 \approxnotequal Approximately But Not Actually Equal To

U+02247 \ncong Neither Approximately Nor Actually Equal To

U+02248 ≈ \approx Almost Equal To

U+02249 \napprox Not Almost Equal To

U+0224A \approxeq Almost Equal Or Equal To

U+0224B \tildetrpl Triple Tilde

U+0224C \allequal All Equal To

U+0224D \asymp Equivalent To

U+0224E \Bumpeq Geometrically Equivalent To

U+0224E +

U+00338

\nBumpeq Geometrically Equivalent To + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+0224F \bumpeq Difference Between

U+0224F +

U+00338

\nbumpeq Difference Between + Combining Long Solidus Overlay /

Non-spacing Long SlashOverlay

U+02250 \doteq Approaches The Limit

U+02251 \Doteq Geometrically Equal To

U+02252 \fallingdotseq Approximately Equal ToOr The ImageOf

U+02253 \risingdotseq ImageOfOr Approximately Equal To

U+02254 \coloneq Colon Equals / Colon Equal

U+02255 \eqcolon Equals Colon / Equal Colon

U+02256 \eqcirc Ring In Equal To

U+02257 \circeq Ring Equal To

U+02258 \arceq Corresponds To

U+02259 \wedgeq Estimates

U+0225A \veeeq Equiangular To

U+0225B \starequal Star Equals

U+0225C \triangleq Delta Equal To

U+0225D \eqdef Equal To ByDefinition

U+0225E \measeq Measured By

U+0225F \questeq Questioned Equal To

U+02260 ≠ \ne Not Equal To

U+02261 \equiv Identical To

U+02262 \nequiv Not Identical To

U+02263 \Equiv Strictly Equivalent To

U+02264 ≤ \le Less-thanOr Equal To / Less ThanOr Equal To

U+02265 ≥ \ge Greater-thanOr Equal To / Greater ThanOr Equal To

U+02266 \leqq Less-thanOver Equal To / Less ThanOver Equal To

U+02267 \geqq Greater-thanOver Equal To / Greater ThanOver Equal To

U+02268 \lneqq Less-than But Not Equal To / Less Than But Not Equal To

U+02268 +

U+0FE00

\lvertneqq Less-than But Not Equal To / Less Than But Not Equal To +

Variation Selector-1

U+02269 \gneqq Greater-than But Not Equal To / Greater Than But Not

Equal To

U+02269 +

U+0FE00

\gvertneqq Greater-than But Not Equal To / Greater Than But Not

Equal To + Variation Selector-1

U+0226A \ll Much Less-than /Much Less Than

U+0226A +

U+00338

\NotLessLess Much Less-than /Much Less Than + Combining Long

Solidus Overlay / Non-spacing Long SlashOverlay

U+0226B \gg MuchGreater-than /Much Greater Than

U+0226B +

U+00338

\NotGreaterGreater Much Greater-than /Much Greater Than + Combining

Long Solidus Overlay / Non-spacing Long SlashOverlay

U+0226C \between Between

U+0226D \nasymp Not Equivalent To

U+0226E \nless Not Less-than / Not Less Than

U+0226F \ngtr Not Greater-than / Not Greater Than

U+02270 \nleq Neither Less-than Nor Equal To / Neither Less ThanNor

Equal To

U+02271 \ngeq Neither Greater-than Nor Equal To / Neither Greater Than

Nor Equal To

U+02272 \lesssim Less-thanOr Equivalent To / Less ThanOr Equivalent To

U+02273 \gtrsim Greater-thanOr Equivalent To / Greater ThanOr

Equivalent To

U+02274 \nlesssim Neither Less-than Nor Equivalent To / Neither Less Than

Nor Equivalent To

U+02275 \ngtrsim Neither Greater-than Nor Equivalent To / Neither Greater

ThanNor Equivalent To

U+02276 \lessgtr Less-thanOr Greater-than / Less ThanOr Greater Than

U+02277 \gtrless Greater-thanOr Less-than / Greater ThanOr Less Than

U+02278 \notlessgreater Neither Less-than Nor Greater-than / Neither Less Than

Nor Greater Than

U+02279 \notgreaterless Neither Greater-than Nor Less-than / Neither Greater

ThanNor Less Than

U+0227A \prec Precedes

U+0227B \succ Succeeds

U+0227C \preccurlyeq Precedes Or Equal To

U+0227D \succcurlyeq Succeeds Or Equal To

U+0227E \precsim Precedes Or Equivalent To

U+0227E +

U+00338

\nprecsim Precedes Or Equivalent To + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+0227F \succsim Succeeds Or Equivalent To

U+0227F +

U+00338

\nsuccsim Succeeds Or Equivalent To + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+02280 \nprec Does Not Precede

U+02281 \nsucc Does Not Succeed

U+02282 \subset Subset Of

U+02283 \supset Superset Of

U+02284 \nsubset Not A Subset Of

U+02285 \nsupset Not A Superset Of

U+02286 \subseteq Subset Of Or Equal To

U+02287 \supseteq Superset Of Or Equal To

U+02288 \nsubseteq Neither A Subset Of Nor Equal To

U+02289 \nsupseteq Neither A Superset Of Nor Equal To

U+0228A \subsetneq Subset OfWith Not Equal To / Subset Of Or Not Equal To

U+0228A +

U+0FE00

\varsubsetneqq Subset OfWith Not Equal To / Subset Of Or Not Equal To +

Variation Selector-1

U+0228B \supsetneq Superset OfWith Not Equal To / Superset Of Or Not Equal

To

U+0228B +

U+0FE00

\varsupsetneq Superset OfWith Not Equal To / Superset Of Or Not Equal

To + Variation Selector-1

U+0228D \cupdot MultisetMultiplication

U+0228E \uplus Multiset Union

U+0228F \sqsubset Square ImageOf

U+0228F +

U+00338

\NotSquareSubset Square ImageOf + Combining Long Solidus Overlay /

Non-spacing Long SlashOverlay

U+02290 \sqsupset SquareOriginal Of

U+02290 +

U+00338

\NotSquareSuperset SquareOriginal Of + Combining Long Solidus Overlay /

Non-spacing Long SlashOverlay

U+02291 \sqsubseteq Square ImageOfOr Equal To

U+02292 \sqsupseteq SquareOriginal Of Or Equal To

U+02293 \sqcap Square Cap

U+02294 \sqcup Square Cup

U+02295 \oplus Circled Plus

U+02296 \ominus CircledMinus

U+02297 \otimes Circled Times

U+02298 \oslash Circled Division Slash

U+02299 \odot Circled Dot Operator

U+0229A \circledcirc Circled RingOperator

U+0229B \circledast Circled Asterisk Operator

U+0229C \circledequal Circled Equals

U+0229D \circleddash Circled Dash

U+0229E \boxplus Squared Plus

U+0229F \boxminus SquaredMinus

U+022A0 \boxtimes Squared Times

U+022A1 \boxdot Squared Dot Operator

U+022A2 \vdash Right Tack

U+022A3 \dashv Left Tack

U+022A4 \top Down Tack

U+022A5 \bot Up Tack

U+022A7 \models Models

U+022A8 \vDash True

U+022A9 \Vdash Forces

U+022AA \Vvdash Triple Vertical Bar Right Turnstile

U+022AB \VDash Double Vertical Bar Double Right Turnstile

U+022AC \nvdash Does Not Prove

U+022AD \nvDash Not True

U+022AE \nVdash Does Not Force

U+022AF \nVDash Negated Double Vertical Bar Double Right Turnstile

U+022B0 \prurel Precedes Under Relation

U+022B1 \scurel Succeeds Under Relation

U+022B2 \vartriangleleft Normal SubgroupOf

U+022B3 \vartriangleright Contains As Normal Subgroup

U+022B4 \trianglelefteq Normal SubgroupOfOr Equal To

U+022B5 \trianglerighteq Contains As Normal SubgroupOr Equal To

U+022B6 \original Original Of

U+022B7 \image ImageOf

U+022B8 \multimap Multimap

U+022B9 \hermitconjmatrix Hermitian ConjugateMatrix

U+022BA \intercal Intercalate

U+022BB \veebar, \xor Xor

U+022BC \barwedge Nand

U+022BD \barvee Nor

U+022BE \rightanglearc Right AngleWith Arc

U+022BF \varlrtriangle Right Triangle

U+022C0 \bigwedge N-ary Logical And

U+022C1 \bigvee N-ary Logical Or

U+022C2 \bigcap N-ary Intersection

U+022C3 \bigcup N-ary Union

U+022C4 \diamond DiamondOperator

U+022C5 \cdot Dot Operator

U+022C6 \star Star Operator

U+022C7 \divideontimes Division Times

U+022C8 \bowtie Bowtie

U+022C9 \ltimes Left Normal Factor Semidirect Product

U+022CA \rtimes Right Normal Factor Semidirect Product

U+022CB \leftthreetimes Left Semidirect Product

U+022CC \rightthreetimes Right Semidirect Product

U+022CD \backsimeq Reversed Tilde Equals

U+022CE \curlyvee Curly Logical Or

U+022CF \curlywedge Curly Logical And

U+022D0 \Subset Double Subset

U+022D1 \Supset Double Superset

U+022D2 \Cap Double Intersection

U+022D3 \Cup Double Union

U+022D4 \pitchfork Pitchfork

U+022D5 \equalparallel Equal And Parallel To

U+022D6 \lessdot Less-thanWith Dot / Less ThanWith Dot

U+022D7 \gtrdot Greater-thanWith Dot / Greater ThanWith Dot

U+022D8 \verymuchless VeryMuch Less-than / VeryMuch Less Than

U+022D9 \ggg VeryMuchGreater-than / VeryMuch Greater Than

U+022DA \lesseqgtr Less-than Equal ToOr Greater-than / Less Than Equal To

Or Greater Than

U+022DB \gtreqless Greater-than Equal ToOr Less-than / Greater Than Equal

ToOr Less Than

U+022DC \eqless Equal ToOr Less-than / Equal ToOr Less Than

U+022DD \eqgtr Equal ToOr Greater-than / Equal ToOr Greater Than

U+022DE \curlyeqprec Equal ToOr Precedes

U+022DF \curlyeqsucc Equal ToOr Succeeds

U+022E0 \npreccurlyeq Does Not PrecedeOr Equal

U+022E1 \nsucccurlyeq Does Not SucceedOr Equal

U+022E2 \nsqsubseteq Not Square ImageOfOr Equal To

U+022E3 \nsqsupseteq Not SquareOriginal Of Or Equal To

U+022E4 \sqsubsetneq Square ImageOfOr Not Equal To

U+022E5 \Elzsqspne SquareOriginal Of Or Not Equal To

U+022E6 \lnsim Less-than But Not Equivalent To / Less Than But Not

Equivalent To

U+022E7 \gnsim Greater-than But Not Equivalent To / Greater Than But

Not Equivalent To

U+022E8 \precnsim Precedes But Not Equivalent To

U+022E9 \succnsim Succeeds But Not Equivalent To

U+022EA \ntriangleleft Not Normal SubgroupOf

U+022EB \ntriangleright Does Not Contain As Normal Subgroup

U+022EC \ntrianglelefteq Not Normal SubgroupOfOr Equal To

U+022ED \ntrianglerighteq Does Not Contain As Normal SubgroupOr Equal

U+022EE \vdots Vertical Ellipsis

U+022EF \cdots Midline Horizontal Ellipsis

U+022F0 \adots Up Right Diagonal Ellipsis

U+022F1 \ddots Down Right Diagonal Ellipsis

U+022F2 \disin Element OfWith Long Horizontal Stroke

U+022F3 \varisins Element OfWith Vertical Bar At EndOf Horizontal Stroke

U+022F4 \isins Small Element OfWith Vertical Bar At EndOf Horizontal

Stroke

U+022F5 \isindot Element OfWith Dot Above

U+022F6 \varisinobar Element OfWithOverbar

U+022F7 \isinobar Small Element OfWithOverbar

U+022F8 \isinvb Element OfWith Underbar

U+022F9 \isinE Element OfWith TwoHorizontal Strokes

U+022FA \nisd ContainsWith Long Horizontal Stroke

U+022FB \varnis ContainsWith Vertical Bar At EndOf Horizontal Stroke

U+022FC \nis Small ContainsWith Vertical Bar At EndOf Horizontal

Stroke

U+022FD \varniobar ContainsWithOverbar

U+022FE \niobar Small ContainsWithOverbar

U+022FF \bagmember ZNotation BagMembership

U+02300 \diameter Diameter Sign

U+02302 \house House

U+02305 \varbarwedge Projective

U+02306 \vardoublebarwedge Perspective

U+02308 \lceil Left Ceiling

U+02309 \rceil Right Ceiling

U+0230A \lfloor Left Floor

U+0230B \rfloor Right Floor

U+02310 \invnot Reversed Not Sign

U+02311 \sqlozenge Square Lozenge

U+02312 \profline Arc

U+02313 \profsurf Segment

U+02315 \recorder Telephone Recorder

U+02317 \viewdata Viewdata Square

U+02319 \turnednot TurnedNot Sign

U+0231A \:watch: Watch

U+0231B \:hourglass: Hourglass

U+0231C \ulcorner Top Left Corner

U+0231D \urcorner Top Right Corner

U+0231E \llcorner Bottom Left Corner

U+0231F \lrcorner BottomRight Corner

U+02322 \frown Frown

U+02323 \smile Smile

U+0232C \varhexagonlrbonds Benzene Ring

U+02332 \conictaper Conical Taper

U+02336 \topbot Apl Functional Symbol I-beam

U+0233D \obar Apl Functional Symbol Circle Stile

U+0233F \APLnotslash Apl Functional Symbol Slash Bar

U+02340 \APLnotbackslash Apl Functional Symbol Backslash Bar

U+02353 \APLboxupcaret Apl Functional Symbol Quad Up Caret

U+02370 \APLboxquestion Apl Functional Symbol QuadQuestion

U+02394 \hexagon Software-function Symbol

U+023A3 \Elzdlcorn Left Square Bracket Lower Corner

U+023B0 \lmoustache Upper Left Or Lower Right Curly Bracket Section

U+023B1 \rmoustache Upper Right Or Lower Left Curly Bracket Section

U+023B4 \overbracket Top Square Bracket

U+023B5 \underbracket Bottom Square Bracket

U+023B6 \bbrktbrk Bottom Square Bracket Over Top Square Bracket

U+023B7 \sqrtbottom Radical Symbol Bottom

U+023B8 \lvboxline Left Vertical Box Line

U+023B9 \rvboxline Right Vertical Box Line

U+023CE \varcarriagereturn Return Symbol

U+023DE \overbrace Top Curly Bracket

U+023DF \underbrace BottomCurly Bracket

U+023E2 \trapezium White Trapezium

U+023E3 \benzenr Benzene RingWith Circle

U+023E4 \strns Straightness

U+023E5 \fltns Flatness

U+023E6 \accurrent Ac Current

U+023E7 \elinters Electrical Intersection

U+023E9 \:fast_forward: Black Right-pointing Double Triangle

U+023EA \:rewind: Black Left-pointing Double Triangle

U+023EB \:arrow_double_up: Black Up-pointing Double Triangle

U+023EC \:arrow_double_down: Black Down-pointing Double Triangle

U+023F0 \:alarm_clock: AlarmClock

U+023F3 \:hourglass_flowing_sand: HourglassWith Flowing Sand

U+02422 \blanksymbol Blank Symbol / Blank

U+02423 \textvisiblespace Open Box

U+024C2 \:m: Circled Latin Capital LetterM

U+024C8 \circledS Circled Latin Capital Letter S

U+02506 \Elzdshfnc Box Drawings Light Triple Dash Vertical / Forms Light

Triple Dash Vertical

U+02519 \Elzsqfnw BoxDrawings Up Light And Left Heavy / Forms Up Light

And Left Heavy

U+02571 \diagup BoxDrawings Light Diagonal Upper Right To Lower Left /

Forms Light Diagonal Upper Right To Lower Left

U+02572 \diagdown BoxDrawings Light Diagonal Upper Left To Lower Right /

Forms Light Diagonal Upper Left To Lower Right

U+02580 \blockuphalf Upper Half Block

U+02584 \blocklowhalf Lower Half Block

U+02588 \blockfull Full Block

U+0258C \blocklefthalf Left Half Block

U+02590 \blockrighthalf Right Half Block

U+02591 \blockqtrshaded Light Shade

U+02592 \blockhalfshaded Medium Shade

U+02593 \blockthreeqtrshaded Dark Shade

U+025A0 \blacksquare Black Square

U+025A1 \square White Square

U+025A2 \squoval White SquareWith Rounded Corners

U+025A3 \blackinwhitesquare White Square Containing Black Small Square

U+025A4 \squarehfill SquareWith Horizontal Fill

U+025A5 \squarevfill SquareWith Vertical Fill

U+025A6 \squarehvfill SquareWithOrthogonal Crosshatch Fill

U+025A7 \squarenwsefill SquareWith Upper Left To Lower Right Fill

U+025A8 \squareneswfill SquareWith Upper Right To Lower Left Fill

U+025A9 \squarecrossfill SquareWith Diagonal Crosshatch Fill

U+025AA \smblksquare,

\:black_small_square:

Black Small Square

U+025AB \smwhtsquare,

\:white_small_square:

White Small Square

U+025AC \hrectangleblack Black Rectangle

U+025AD \hrectangle White Rectangle

U+025AE \vrectangleblack Black Vertical Rectangle

U+025AF \Elzvrecto White Vertical Rectangle

U+025B0 \parallelogramblack Black Parallelogram

U+025B1 \parallelogram White Parallelogram

U+025B2 \bigblacktriangleup Black Up-pointing Triangle / Black Up Pointing Triangle

U+025B3 \bigtriangleup White Up-pointing Triangle /White Up Pointing Triangle

U+025B4 \blacktriangle Black Up-pointing Small Triangle / Black Up Pointing Small

Triangle

U+025B5 \vartriangle White Up-pointing Small Triangle /White Up Pointing

Small Triangle

U+025B6 \blacktriangleright,

\:arrow_forward:

Black Right-pointing Triangle / Black Right Pointing

Triangle

U+025B7 \triangleright White Right-pointing Triangle /White Right Pointing

Triangle

U+025B8 \smallblacktriangleright Black Right-pointing Small Triangle / Black Right Pointing

Small Triangle

U+025B9 \smalltriangleright White Right-pointing Small Triangle /White Right Pointing

Small Triangle

U+025BA \blackpointerright Black Right-pointing Pointer / Black Right Pointing Pointer

U+025BB \whitepointerright White Right-pointing Pointer /White Right Pointing

Pointer

U+025BC \bigblacktriangledown Black Down-pointing Triangle / Black Down Pointing

Triangle

U+025BD \bigtriangledown White Down-pointing Triangle /White Down Pointing

Triangle

U+025BE \blacktriangledown Black Down-pointing Small Triangle / Black Down Pointing

Small Triangle

U+025BF \triangledown White Down-pointing Small Triangle /White Down

Pointing Small Triangle

U+025C0 \blacktriangleleft,

\:arrow_backward:

Black Left-pointing Triangle / Black Left Pointing Triangle

U+025C1 \triangleleft White Left-pointing Triangle /White Left Pointing Triangle

U+025C2 \smallblacktriangleleft Black Left-pointing Small Triangle / Black Left Pointing

Small Triangle

U+025C3 \smalltriangleleft White Left-pointing Small Triangle /White Left Pointing

Small Triangle

U+025C4 \blackpointerleft Black Left-pointing Pointer / Black Left Pointing Pointer

U+025C5 \whitepointerleft White Left-pointing Pointer /White Left Pointing Pointer

U+025C6 \mdlgblkdiamond Black Diamond

U+025C7 \mdlgwhtdiamond White Diamond

U+025C8 \blackinwhitediamond White Diamond Containing Black Small Diamond

U+025C9 \fisheye Fisheye

U+025CA ◊ \lozenge Lozenge

U+025CB \bigcirc White Circle

U+025CC \dottedcircle Dotted Circle

U+025CD \circlevertfill CircleWith Vertical Fill

U+025CE \bullseye Bullseye

U+025CF \mdlgblkcircle Black Circle

U+025D0 \Elzcirfl CircleWith Left Half Black

U+025D1 \Elzcirfr CircleWith Right Half Black

U+025D2 \Elzcirfb CircleWith Lower Half Black

U+025D3 \circletophalfblack CircleWith Upper Half Black

U+025D4 \circleurquadblack CircleWith Upper Right Quadrant Black

U+025D5 \blackcircleulquadwhite CircleWith All But Upper Left Quadrant Black

U+025D6 \blacklefthalfcircle Left Half Black Circle

U+025D7 \blackrighthalfcircle Right Half Black Circle

U+025D8 \Elzrvbull Inverse Bullet

U+025D9 \inversewhitecircle InverseWhite Circle

U+025DA \invwhiteupperhalfcircle Upper Half InverseWhite Circle

U+025DB \invwhitelowerhalfcircle Lower Half InverseWhite Circle

U+025DC \ularc Upper Left Quadrant Circular Arc

U+025DD \urarc Upper Right Quadrant Circular Arc

U+025DE \lrarc Lower Right Quadrant Circular Arc

U+025DF \llarc Lower Left Quadrant Circular Arc

U+025E0 \topsemicircle Upper Half Circle

U+025E1 \botsemicircle Lower Half Circle

U+025E2 \lrblacktriangle Black Lower Right Triangle

U+025E3 \llblacktriangle Black Lower Left Triangle

U+025E4 \ulblacktriangle Black Upper Left Triangle

U+025E5 \urblacktriangle Black Upper Right Triangle

U+025E6 \smwhtcircle White Bullet

U+025E7 \Elzsqfl SquareWith Left Half Black

U+025E8 \Elzsqfr SquareWith Right Half Black

U+025E9 \squareulblack SquareWith Upper Left Diagonal Half Black

U+025EA \Elzsqfse SquareWith Lower Right Diagonal Half Black

U+025EB \boxbar White SquareWith Vertical Bisecting Line

U+025EC \trianglecdot White Up-pointing TriangleWith Dot /White Up Pointing

TriangleWith Dot

U+025ED \triangleleftblack Up-pointing TriangleWith Left Half Black / Up Pointing

TriangleWith Left Half Black

U+025EE \trianglerightblack Up-pointing TriangleWith Right Half Black / Up Pointing

TriangleWith Right Half Black

U+025EF \lgwhtcircle Large Circle

U+025F0 \squareulquad White SquareWith Upper Left Quadrant

U+025F1 \squarellquad White SquareWith Lower Left Quadrant

U+025F2 \squarelrquad White SquareWith Lower Right Quadrant

U+025F3 \squareurquad White SquareWith Upper Right Quadrant

U+025F4 \circleulquad White CircleWith Upper Left Quadrant

U+025F5 \circlellquad White CircleWith Lower Left Quadrant

U+025F6 \circlelrquad White CircleWith Lower Right Quadrant

U+025F7 \circleurquad White CircleWith Upper Right Quadrant

U+025F8 \ultriangle Upper Left Triangle

U+025F9 \urtriangle Upper Right Triangle

U+025FA \lltriangle Lower Left Triangle

U+025FB \mdwhtsquare,

\:white_medium_square:

WhiteMedium Square

U+025FC \mdblksquare,

\:black_medium_square:

BlackMedium Square

U+025FD \mdsmwhtsquare,

\:white_medium_small_square:

WhiteMedium Small Square

U+025FE \mdsmblksquare,

\:black_medium_small_square:

BlackMedium Small Square

U+025FF \lrtriangle Lower Right Triangle

U+02600 \:sunny: Black SunWith Rays

U+02601 \:cloud: Cloud

U+02605 \bigstar Black Star

U+02606 \bigwhitestar White Star

U+02609 \astrosun Sun

U+0260E \:phone: Black Telephone

U+02611 \:ballot_box_with_check: Ballot BoxWith Check

U+02614 \:umbrella: UmbrellaWith Rain Drops

U+02615 \:coffee: Hot Beverage

U+0261D \:point_up: White Up Pointing Index

U+02621 \danger Caution Sign

U+0263A \:relaxed: White Smiling Face

U+0263B \blacksmiley Black Smiling Face

U+0263C \sun White SunWith Rays

U+0263D \rightmoon First QuarterMoon

U+0263E \leftmoon Last QuarterMoon

U+0263F \mercury Mercury

U+02640 \venus, \female Female Sign

U+02642 \male, \mars Male Sign

U+02643 \jupiter Jupiter

U+02644 \saturn Saturn

U+02645 \uranus Uranus

U+02646 \neptune Neptune

U+02647 \pluto Pluto

U+02648 \aries, \:aries: Aries

U+02649 \taurus, \:taurus: Taurus

U+0264A \gemini, \:gemini: Gemini

U+0264B \cancer, \:cancer: Cancer

U+0264C \leo, \:leo: Leo

U+0264D \virgo, \:virgo: Virgo

U+0264E \libra, \:libra: Libra

U+0264F \scorpio, \:scorpius: Scorpius

U+02650 \sagittarius, \:sagittarius: Sagittarius

U+02651 \capricornus, \:capricorn: Capricorn

U+02652 \aquarius, \:aquarius: Aquarius

U+02653 \pisces, \:pisces: Pisces

U+02660 \spadesuit, \:spades: Black Spade Suit

U+02661 \heartsuit White Heart Suit

U+02662 \diamondsuit White Diamond Suit

U+02663 \clubsuit, \:clubs: Black Club Suit

U+02664 \varspadesuit White Spade Suit

U+02665 \varheartsuit, \:hearts: Black Heart Suit

U+02666 \vardiamondsuit,

\:diamonds:

Black Diamond Suit

U+02667 \varclubsuit White Club Suit

U+02668 \:hotsprings: Hot Springs

U+02669 ♩ \quarternote Quarter Note

U+0266A \eighthnote Eighth Note

U+0266B \twonotes Beamed Eighth Notes / Barred Eighth Notes

U+0266D \flat Music Flat Sign / Flat

U+0266E \natural Music Natural Sign / Natural

U+0266F \sharp Music Sharp Sign / Sharp

U+0267B \:recycle: Black Universal Recycling Symbol

U+0267E \acidfree Permanent Paper Sign

U+0267F \:wheelchair: Wheelchair Symbol

U+02680 \dicei Die Face-1

U+02681 \diceii Die Face-2

U+02682 \diceiii Die Face-3

U+02683 \diceiv Die Face-4

U+02684 \dicev Die Face-5

U+02685 \dicevi Die Face-6

U+02686 \circledrightdot White CircleWith Dot Right

U+02687 \circledtwodots White CircleWith TwoDots

U+02688 \blackcircledrightdot Black CircleWithWhite Dot Right

U+02689 \blackcircledtwodots Black CircleWith TwoWhite Dots

U+02693 \:anchor: Anchor

U+026A0 \:warning: Warning Sign

U+026A1 \:zap: High Voltage Sign

U+026A5 \Hermaphrodite Male And Female Sign

U+026AA \mdwhtcircle,

\:white_circle:

MediumWhite Circle

U+026AB \mdblkcircle,

\:black_circle:

MediumBlack Circle

U+026AC \mdsmwhtcircle Medium SmallWhite Circle

U+026B2 \neuter Neuter

U+026BD \:soccer: Soccer Ball

U+026BE \:baseball: Baseball

U+026C4 \:snowman: SnowmanWithout Snow

U+026C5 \:partly_sunny: Sun Behind Cloud

U+026CE \:ophiuchus: Ophiuchus

U+026D4 \:no_entry: No Entry

U+026EA \:church: Church

U+026F2 \:fountain: Fountain

U+026F3 \:golf: Flag In Hole

U+026F5 \:boat: Sailboat

U+026FA \:tent: Tent

U+026FD \:fuelpump: Fuel Pump

U+02702 \:scissors: Black Scissors

U+02705 \:white_check_mark: White Heavy CheckMark

U+02708 \:airplane: Airplane

U+02709 \:email: Envelope

U+0270A \:fist: Raised Fist

U+0270B \:hand: Raised Hand

U+0270C \:v: Victory Hand

U+0270F \:pencil2: Pencil

U+02712 \:black_nib: Black Nib

U+02713 \checkmark CheckMark

U+02714 \:heavy_check_mark: Heavy CheckMark

U+02716 \:heavy_multiplication_x: HeavyMultiplication X

U+02720 \maltese Maltese Cross

U+02728 \:sparkles: Sparkles

U+0272A \circledstar CircledWhite Star

U+02733 \:eight_spoked_asterisk: Eight Spoked Asterisk

U+02734 \:eight_pointed_black_star: Eight Pointed Black Star

U+02736 \varstar Six Pointed Black Star

U+0273D \dingasterisk Heavy Teardrop-spoked Asterisk

U+02744 \:snowflake: Snowflake

U+02747 \:sparkle: Sparkle

U+0274C \:x: CrossMark

U+0274E \:nega-

tive_squared_cross_mark:

Negative Squared CrossMark

U+02753 \:question: BlackQuestionMarkOrnament

U+02754 \:grey_question: White QuestionMarkOrnament

U+02755 \:grey_exclamation: White ExclamationMarkOrnament

U+02757 \:exclamation: Heavy ExclamationMark Symbol

U+02764 \:heart: Heavy Black Heart

U+02795 \:heavy_plus_sign: Heavy Plus Sign

U+02796 \:heavy_minus_sign: HeavyMinus Sign

U+02797 \:heavy_division_sign: Heavy Division Sign

U+0279B \draftingarrow Drafting Point Rightwards Arrow / Drafting Point Right

Arrow

U+027A1 \:arrow_right: Black Rightwards Arrow / Black Right Arrow

U+027B0 \:curly_loop: Curly Loop

U+027BF \:loop: Double Curly Loop

U+027C0 \threedangle Three Dimensional Angle

U+027C1 \whiteinwhitetriangle White Triangle Containing SmallWhite Triangle

U+027C2 \perp Perpendicular

U+027C8 \bsolhsub Reverse Solidus Preceding Subset

U+027C9 \suphsol Superset Preceding Solidus

U+027D1 \wedgedot AndWith Dot

U+027D2 \upin Element Of Opening Upwards

U+027D5 \leftouterjoin Left Outer Join

U+027D6 \rightouterjoin Right Outer Join

U+027D7 \fullouterjoin Full Outer Join

U+027D8 \bigbot Large Up Tack

U+027D9 \bigtop Large Down Tack

U+027E6 \llbracket,

\openbracketleft

Mathematical LeftWhite Square Bracket

U+027E7 \openbracketright,

\rrbracket

Mathematical RightWhite Square Bracket

U+027E8 \langle Mathematical Left Angle Bracket

U+027E9 \rangle Mathematical Right Angle Bracket

U+027F0 \UUparrow Upwards Quadruple Arrow

U+027F1 \DDownarrow Downwards Quadruple Arrow

U+027F5 \longleftarrow Long Leftwards Arrow

U+027F6 \longrightarrow Long Rightwards Arrow

U+027F7 \longleftrightarrow Long Left Right Arrow

U+027F8 \impliedby,

\Longleftarrow

Long Leftwards Double Arrow

U+027F9 \implies, \Longrightarrow Long Rightwards Double Arrow

U+027FA \Longleftrightarrow, \iff Long Left Right Double Arrow

U+027FB \longmapsfrom Long Leftwards Arrow FromBar

U+027FC \longmapsto Long Rightwards Arrow FromBar

U+027FD \Longmapsfrom Long Leftwards Double Arrow FromBar

U+027FE \Longmapsto Long Rightwards Double Arrow FromBar

U+027FF \longrightsquigarrow Long Rightwards Squiggle Arrow

U+02900 \nvtwoheadrightarrow Rightwards Two-headed ArrowWith Vertical Stroke

U+02901 \nVtwoheadrightarrow Rightwards Two-headed ArrowWith Double Vertical

Stroke

U+02902 \nvLeftarrow Leftwards Double ArrowWith Vertical Stroke

U+02903 \nvRightarrow Rightwards Double ArrowWith Vertical Stroke

U+02904 \nvLeftrightarrow Left Right Double ArrowWith Vertical Stroke

U+02905 \twoheadmapsto Rightwards Two-headed Arrow FromBar

U+02906 \Mapsfrom Leftwards Double Arrow FromBar

U+02907 \Mapsto Rightwards Double Arrow FromBar

U+02908 \downarrowbarred Downwards ArrowWith Horizontal Stroke

U+02909 \uparrowbarred Upwards ArrowWith Horizontal Stroke

U+0290A \Uuparrow Upwards Triple Arrow

U+0290B \Ddownarrow Downwards Triple Arrow

U+0290C \leftbkarrow Leftwards Double Dash Arrow

U+0290D \bkarow Rightwards Double Dash Arrow

U+0290E \leftdbkarrow Leftwards Triple Dash Arrow

U+0290F \dbkarow Rightwards Triple Dash Arrow

U+02910 \drbkarrow Rightwards Two-headed Triple Dash Arrow

U+02911 \rightdotarrow Rightwards ArrowWith Dotted Stem

U+02912 \UpArrowBar Upwards Arrow To Bar

U+02913 \DownArrowBar Downwards Arrow To Bar

U+02914 \nvrightarrowtail Rightwards ArrowWith TailWith Vertical Stroke

U+02915 \nVrightarrowtail Rightwards ArrowWith TailWith Double Vertical Stroke

U+02916 \twoheadrightarrowtail Rightwards Two-headed ArrowWith Tail

U+02917 \nvtwoheadrightarrowtail Rightwards Two-headed ArrowWith TailWith Vertical

Stroke

U+02918 \nVtwoheadrightarrow-

tail

Rightwards Two-headed ArrowWith TailWith Double

Vertical Stroke

U+0291D \diamondleftarrow Leftwards Arrow To Black Diamond

U+0291E \rightarrowdiamond Rightwards Arrow To Black Diamond

U+0291F \diamondleftarrowbar Leftwards Arrow FromBar To Black Diamond

U+02920 \barrightarrowdiamond Rightwards Arrow FromBar To Black Diamond

U+02925 \hksearow South East ArrowWith Hook

U+02926 \hkswarow SouthWest ArrowWith Hook

U+02927 \tona NorthWest ArrowAndNorth East Arrow

U+02928 \toea North East ArrowAnd South East Arrow

U+02929 \tosa South East ArrowAnd SouthWest Arrow

U+0292A \towa SouthWest ArrowAndNorthWest Arrow

U+0292B \rdiagovfdiag Rising Diagonal Crossing Falling Diagonal

U+0292C \fdiagovrdiag Falling Diagonal Crossing Rising Diagonal

U+0292D \seovnearrow South East ArrowCrossing North East Arrow

U+0292E \neovsearrow North East ArrowCrossing South East Arrow

U+0292F \fdiagovnearrow Falling Diagonal Crossing North East Arrow

U+02930 \rdiagovsearrow Rising Diagonal Crossing South East Arrow

U+02931 \neovnwarrow North East ArrowCrossing NorthWest Arrow

U+02932 \nwovnearrow NorthWest ArrowCrossing North East Arrow

U+02934 \:arrow_heading_up: Arrow Pointing Rightwards Then Curving Upwards

U+02935 \:arrow_heading_down: Arrow Pointing Rightwards Then Curving Downwards

U+02942 \ElzRlarr Rightwards ArrowAbove Short Leftwards Arrow

U+02944 \ElzrLarr Short Rightwards ArrowAbove Leftwards Arrow

U+02945 \rightarrowplus Rightwards ArrowWith Plus Below

U+02946 \leftarrowplus Leftwards ArrowWith Plus Below

U+02947 \Elzrarrx Rightwards Arrow Through X

U+02948 \leftrightarrowcircle Left Right Arrow Through Small Circle

U+02949 \twoheaduparrowcircle Upwards Two-headed Arrow From Small Circle

U+0294A \leftrightharpoonupdown Left Barb Up Right Barb DownHarpoon

U+0294B \leftrightharpoondownup Left Barb Down Right Barb UpHarpoon

U+0294C \updownharpoonrightleft Up Barb Right Down Barb Left Harpoon

U+0294D \updownharpoonleftright Up Barb Left Down Barb Right Harpoon

U+0294E \LeftRightVector Left Barb Up Right Barb UpHarpoon

U+0294F \RightUpDownVector Up Barb Right Down Barb Right Harpoon

U+02950 \DownLeftRightVector Left Barb Down Right Barb DownHarpoon

U+02951 \LeftUpDownVector Up Barb Left Down Barb Left Harpoon

U+02952 \LeftVectorBar Leftwards HarpoonWith Barb Up To Bar

U+02953 \RightVectorBar Rightwards HarpoonWith Barb Up To Bar

U+02954 \RightUpVectorBar Upwards HarpoonWith Barb Right To Bar

U+02955 \RightDownVectorBar Downwards HarpoonWith Barb Right To Bar

U+02956 \DownLeftVectorBar Leftwards HarpoonWith Barb Down To Bar

U+02957 \DownRightVectorBar Rightwards HarpoonWith Barb Down To Bar

U+02958 \LeftUpVectorBar Upwards HarpoonWith Barb Left To Bar

U+02959 \LeftDownVectorBar Downwards HarpoonWith Barb Left To Bar

U+0295A \LeftTeeVector Leftwards HarpoonWith Barb Up FromBar

U+0295B \RightTeeVector Rightwards HarpoonWith Barb Up FromBar

U+0295C \RightUpTeeVector Upwards HarpoonWith Barb Right FromBar

U+0295D \RightDownTeeVector Downwards HarpoonWith Barb Right FromBar

U+0295E \DownLeftTeeVector Leftwards HarpoonWith Barb Down FromBar

U+0295F \DownRightTeeVector Rightwards HarpoonWith Barb Down FromBar

U+02960 \LeftUpTeeVector Upwards HarpoonWith Barb Left FromBar

U+02961 \LeftDownTeeVector Downwards HarpoonWith Barb Left FromBar

U+02962 \leftharpoonsupdown Leftwards HarpoonWith Barb Up Above Leftwards

HarpoonWith Barb Down

U+02963 \upharpoonsleftright Upwards HarpoonWith Barb Left Beside Upwards

HarpoonWith Barb Right

U+02964 \rightharpoonsupdown Rightwards HarpoonWith Barb Up Above Rightwards

HarpoonWith Barb Down

U+02965 \downharpoonsleftright Downwards HarpoonWith Barb Left Beside Downwards

HarpoonWith Barb Right

U+02966 \leftrightharpoonsup Leftwards HarpoonWith Barb Up Above Rightwards

HarpoonWith Barb Up

U+02967 \leftrightharpoonsdown Leftwards HarpoonWith Barb DownAbove Rightwards

HarpoonWith Barb Down

U+02968 \rightleftharpoonsup Rightwards HarpoonWith Barb Up Above Leftwards

HarpoonWith Barb Up

U+02969 \rightleftharpoonsdown Rightwards HarpoonWith Barb DownAbove Leftwards

HarpoonWith Barb Down

U+0296A \leftharpoonupdash Leftwards HarpoonWith Barb Up Above Long Dash

U+0296B \dashleftharpoondown Leftwards HarpoonWith Barb Down Below LongDash

U+0296C \rightharpoonupdash Rightwards HarpoonWith Barb Up Above Long Dash

U+0296D \dashrightharpoondown Rightwards HarpoonWith Barb Down Below LongDash

U+0296E \UpEquilibrium Upwards HarpoonWith Barb Left Beside Downwards

HarpoonWith Barb Right

U+0296F \ReverseUpEquilibrium Downwards HarpoonWith Barb Left Beside Upwards

HarpoonWith Barb Right

U+02970 \RoundImplies Right Double ArrowWith RoundedHead

U+02980 \Vvert Triple Vertical Bar Delimiter

U+02986 \Elroang RightWhite Parenthesis

U+02999 \Elzddfnc Dotted Fence

U+0299B \measuredangleleft Measured Angle Opening Left

U+0299C \Angle Right Angle VariantWith Square

U+0299D \rightanglemdot Measured Right AngleWith Dot

U+0299E \angles AngleWith S Inside

U+0299F \angdnr Acute Angle

U+029A0 \Elzlpargt Spherical Angle Opening Left

U+029A1 \sphericalangleup Spherical Angle Opening Up

U+029A2 \turnangle Turned Angle

U+029A3 \revangle Reversed Angle

U+029A4 \angleubar AngleWith Underbar

U+029A5 \revangleubar Reversed AngleWith Underbar

U+029A6 \wideangledown Oblique Angle Opening Up

U+029A7 \wideangleup Oblique Angle Opening Down

U+029A8 \measanglerutone Measured AngleWithOpen Arm Ending In Arrow Pointing

Up And Right

U+029A9 \measanglelutonw Measured AngleWithOpen Arm Ending In Arrow Pointing

Up And Left

U+029AA \measanglerdtose Measured AngleWithOpen Arm Ending In Arrow Pointing

DownAnd Right

U+029AB \measangleldtosw Measured AngleWithOpen Arm Ending In Arrow Pointing

DownAnd Left

U+029AC \measangleurtone Measured AngleWithOpen Arm Ending In Arrow Pointing

Right AndUp

U+029AD \measangleultonw Measured AngleWithOpen Arm Ending In Arrow Pointing

Left And Up

U+029AE \measangledrtose Measured AngleWithOpen Arm Ending In Arrow Pointing

Right AndDown

U+029AF \measangledltosw Measured AngleWithOpen Arm Ending In Arrow Pointing

Left AndDown

U+029B0 \revemptyset Reversed Empty Set

U+029B1 \emptysetobar Empty SetWithOverbar

U+029B2 \emptysetocirc Empty SetWith Small Circle Above

U+029B3 \emptysetoarr Empty SetWith Right ArrowAbove

U+029B4 \emptysetoarrl Empty SetWith Left ArrowAbove

U+029B7 \circledparallel Circled Parallel

U+029B8 \obslash Circled Reverse Solidus

U+029BC \odotslashdot Circled Anticlockwise-rotated Division Sign

U+029BE \circledwhitebullet CircledWhite Bullet

U+029BF \circledbullet Circled Bullet

U+029C0 \olessthan Circled Less-than

U+029C1 \ogreaterthan Circled Greater-than

U+029C4 \boxdiag Squared Rising Diagonal Slash

U+029C5 \boxbslash Squared Falling Diagonal Slash

U+029C6 \boxast Squared Asterisk

U+029C7 \boxcircle Squared Small Circle

U+029CA \ElzLap TriangleWith Dot Above

U+029CB \Elzdefas TriangleWith Underbar

U+029CF \LeftTriangleBar Left Triangle Beside Vertical Bar

U+029CF +

U+00338

\NotLeftTriangleBar Left Triangle Beside Vertical Bar + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+029D0 \RightTriangleBar Vertical Bar Beside Right Triangle

U+029D0 +

U+00338

\NotRightTriangleBar Vertical Bar Beside Right Triangle + Combining Long

Solidus Overlay / Non-spacing Long SlashOverlay

U+029DF \dualmap Double-endedMultimap

U+029E1 \lrtriangleeq Increases As

U+029E2 \shuffle Shuffle Product

U+029E3 \eparsl Equals Sign And Slanted Parallel

U+029E4 \smeparsl Equals Sign And Slanted ParallelWith Tilde Above

U+029E5 \eqvparsl Identical To And Slanted Parallel

U+029EB \blacklozenge Black Lozenge

U+029F4 \RuleDelayed Rule-delayed

U+029F6 \dsol SolidusWithOverbar

U+029F7 \rsolbar Reverse SolidusWith Horizontal Stroke

U+029FA \doubleplus Double Plus

U+029FB \tripleplus Triple Plus

U+02A00 \bigodot N-ary Circled Dot Operator

U+02A01 \bigoplus N-ary Circled Plus Operator

U+02A02 \bigotimes N-ary Circled TimesOperator

U+02A03 \bigcupdot N-ary UnionOperatorWith Dot

U+02A04 \biguplus N-ary UnionOperatorWith Plus

U+02A05 \bigsqcap N-ary Square IntersectionOperator

U+02A06 \bigsqcup N-ary Square UnionOperator

U+02A07 \conjquant Two Logical AndOperator

U+02A08 \disjquant Two Logical OrOperator

U+02A09 \bigtimes N-ary TimesOperator

U+02A0A \modtwosum Modulo Two Sum

U+02A0B \sumint SummationWith Integral

U+02A0C \iiiint Quadruple Integral Operator

U+02A0D \intbar Finite Part Integral

U+02A0E \intBar IntegralWith Double Stroke

U+02A0F \clockoint Integral AverageWith Slash

U+02A10 \cirfnint Circulation Function

U+02A11 \awint Anticlockwise Integration

U+02A12 \rppolint Line IntegrationWith Rectangular Path Around Pole

U+02A13 \scpolint Line IntegrationWith Semicircular Path Around Pole

U+02A14 \npolint Line Integration Not Including The Pole

U+02A15 \pointint Integral Around A Point Operator

U+02A16 \sqrint Quaternion Integral Operator

U+02A18 \intx IntegralWith Times Sign

U+02A19 \intcap IntegralWith Intersection

U+02A1A \intcup IntegralWith Union

U+02A1B \upint IntegralWithOverbar

U+02A1C \lowint IntegralWith Underbar

U+02A1D \Join Join

U+02A22 \ringplus Plus SignWith Small Circle Above

U+02A23 \plushat Plus SignWith Circumflex Accent Above

U+02A24 \simplus Plus SignWith Tilde Above

U+02A25 \plusdot Plus SignWith Dot Below

U+02A26 \plussim Plus SignWith Tilde Below

U+02A27 \plussubtwo Plus SignWith Subscript Two

U+02A28 \plustrif Plus SignWith Black Triangle

U+02A29 \commaminus Minus SignWith CommaAbove

U+02A2A \minusdot Minus SignWith Dot Below

U+02A2B \minusfdots Minus SignWith Falling Dots

U+02A2C \minusrdots Minus SignWith Rising Dots

U+02A2D \opluslhrim Plus Sign In Left Half Circle

U+02A2E \oplusrhrim Plus Sign In Right Half Circle

U+02A2F \ElzTimes Vector Or Cross Product

U+02A30 \dottimes Multiplication SignWith Dot Above

U+02A31 \timesbar Multiplication SignWith Underbar

U+02A32 \btimes Semidirect ProductWith BottomClosed

U+02A33 \smashtimes Smash Product

U+02A34 \otimeslhrim Multiplication Sign In Left Half Circle

U+02A35 \otimesrhrim Multiplication Sign In Right Half Circle

U+02A36 \otimeshat CircledMultiplication SignWith Circumflex Accent

U+02A37 \Otimes Multiplication Sign In Double Circle

U+02A38 \odiv Circled Division Sign

U+02A39 \triangleplus Plus Sign In Triangle

U+02A3A \triangleminus Minus Sign In Triangle

U+02A3B \triangletimes Multiplication Sign In Triangle

U+02A3C \intprod Interior Product

U+02A3D \intprodr Righthand Interior Product

U+02A3F \amalg AmalgamationOr Coproduct

U+02A40 \capdot IntersectionWith Dot

U+02A41 \uminus UnionWithMinus Sign

U+02A42 \barcup UnionWithOverbar

U+02A43 \barcap IntersectionWithOverbar

U+02A44 \capwedge IntersectionWith Logical And

U+02A45 \cupvee UnionWith Logical Or

U+02A4A \twocups Union Beside And JoinedWith Union

U+02A4B \twocaps Intersection Beside And JoinedWith Intersection

U+02A4C \closedvarcup Closed UnionWith Serifs

U+02A4D \closedvarcap Closed IntersectionWith Serifs

U+02A4E \Sqcap Double Square Intersection

U+02A4F \Sqcup Double Square Union

U+02A50 \closedvarcupsmashprod Closed UnionWith Serifs And Smash Product

U+02A51 \wedgeodot Logical AndWith Dot Above

U+02A52 \veeodot Logical OrWith Dot Above

U+02A53 \ElzAnd Double Logical And

U+02A54 \ElzOr Double Logical Or

U+02A55 \wedgeonwedge Two Intersecting Logical And

U+02A56 \ElOr Two Intersecting Logical Or

U+02A57 \bigslopedvee Sloping LargeOr

U+02A58 \bigslopedwedge Sloping Large And

U+02A5A \wedgemidvert Logical AndWithMiddle Stem

U+02A5B \veemidvert Logical OrWithMiddle Stem

U+02A5C \midbarwedge Logical AndWith Horizontal Dash

U+02A5D \midbarvee Logical OrWith Horizontal Dash

U+02A5E \perspcorrespond Logical AndWith Double Overbar

U+02A5F \Elzminhat Logical AndWith Underbar

U+02A60 \wedgedoublebar Logical AndWith Double Underbar

U+02A61 \varveebar Small VeeWith Underbar

U+02A62 \doublebarvee Logical OrWith Double Overbar

U+02A63 \veedoublebar Logical OrWith Double Underbar

U+02A66 \eqdot Equals SignWith Dot Below

U+02A67 \dotequiv IdenticalWith Dot Above

U+02A6A \dotsim Tilde OperatorWith Dot Above

U+02A6B \simrdots Tilde OperatorWith Rising Dots

U+02A6C \simminussim SimilarMinus Similar

U+02A6D \congdot CongruentWith Dot Above

U+02A6E \asteq EqualsWith Asterisk

U+02A6F \hatapprox Almost Equal ToWith Circumflex Accent

U+02A70 \approxeqq Approximately Equal Or Equal To

U+02A71 \eqqplus Equals Sign Above Plus Sign

U+02A72 \pluseqq Plus Sign Above Equals Sign

U+02A73 \eqqsim Equals Sign Above Tilde Operator

U+02A74 \Coloneq Double Colon Equal

U+02A75 \Equal Two Consecutive Equals Signs

U+02A76 \eqeqeq Three Consecutive Equals Signs

U+02A77 \ddotseq Equals SignWith TwoDots Above And TwoDots Below

U+02A78 \equivDD EquivalentWith Four Dots Above

U+02A79 \ltcir Less-thanWith Circle Inside

U+02A7A \gtcir Greater-thanWith Circle Inside

U+02A7B \ltquest Less-thanWithQuestionMark Above

U+02A7C \gtquest Greater-thanWithQuestionMark Above

U+02A7D \leqslant Less-thanOr Slanted Equal To

U+02A7D

+U+00338

\nleqslant Less-thanOr Slanted Equal To + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+02A7E \geqslant Greater-thanOr Slanted Equal To

U+02A7E +

U+00338

\ngeqslant Greater-thanOr Slanted Equal To + Combining Long

Solidus Overlay / Non-spacing Long SlashOverlay

U+02A7F \lesdot Less-thanOr Slanted Equal ToWith Dot Inside

U+02A80 \gesdot Greater-thanOr Slanted Equal ToWith Dot Inside

U+02A81 \lesdoto Less-thanOr Slanted Equal ToWith Dot Above

U+02A82 \gesdoto Greater-thanOr Slanted Equal ToWith Dot Above

U+02A83 \lesdotor Less-thanOr Slanted Equal ToWith Dot Above Right

U+02A84 \gesdotol Greater-thanOr Slanted Equal ToWith Dot Above Left

U+02A85 \lessapprox Less-thanOr Approximate

U+02A86 \gtrapprox Greater-thanOr Approximate

U+02A87 \lneq Less-than And Single-line Not Equal To

U+02A88 \gneq Greater-than And Single-line Not Equal To

U+02A89 \lnapprox Less-than AndNot Approximate

U+02A8A \gnapprox Greater-than AndNot Approximate

U+02A8B \lesseqqgtr Less-than Above Double-line Equal Above Greater-than

U+02A8C \gtreqqless Greater-than Above Double-line Equal Above Less-than

U+02A8D \lsime Less-than Above Similar Or Equal

U+02A8E \gsime Greater-than Above Similar Or Equal

U+02A8F \lsimg Less-than Above Similar Above Greater-than

U+02A90 \gsiml Greater-than Above Similar Above Less-than

U+02A91 \lgE Less-than Above Greater-than Above Double-line Equal

U+02A92 \glE Greater-than Above Less-than Above Double-line Equal

U+02A93 \lesges Less-than Above Slanted Equal Above Greater-than Above

Slanted Equal

U+02A94 \gesles Greater-than Above Slanted Equal Above Less-than Above

Slanted Equal

U+02A95 \eqslantless Slanted Equal ToOr Less-than

U+02A96 \eqslantgtr Slanted Equal ToOr Greater-than

U+02A97 \elsdot Slanted Equal ToOr Less-thanWith Dot Inside

U+02A98 \egsdot Slanted Equal ToOr Greater-thanWith Dot Inside

U+02A99 \eqqless Double-line Equal ToOr Less-than

U+02A9A \eqqgtr Double-line Equal ToOr Greater-than

U+02A9B \eqqslantless Double-line Slanted Equal ToOr Less-than

U+02A9C \eqqslantgtr Double-line Slanted Equal ToOr Greater-than

U+02A9D \simless Similar Or Less-than

U+02A9E \simgtr Similar Or Greater-than

U+02A9F \simlE Similar Above Less-than Above Equals Sign

U+02AA0 \simgE Similar Above Greater-than Above Equals Sign

U+02AA1 \NestedLessLess Double Nested Less-than

U+02AA1 +

U+00338

\NotNestedLessLess Double Nested Less-than + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+02AA2 \NestedGreaterGreater Double Nested Greater-than

U+02AA2 +

U+00338

\NotNestedGreater-

Greater

Double Nested Greater-than + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+02AA3 \partialmeetcontraction Double Nested Less-thanWith Underbar

U+02AA4 \glj Greater-thanOverlapping Less-than

U+02AA5 \gla Greater-than Beside Less-than

U+02AA6 \ltcc Less-than Closed By Curve

U+02AA7 \gtcc Greater-than Closed By Curve

U+02AA8 \lescc Less-than Closed By Curve Above Slanted Equal

U+02AA9 \gescc Greater-than Closed By Curve Above Slanted Equal

U+02AAA \smt Smaller Than

U+02AAB \lat Larger Than

U+02AAC \smte Smaller ThanOr Equal To

U+02AAD \late Larger ThanOr Equal To

U+02AAE \bumpeqq Equals SignWith Bumpy Above

U+02AAF \preceq Precedes Above Single-line Equals Sign

U+02AAF +

U+00338

\npreceq Precedes Above Single-line Equals Sign + Combining Long

Solidus Overlay / Non-spacing Long SlashOverlay

U+02AB0 \succeq Succeeds Above Single-line Equals Sign

U+02AB0 +

U+00338

\nsucceq Succeeds Above Single-line Equals Sign + Combining Long

Solidus Overlay / Non-spacing Long SlashOverlay

U+02AB1 \precneq Precedes Above Single-line Not Equal To

U+02AB2 \succneq Succeeds Above Single-line Not Equal To

U+02AB3 \preceqq Precedes Above Equals Sign

U+02AB4 \succeqq Succeeds Above Equals Sign

U+02AB5 \precneqq Precedes AboveNot Equal To

U+02AB6 \succneqq Succeeds AboveNot Equal To

U+02AB7 \precapprox Precedes Above Almost Equal To

U+02AB8 \succapprox Succeeds Above Almost Equal To

U+02AB9 \precnapprox Precedes AboveNot Almost Equal To

U+02ABA \succnapprox Succeeds AboveNot Almost Equal To

U+02ABB \Prec Double Precedes

U+02ABC \Succ Double Succeeds

U+02ABD \subsetdot SubsetWith Dot

U+02ABE \supsetdot SupersetWith Dot

U+02ABF \subsetplus SubsetWith Plus Sign Below

U+02AC0 \supsetplus SupersetWith Plus Sign Below

U+02AC1 \submult SubsetWithMultiplication Sign Below

U+02AC2 \supmult SupersetWithMultiplication Sign Below

U+02AC3 \subedot Subset Of Or Equal ToWith Dot Above

U+02AC4 \supedot Superset Of Or Equal ToWith Dot Above

U+02AC5 \subseteqq Subset Of Above Equals Sign

U+02AC5 +

U+00338

\nsubseteqq Subset Of Above Equals Sign + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+02AC6 \supseteqq Superset Of Above Equals Sign

U+02AC6 +

U+00338

\nsupseteqq Superset Of Above Equals Sign + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+02AC7 \subsim Subset Of Above Tilde Operator

U+02AC8 \supsim Superset Of Above Tilde Operator

U+02AC9 \subsetapprox Subset Of Above Almost Equal To

U+02ACA \supsetapprox Superset Of Above Almost Equal To

U+02ACB \subsetneqq Subset Of Above Not Equal To

U+02ACC \supsetneqq Superset Of Above Not Equal To

U+02ACD \lsqhook Square Left Open BoxOperator

U+02ACE \rsqhook Square Right Open BoxOperator

U+02ACF \csub Closed Subset

U+02AD0 \csup Closed Superset

U+02AD1 \csube Closed Subset Or Equal To

U+02AD2 \csupe Closed Superset Or Equal To

U+02AD3 \subsup Subset Above Superset

U+02AD4 \supsub Superset Above Subset

U+02AD5 \subsub Subset Above Subset

U+02AD6 \supsup Superset Above Superset

U+02AD7 \suphsub Superset Beside Subset

U+02AD8 \supdsub Superset Beside And Joined ByDashWith Subset

U+02AD9 \forkv Element Of Opening Downwards

U+02ADB \mlcp Transversal Intersection

U+02ADC \forks Forking

U+02ADD \forksnot Nonforking

U+02AE3 \dashV Double Vertical Bar Left Turnstile

U+02AE4 \Dashv Vertical Bar Double Left Turnstile

U+02AF4 \interleave Triple Vertical Bar Binary Relation

U+02AF6 \Elztdcol Triple ColonOperator

U+02AF7 \lllnest Triple Nested Less-than

U+02AF8 \gggnest Triple Nested Greater-than

U+02AF9 \leqqslant Double-line Slanted Less-thanOr Equal To

U+02AFA \geqqslant Double-line Slanted Greater-thanOr Equal To

U+02B05 \:arrow_left: Leftwards Black Arrow

U+02B06 \:arrow_up: Upwards Black Arrow

U+02B07 \:arrow_down: Downwards Black Arrow

U+02B12 \squaretopblack SquareWith TopHalf Black

U+02B13 \squarebotblack SquareWith BottomHalf Black

U+02B14 \squareurblack SquareWith Upper Right Diagonal Half Black

U+02B15 \squarellblack SquareWith Lower Left Diagonal Half Black

U+02B16 \diamondleftblack DiamondWith Left Half Black

U+02B17 \diamondrightblack DiamondWith Right Half Black

U+02B18 \diamondtopblack DiamondWith TopHalf Black

U+02B19 \diamondbotblack DiamondWith BottomHalf Black

U+02B1A \dottedsquare Dotted Square

U+02B1B \lgblksquare,

\:black_large_square:

Black Large Square

U+02B1C \lgwhtsquare,

\:white_large_square:

White Large Square

U+02B1D \vysmblksquare Black Very Small Square

U+02B1E \vysmwhtsquare White Very Small Square

U+02B1F \pentagonblack Black Pentagon

U+02B20 \pentagon White Pentagon

U+02B21 \varhexagon White Hexagon

U+02B22 \varhexagonblack Black Hexagon

U+02B23 \hexagonblack Horizontal Black Hexagon

U+02B24 \lgblkcircle Black Large Circle

U+02B25 \mdblkdiamond BlackMediumDiamond

U+02B26 \mdwhtdiamond WhiteMediumDiamond

U+02B27 \mdblklozenge BlackMedium Lozenge

U+02B28 \mdwhtlozenge WhiteMedium Lozenge

U+02B29 \smblkdiamond Black Small Diamond

U+02B2A \smblklozenge Black Small Lozenge

U+02B2B \smwhtlozenge White Small Lozenge

U+02B2C \blkhorzoval Black Horizontal Ellipse

U+02B2D \whthorzoval White Horizontal Ellipse

U+02B2E \blkvertoval Black Vertical Ellipse

U+02B2F \whtvertoval White Vertical Ellipse

U+02B30 \circleonleftarrow Left ArrowWith Small Circle

U+02B31 \leftthreearrows Three Leftwards Arrows

U+02B32 \leftarrowonoplus Left ArrowWith Circled Plus

U+02B33 \longleftsquigarrow Long Leftwards Squiggle Arrow

U+02B34 \nvtwoheadleftarrow Leftwards Two-headed ArrowWith Vertical Stroke

U+02B35 \nVtwoheadleftarrow Leftwards Two-headed ArrowWith Double Vertical Stroke

U+02B36 \twoheadmapsfrom Leftwards Two-headed Arrow FromBar

U+02B37 \twoheadleftdbkarrow Leftwards Two-headed Triple Dash Arrow

U+02B38 \leftdotarrow Leftwards ArrowWith Dotted Stem

U+02B39 \nvleftarrowtail Leftwards ArrowWith TailWith Vertical Stroke

U+02B3A \nVleftarrowtail Leftwards ArrowWith TailWith Double Vertical Stroke

U+02B3B \twoheadleftarrowtail Leftwards Two-headed ArrowWith Tail

U+02B3C \nvtwoheadleftarrowtail Leftwards Two-headed ArrowWith TailWith Vertical

Stroke

U+02B3D \nVtwoheadleftarrowtail Leftwards Two-headed ArrowWith TailWith Double

Vertical Stroke

U+02B3E \leftarrowx Leftwards Arrow Through X

U+02B3F \leftcurvedarrow Wave Arrow Pointing Directly Left

U+02B40 \equalleftarrow Equals Sign Above Leftwards Arrow

U+02B41 \bsimilarleftarrow Reverse Tilde Operator Above Leftwards Arrow

U+02B42 \leftarrowbackapprox Leftwards ArrowAbove Reverse Almost Equal To

U+02B43 \rightarrowgtr Rightwards Arrow Through Greater-than

U+02B44 \rightarrowsupset Rightwards Arrow Through Superset

U+02B45 \LLeftarrow Leftwards Quadruple Arrow

U+02B46 \RRightarrow Rightwards Quadruple Arrow

U+02B47 \bsimilarrightarrow Reverse Tilde Operator Above Rightwards Arrow

U+02B48 \rightarrowbackapprox Rightwards ArrowAbove Reverse Almost Equal To

U+02B49 \similarleftarrow Tilde Operator Above Leftwards Arrow

U+02B4A \leftarrowapprox Leftwards ArrowAbove Almost Equal To

U+02B4B \leftarrowbsimilar Leftwards ArrowAbove Reverse Tilde Operator

U+02B4C \rightarrowbsimilar Rightwards ArrowAbove Reverse Tilde Operator

U+02B50 \medwhitestar, \:star: WhiteMedium Star

U+02B51 \medblackstar Black Small Star

U+02B52 \smwhitestar White Small Star

U+02B53 \rightpentagonblack Black Right-pointing Pentagon

U+02B54 \rightpentagon White Right-pointing Pentagon

U+02B55 \:o: Heavy Large Circle

U+02C7C _j Latin Subscript Small Letter J

U+02C7D \^V Modifier Letter Capital V

U+03012 \postalmark Postal Mark

U+03030 \:wavy_dash: WavyDash

U+0303D \:part_alternation_mark: Part AlternationMark

U+03297 \:congratulations: Circled Ideograph Congratulation

U+03299 \:secret: Circled Ideograph Secret

U+1D400 \mbfA Mathematical Bold Capital A

U+1D401 \mbfB Mathematical Bold Capital B

U+1D402 \mbfC Mathematical Bold Capital C

U+1D403 \mbfD Mathematical Bold Capital D

U+1D404 \mbfE Mathematical Bold Capital E

U+1D405 \mbfF Mathematical Bold Capital F

U+1D406 \mbfG Mathematical Bold Capital G

U+1D407 \mbfH Mathematical Bold Capital H

U+1D408 \mbfI Mathematical Bold Capital I

U+1D409 \mbfJ Mathematical Bold Capital J

U+1D40A \mbfK Mathematical Bold Capital K

U+1D40B \mbfL Mathematical Bold Capital L

U+1D40C \mbfM Mathematical Bold Capital M

U+1D40D \mbfN Mathematical Bold Capital N

U+1D40E \mbfO Mathematical Bold Capital O

U+1D40F \mbfP Mathematical Bold Capital P

U+1D410 \mbfQ Mathematical Bold Capital Q

U+1D411 \mbfR Mathematical Bold Capital R

U+1D412 \mbfS Mathematical Bold Capital S

U+1D413 \mbfT Mathematical Bold Capital T

U+1D414 \mbfU Mathematical Bold Capital U

U+1D415 \mbfV Mathematical Bold Capital V

U+1D416 \mbfW Mathematical Bold CapitalW

U+1D417 \mbfX Mathematical Bold Capital X

U+1D418 \mbfY Mathematical Bold Capital Y

U+1D419 \mbfZ Mathematical Bold Capital Z

U+1D41A \mbfa Mathematical Bold Small A

U+1D41B \mbfb Mathematical Bold Small B

U+1D41C \mbfc Mathematical Bold Small C

U+1D41D \mbfd Mathematical Bold Small D

U+1D41E \mbfe Mathematical Bold Small E

U+1D41F \mbff Mathematical Bold Small F

U+1D420 \mbfg Mathematical Bold Small G

U+1D421 \mbfh Mathematical Bold Small H

U+1D422 \mbfi Mathematical Bold Small I

U+1D423 \mbfj Mathematical Bold Small J

U+1D424 \mbfk Mathematical Bold Small K

U+1D425 \mbfl Mathematical Bold Small L

U+1D426 \mbfm Mathematical Bold Small M

U+1D427 \mbfn Mathematical Bold Small N

U+1D428 \mbfo Mathematical Bold Small O

U+1D429 \mbfp Mathematical Bold Small P

U+1D42A \mbfq Mathematical Bold Small Q

U+1D42B \mbfr Mathematical Bold Small R

U+1D42C \mbfs Mathematical Bold Small S

U+1D42D \mbft Mathematical Bold Small T

U+1D42E \mbfu Mathematical Bold Small U

U+1D42F \mbfv Mathematical Bold Small V

U+1D430 \mbfw Mathematical Bold SmallW

U+1D431 \mbfx Mathematical Bold Small X

U+1D432 \mbfy Mathematical Bold Small Y

U+1D433 \mbfz Mathematical Bold Small Z

U+1D434 \mitA Mathematical Italic Capital A

U+1D435 \mitB Mathematical Italic Capital B

U+1D436 \mitC Mathematical Italic Capital C

U+1D437 \mitD Mathematical Italic Capital D

U+1D438 \mitE Mathematical Italic Capital E

U+1D439 \mitF Mathematical Italic Capital F

U+1D43A \mitG Mathematical Italic Capital G

U+1D43B \mitH Mathematical Italic Capital H

U+1D43C \mitI Mathematical Italic Capital I

U+1D43D \mitJ Mathematical Italic Capital J

U+1D43E \mitK Mathematical Italic Capital K

U+1D43F \mitL Mathematical Italic Capital L

U+1D440 \mitM Mathematical Italic Capital M

U+1D441 \mitN Mathematical Italic Capital N

U+1D442 \mitO Mathematical Italic Capital O

U+1D443 \mitP Mathematical Italic Capital P

U+1D444 \mitQ Mathematical Italic Capital Q

U+1D445 \mitR Mathematical Italic Capital R

U+1D446 \mitS Mathematical Italic Capital S

U+1D447 \mitT Mathematical Italic Capital T

U+1D448 \mitU Mathematical Italic Capital U

U+1D449 \mitV Mathematical Italic Capital V

U+1D44A \mitW Mathematical Italic CapitalW

U+1D44B \mitX Mathematical Italic Capital X

U+1D44C \mitY Mathematical Italic Capital Y

U+1D44D \mitZ Mathematical Italic Capital Z

U+1D44E \mita Mathematical Italic Small A

U+1D44F \mitb Mathematical Italic Small B

U+1D450 \mitc Mathematical Italic Small C

U+1D451 \mitd Mathematical Italic Small D

U+1D452 \mite Mathematical Italic Small E

U+1D453 \mitf Mathematical Italic Small F

U+1D454 \mitg Mathematical Italic Small G

U+1D456 \miti Mathematical Italic Small I

U+1D457 \mitj Mathematical Italic Small J

U+1D458 \mitk Mathematical Italic Small K

U+1D459 \mitl Mathematical Italic Small L

U+1D45A \mitm Mathematical Italic Small M

U+1D45B \mitn Mathematical Italic Small N

U+1D45C \mito Mathematical Italic Small O

U+1D45D \mitp Mathematical Italic Small P

U+1D45E \mitq Mathematical Italic Small Q

U+1D45F \mitr Mathematical Italic Small R

U+1D460 \mits Mathematical Italic Small S

U+1D461 \mitt Mathematical Italic Small T

U+1D462 \mitu Mathematical Italic Small U

U+1D463 \mitv Mathematical Italic Small V

U+1D464 \mitw Mathematical Italic SmallW

U+1D465 \mitx Mathematical Italic Small X

U+1D466 \mity Mathematical Italic Small Y

U+1D467 \mitz Mathematical Italic Small Z

U+1D468 \mbfitA Mathematical Bold Italic Capital A

U+1D469 \mbfitB Mathematical Bold Italic Capital B

U+1D46A \mbfitC Mathematical Bold Italic Capital C

U+1D46B \mbfitD Mathematical Bold Italic Capital D

U+1D46C \mbfitE Mathematical Bold Italic Capital E

U+1D46D \mbfitF Mathematical Bold Italic Capital F

U+1D46E \mbfitG Mathematical Bold Italic Capital G

U+1D46F \mbfitH Mathematical Bold Italic Capital H

U+1D470 \mbfitI Mathematical Bold Italic Capital I

U+1D471 \mbfitJ Mathematical Bold Italic Capital J

U+1D472 \mbfitK Mathematical Bold Italic Capital K

U+1D473 \mbfitL Mathematical Bold Italic Capital L

U+1D474 \mbfitM Mathematical Bold Italic Capital M

U+1D475 \mbfitN Mathematical Bold Italic Capital N

U+1D476 \mbfitO Mathematical Bold Italic Capital O

U+1D477 \mbfitP Mathematical Bold Italic Capital P

U+1D478 \mbfitQ Mathematical Bold Italic Capital Q

U+1D479 \mbfitR Mathematical Bold Italic Capital R

U+1D47A \mbfitS Mathematical Bold Italic Capital S

U+1D47B \mbfitT Mathematical Bold Italic Capital T

U+1D47C \mbfitU Mathematical Bold Italic Capital U

U+1D47D \mbfitV Mathematical Bold Italic Capital V

U+1D47E \mbfitW Mathematical Bold Italic CapitalW

U+1D47F \mbfitX Mathematical Bold Italic Capital X

U+1D480 \mbfitY Mathematical Bold Italic Capital Y

U+1D481 \mbfitZ Mathematical Bold Italic Capital Z

U+1D482 \mbfita Mathematical Bold Italic Small A

U+1D483 \mbfitb Mathematical Bold Italic Small B

U+1D484 \mbfitc Mathematical Bold Italic Small C

U+1D485 \mbfitd Mathematical Bold Italic Small D

U+1D486 \mbfite Mathematical Bold Italic Small E

U+1D487 \mbfitf Mathematical Bold Italic Small F

U+1D488 \mbfitg Mathematical Bold Italic Small G

U+1D489 \mbfith Mathematical Bold Italic Small H

U+1D48A \mbfiti Mathematical Bold Italic Small I

U+1D48B \mbfitj Mathematical Bold Italic Small J

U+1D48C \mbfitk Mathematical Bold Italic Small K

U+1D48D \mbfitl Mathematical Bold Italic Small L

U+1D48E \mbfitm Mathematical Bold Italic Small M

U+1D48F \mbfitn Mathematical Bold Italic Small N

U+1D490 \mbfito Mathematical Bold Italic Small O

U+1D491 \mbfitp Mathematical Bold Italic Small P

U+1D492 \mbfitq Mathematical Bold Italic Small Q

U+1D493 \mbfitr Mathematical Bold Italic Small R

U+1D494 \mbfits Mathematical Bold Italic Small S

U+1D495 \mbfitt Mathematical Bold Italic Small T

U+1D496 \mbfitu Mathematical Bold Italic Small U

U+1D497 \mbfitv Mathematical Bold Italic Small V

U+1D498 \mbfitw Mathematical Bold Italic SmallW

U+1D499 \mbfitx Mathematical Bold Italic Small X

U+1D49A \mbfity Mathematical Bold Italic Small Y

U+1D49B \mbfitz Mathematical Bold Italic Small Z

U+1D49C \mscrA Mathematical Script Capital A

U+1D49E \mscrC Mathematical Script Capital C

U+1D49F \mscrD Mathematical Script Capital D

U+1D4A2 \mscrG Mathematical Script Capital G

U+1D4A5 \mscrJ Mathematical Script Capital J

U+1D4A6 \mscrK Mathematical Script Capital K

U+1D4A9 \mscrN Mathematical Script Capital N

U+1D4AA \mscrO Mathematical Script Capital O

U+1D4AB \mscrP Mathematical Script Capital P

U+1D4AC \mscrQ Mathematical Script Capital Q

U+1D4AE \mscrS Mathematical Script Capital S

U+1D4AF \mscrT Mathematical Script Capital T

U+1D4B0 \mscrU Mathematical Script Capital U

U+1D4B1 \mscrV Mathematical Script Capital V

U+1D4B2 \mscrW Mathematical Script CapitalW

U+1D4B3 \mscrX Mathematical Script Capital X

U+1D4B4 \mscrY Mathematical Script Capital Y

U+1D4B5 \mscrZ Mathematical Script Capital Z

U+1D4B6 \mscra Mathematical Script Small A

U+1D4B7 \mscrb Mathematical Script Small B

U+1D4B8 \mscrc Mathematical Script Small C

U+1D4B9 \mscrd Mathematical Script Small D

U+1D4BB \mscrf Mathematical Script Small F

U+1D4BD \mscrh Mathematical Script Small H

U+1D4BE \mscri Mathematical Script Small I

U+1D4BF \mscrj Mathematical Script Small J

U+1D4C0 \mscrk Mathematical Script Small K

U+1D4C1 \mscrl Mathematical Script Small L

U+1D4C2 \mscrm Mathematical Script Small M

U+1D4C3 \mscrn Mathematical Script Small N

U+1D4C5 \mscrp Mathematical Script Small P

U+1D4C6 \mscrq Mathematical Script Small Q

U+1D4C7 \mscrr Mathematical Script Small R

U+1D4C8 \mscrs Mathematical Script Small S

U+1D4C9 \mscrt Mathematical Script Small T

U+1D4CA \mscru Mathematical Script Small U

U+1D4CB \mscrv Mathematical Script Small V

U+1D4CC \mscrw Mathematical Script SmallW

U+1D4CD \mscrx Mathematical Script Small X

U+1D4CE \mscry Mathematical Script Small Y

U+1D4CF \mscrz Mathematical Script Small Z

U+1D4D0 \mbfscrA Mathematical Bold Script Capital A

U+1D4D1 \mbfscrB Mathematical Bold Script Capital B

U+1D4D2 \mbfscrC Mathematical Bold Script Capital C

U+1D4D3 \mbfscrD Mathematical Bold Script Capital D

U+1D4D4 \mbfscrE Mathematical Bold Script Capital E

U+1D4D5 \mbfscrF Mathematical Bold Script Capital F

U+1D4D6 \mbfscrG Mathematical Bold Script Capital G

U+1D4D7 \mbfscrH Mathematical Bold Script Capital H

U+1D4D8 \mbfscrI Mathematical Bold Script Capital I

U+1D4D9 \mbfscrJ Mathematical Bold Script Capital J

U+1D4DA \mbfscrK Mathematical Bold Script Capital K

U+1D4DB \mbfscrL Mathematical Bold Script Capital L

U+1D4DC \mbfscrM Mathematical Bold Script Capital M

U+1D4DD \mbfscrN Mathematical Bold Script Capital N

U+1D4DE \mbfscrO Mathematical Bold Script Capital O

U+1D4DF \mbfscrP Mathematical Bold Script Capital P

U+1D4E0 \mbfscrQ Mathematical Bold Script Capital Q

U+1D4E1 \mbfscrR Mathematical Bold Script Capital R

U+1D4E2 \mbfscrS Mathematical Bold Script Capital S

U+1D4E3 \mbfscrT Mathematical Bold Script Capital T

U+1D4E4 \mbfscrU Mathematical Bold Script Capital U

U+1D4E5 \mbfscrV Mathematical Bold Script Capital V

U+1D4E6 \mbfscrW Mathematical Bold Script CapitalW

U+1D4E7 \mbfscrX Mathematical Bold Script Capital X

U+1D4E8 \mbfscrY Mathematical Bold Script Capital Y

U+1D4E9 \mbfscrZ Mathematical Bold Script Capital Z

U+1D4EA \mbfscra Mathematical Bold Script Small A

U+1D4EB \mbfscrb Mathematical Bold Script Small B

U+1D4EC \mbfscrc Mathematical Bold Script Small C

U+1D4ED \mbfscrd Mathematical Bold Script Small D

U+1D4EE \mbfscre Mathematical Bold Script Small E

U+1D4EF \mbfscrf Mathematical Bold Script Small F

U+1D4F0 \mbfscrg Mathematical Bold Script Small G

U+1D4F1 \mbfscrh Mathematical Bold Script Small H

U+1D4F2 \mbfscri Mathematical Bold Script Small I

U+1D4F3 \mbfscrj Mathematical Bold Script Small J

U+1D4F4 \mbfscrk Mathematical Bold Script Small K

U+1D4F5 \mbfscrl Mathematical Bold Script Small L

U+1D4F6 \mbfscrm Mathematical Bold Script Small M

U+1D4F7 \mbfscrn Mathematical Bold Script Small N

U+1D4F8 \mbfscro Mathematical Bold Script Small O

U+1D4F9 \mbfscrp Mathematical Bold Script Small P

U+1D4FA \mbfscrq Mathematical Bold Script Small Q

U+1D4FB \mbfscrr Mathematical Bold Script Small R

U+1D4FC \mbfscrs Mathematical Bold Script Small S

U+1D4FD \mbfscrt Mathematical Bold Script Small T

U+1D4FE \mbfscru Mathematical Bold Script Small U

U+1D4FF \mbfscrv Mathematical Bold Script Small V

U+1D500 \mbfscrw Mathematical Bold Script SmallW

U+1D501 \mbfscrx Mathematical Bold Script Small X

U+1D502 \mbfscry Mathematical Bold Script Small Y

U+1D503 \mbfscrz Mathematical Bold Script Small Z

U+1D504 \mfrakA Mathematical Fraktur Capital A

U+1D505 \mfrakB Mathematical Fraktur Capital B

U+1D507 \mfrakD Mathematical Fraktur Capital D

U+1D508 \mfrakE Mathematical Fraktur Capital E

U+1D509 \mfrakF Mathematical Fraktur Capital F

U+1D50A \mfrakG Mathematical Fraktur Capital G

U+1D50D \mfrakJ Mathematical Fraktur Capital J

U+1D50E \mfrakK Mathematical Fraktur Capital K

U+1D50F \mfrakL Mathematical Fraktur Capital L

U+1D510 \mfrakM Mathematical Fraktur Capital M

U+1D511 \mfrakN Mathematical Fraktur Capital N

U+1D512 \mfrakO Mathematical Fraktur Capital O

U+1D513 \mfrakP Mathematical Fraktur Capital P

U+1D514 \mfrakQ Mathematical Fraktur Capital Q

U+1D516 \mfrakS Mathematical Fraktur Capital S

U+1D517 \mfrakT Mathematical Fraktur Capital T

U+1D518 \mfrakU Mathematical Fraktur Capital U

U+1D519 \mfrakV Mathematical Fraktur Capital V

U+1D51A \mfrakW Mathematical Fraktur CapitalW

U+1D51B \mfrakX Mathematical Fraktur Capital X

U+1D51C \mfrakY Mathematical Fraktur Capital Y

U+1D51E \mfraka Mathematical Fraktur Small A

U+1D51F \mfrakb Mathematical Fraktur Small B

U+1D520 \mfrakc Mathematical Fraktur Small C

U+1D521 \mfrakd Mathematical Fraktur Small D

U+1D522 \mfrake Mathematical Fraktur Small E

U+1D523 \mfrakf Mathematical Fraktur Small F

U+1D524 \mfrakg Mathematical Fraktur Small G

U+1D525 \mfrakh Mathematical Fraktur Small H

U+1D526 \mfraki Mathematical Fraktur Small I

U+1D527 \mfrakj Mathematical Fraktur Small J

U+1D528 \mfrakk Mathematical Fraktur Small K

U+1D529 \mfrakl Mathematical Fraktur Small L

U+1D52A \mfrakm Mathematical Fraktur Small M

U+1D52B \mfrakn Mathematical Fraktur Small N

U+1D52C \mfrako Mathematical Fraktur Small O

U+1D52D \mfrakp Mathematical Fraktur Small P

U+1D52E \mfrakq Mathematical Fraktur Small Q

U+1D52F \mfrakr Mathematical Fraktur Small R

U+1D530 \mfraks Mathematical Fraktur Small S

U+1D531 \mfrakt Mathematical Fraktur Small T

U+1D532 \mfraku Mathematical Fraktur Small U

U+1D533 \mfrakv Mathematical Fraktur Small V

U+1D534 \mfrakw Mathematical Fraktur SmallW

U+1D535 \mfrakx Mathematical Fraktur Small X

U+1D536 \mfraky Mathematical Fraktur Small Y

U+1D537 \mfrakz Mathematical Fraktur Small Z

U+1D538 \BbbA Mathematical Double-struck Capital A

U+1D539 \BbbB Mathematical Double-struck Capital B

U+1D53B \BbbD Mathematical Double-struck Capital D

U+1D53C \BbbE Mathematical Double-struck Capital E

U+1D53D \BbbF Mathematical Double-struck Capital F

U+1D53E \BbbG Mathematical Double-struck Capital G

U+1D540 \BbbI Mathematical Double-struck Capital I

U+1D541 \BbbJ Mathematical Double-struck Capital J

U+1D542 \BbbK Mathematical Double-struck Capital K

U+1D543 \BbbL Mathematical Double-struck Capital L

U+1D544 \BbbM Mathematical Double-struck Capital M

U+1D546 \BbbO Mathematical Double-struck Capital O

U+1D54A \BbbS Mathematical Double-struck Capital S

U+1D54B \BbbT Mathematical Double-struck Capital T

U+1D54C \BbbU Mathematical Double-struck Capital U

U+1D54D \BbbV Mathematical Double-struck Capital V

U+1D54E \BbbW Mathematical Double-struck CapitalW

U+1D54F \BbbX Mathematical Double-struck Capital X

U+1D550 \BbbY Mathematical Double-struck Capital Y

U+1D552 \Bbba Mathematical Double-struck Small A

U+1D553 \Bbbb Mathematical Double-struck Small B

U+1D554 \Bbbc Mathematical Double-struck Small C

U+1D555 \Bbbd Mathematical Double-struck Small D

U+1D556 \Bbbe Mathematical Double-struck Small E

U+1D557 \Bbbf Mathematical Double-struck Small F

U+1D558 \Bbbg Mathematical Double-struck Small G

U+1D559 \Bbbh Mathematical Double-struck Small H

U+1D55A \Bbbi Mathematical Double-struck Small I

U+1D55B \Bbbj Mathematical Double-struck Small J

U+1D55C \Bbbk Mathematical Double-struck Small K

U+1D55D \Bbbl Mathematical Double-struck Small L

U+1D55E \Bbbm Mathematical Double-struck Small M

U+1D55F \Bbbn Mathematical Double-struck Small N

U+1D560 \Bbbo Mathematical Double-struck Small O

U+1D561 \Bbbp Mathematical Double-struck Small P

U+1D562 \Bbbq Mathematical Double-struck Small Q

U+1D563 \Bbbr Mathematical Double-struck Small R

U+1D564 \Bbbs Mathematical Double-struck Small S

U+1D565 \Bbbt Mathematical Double-struck Small T

U+1D566 \Bbbu Mathematical Double-struck Small U

U+1D567 \Bbbv Mathematical Double-struck Small V

U+1D568 \Bbbw Mathematical Double-struck SmallW

U+1D569 \Bbbx Mathematical Double-struck Small X

U+1D56A \Bbby Mathematical Double-struck Small Y

U+1D56B \Bbbz Mathematical Double-struck Small Z

U+1D56C \mbffrakA Mathematical Bold Fraktur Capital A

U+1D56D \mbffrakB Mathematical Bold Fraktur Capital B

U+1D56E \mbffrakC Mathematical Bold Fraktur Capital C

U+1D56F \mbffrakD Mathematical Bold Fraktur Capital D

U+1D570 \mbffrakE Mathematical Bold Fraktur Capital E

U+1D571 \mbffrakF Mathematical Bold Fraktur Capital F

U+1D572 \mbffrakG Mathematical Bold Fraktur Capital G

U+1D573 \mbffrakH Mathematical Bold Fraktur Capital H

U+1D574 \mbffrakI Mathematical Bold Fraktur Capital I

U+1D575 \mbffrakJ Mathematical Bold Fraktur Capital J

U+1D576 \mbffrakK Mathematical Bold Fraktur Capital K

U+1D577 \mbffrakL Mathematical Bold Fraktur Capital L

U+1D578 \mbffrakM Mathematical Bold Fraktur Capital M

U+1D579 \mbffrakN Mathematical Bold Fraktur Capital N

U+1D57A \mbffrakO Mathematical Bold Fraktur Capital O

U+1D57B \mbffrakP Mathematical Bold Fraktur Capital P

U+1D57C \mbffrakQ Mathematical Bold Fraktur Capital Q

U+1D57D \mbffrakR Mathematical Bold Fraktur Capital R

U+1D57E \mbffrakS Mathematical Bold Fraktur Capital S

U+1D57F \mbffrakT Mathematical Bold Fraktur Capital T

U+1D580 \mbffrakU Mathematical Bold Fraktur Capital U

U+1D581 \mbffrakV Mathematical Bold Fraktur Capital V

U+1D582 \mbffrakW Mathematical Bold Fraktur CapitalW

U+1D583 \mbffrakX Mathematical Bold Fraktur Capital X

U+1D584 \mbffrakY Mathematical Bold Fraktur Capital Y

U+1D585 \mbffrakZ Mathematical Bold Fraktur Capital Z

U+1D586 \mbffraka Mathematical Bold Fraktur Small A

U+1D587 \mbffrakb Mathematical Bold Fraktur Small B

U+1D588 \mbffrakc Mathematical Bold Fraktur Small C

U+1D589 \mbffrakd Mathematical Bold Fraktur Small D

U+1D58A \mbffrake Mathematical Bold Fraktur Small E

U+1D58B \mbffrakf Mathematical Bold Fraktur Small F

U+1D58C \mbffrakg Mathematical Bold Fraktur Small G

U+1D58D \mbffrakh Mathematical Bold Fraktur Small H

U+1D58E \mbffraki Mathematical Bold Fraktur Small I

U+1D58F \mbffrakj Mathematical Bold Fraktur Small J

U+1D590 \mbffrakk Mathematical Bold Fraktur Small K

U+1D591 \mbffrakl Mathematical Bold Fraktur Small L

U+1D592 \mbffrakm Mathematical Bold Fraktur Small M

U+1D593 \mbffrakn Mathematical Bold Fraktur Small N

U+1D594 \mbffrako Mathematical Bold Fraktur Small O

U+1D595 \mbffrakp Mathematical Bold Fraktur Small P

U+1D596 \mbffrakq Mathematical Bold Fraktur Small Q

U+1D597 \mbffrakr Mathematical Bold Fraktur Small R

U+1D598 \mbffraks Mathematical Bold Fraktur Small S

U+1D599 \mbffrakt Mathematical Bold Fraktur Small T

U+1D59A \mbffraku Mathematical Bold Fraktur Small U

U+1D59B \mbffrakv Mathematical Bold Fraktur Small V

U+1D59C \mbffrakw Mathematical Bold Fraktur SmallW

U+1D59D \mbffrakx Mathematical Bold Fraktur Small X

U+1D59E \mbffraky Mathematical Bold Fraktur Small Y

U+1D59F \mbffrakz Mathematical Bold Fraktur Small Z

U+1D5A0 \msansA Mathematical Sans-serif Capital A

U+1D5A1 \msansB Mathematical Sans-serif Capital B

U+1D5A2 \msansC Mathematical Sans-serif Capital C

U+1D5A3 \msansD Mathematical Sans-serif Capital D

U+1D5A4 \msansE Mathematical Sans-serif Capital E

U+1D5A5 \msansF Mathematical Sans-serif Capital F

U+1D5A6 \msansG Mathematical Sans-serif Capital G

U+1D5A7 \msansH Mathematical Sans-serif Capital H

U+1D5A8 \msansI Mathematical Sans-serif Capital I

U+1D5A9 \msansJ Mathematical Sans-serif Capital J

U+1D5AA \msansK Mathematical Sans-serif Capital K

U+1D5AB \msansL Mathematical Sans-serif Capital L

U+1D5AC \msansM Mathematical Sans-serif Capital M

U+1D5AD \msansN Mathematical Sans-serif Capital N

U+1D5AE \msansO Mathematical Sans-serif Capital O

U+1D5AF \msansP Mathematical Sans-serif Capital P

U+1D5B0 \msansQ Mathematical Sans-serif Capital Q

U+1D5B1 \msansR Mathematical Sans-serif Capital R

U+1D5B2 \msansS Mathematical Sans-serif Capital S

U+1D5B3 \msansT Mathematical Sans-serif Capital T

U+1D5B4 \msansU Mathematical Sans-serif Capital U

U+1D5B5 \msansV Mathematical Sans-serif Capital V

U+1D5B6 \msansW Mathematical Sans-serif CapitalW

U+1D5B7 \msansX Mathematical Sans-serif Capital X

U+1D5B8 \msansY Mathematical Sans-serif Capital Y

U+1D5B9 \msansZ Mathematical Sans-serif Capital Z

U+1D5BA \msansa Mathematical Sans-serif Small A

U+1D5BB \msansb Mathematical Sans-serif Small B

U+1D5BC \msansc Mathematical Sans-serif Small C

U+1D5BD \msansd Mathematical Sans-serif Small D

U+1D5BE \msanse Mathematical Sans-serif Small E

U+1D5BF \msansf Mathematical Sans-serif Small F

U+1D5C0 \msansg Mathematical Sans-serif Small G

U+1D5C1 \msansh Mathematical Sans-serif Small H

U+1D5C2 \msansi Mathematical Sans-serif Small I

U+1D5C3 \msansj Mathematical Sans-serif Small J

U+1D5C4 \msansk Mathematical Sans-serif Small K

U+1D5C5 \msansl Mathematical Sans-serif Small L

U+1D5C6 \msansm Mathematical Sans-serif Small M

U+1D5C7 \msansn Mathematical Sans-serif Small N

U+1D5C8 \msanso Mathematical Sans-serif Small O

U+1D5C9 \msansp Mathematical Sans-serif Small P

U+1D5CA \msansq Mathematical Sans-serif Small Q

U+1D5CB \msansr Mathematical Sans-serif Small R

U+1D5CC \msanss Mathematical Sans-serif Small S

U+1D5CD \msanst Mathematical Sans-serif Small T

U+1D5CE \msansu Mathematical Sans-serif Small U

U+1D5CF \msansv Mathematical Sans-serif Small V

U+1D5D0 \msansw Mathematical Sans-serif SmallW

U+1D5D1 \msansx Mathematical Sans-serif Small X

U+1D5D2 \msansy Mathematical Sans-serif Small Y

U+1D5D3 \msansz Mathematical Sans-serif Small Z

U+1D5D4 \mbfsansA Mathematical Sans-serif Bold Capital A

U+1D5D5 \mbfsansB Mathematical Sans-serif Bold Capital B

U+1D5D6 \mbfsansC Mathematical Sans-serif Bold Capital C

U+1D5D7 \mbfsansD Mathematical Sans-serif Bold Capital D

U+1D5D8 \mbfsansE Mathematical Sans-serif Bold Capital E

U+1D5D9 \mbfsansF Mathematical Sans-serif Bold Capital F

U+1D5DA \mbfsansG Mathematical Sans-serif Bold Capital G

U+1D5DB \mbfsansH Mathematical Sans-serif Bold Capital H

U+1D5DC \mbfsansI Mathematical Sans-serif Bold Capital I

U+1D5DD \mbfsansJ Mathematical Sans-serif Bold Capital J

U+1D5DE \mbfsansK Mathematical Sans-serif Bold Capital K

U+1D5DF \mbfsansL Mathematical Sans-serif Bold Capital L

U+1D5E0 \mbfsansM Mathematical Sans-serif Bold Capital M

U+1D5E1 \mbfsansN Mathematical Sans-serif Bold Capital N

U+1D5E2 \mbfsansO Mathematical Sans-serif Bold Capital O

U+1D5E3 \mbfsansP Mathematical Sans-serif Bold Capital P

U+1D5E4 \mbfsansQ Mathematical Sans-serif Bold Capital Q

U+1D5E5 \mbfsansR Mathematical Sans-serif Bold Capital R

U+1D5E6 \mbfsansS Mathematical Sans-serif Bold Capital S

U+1D5E7 \mbfsansT Mathematical Sans-serif Bold Capital T

U+1D5E8 \mbfsansU Mathematical Sans-serif Bold Capital U

U+1D5E9 \mbfsansV Mathematical Sans-serif Bold Capital V

U+1D5EA \mbfsansW Mathematical Sans-serif Bold CapitalW

U+1D5EB \mbfsansX Mathematical Sans-serif Bold Capital X

U+1D5EC \mbfsansY Mathematical Sans-serif Bold Capital Y

U+1D5ED \mbfsansZ Mathematical Sans-serif Bold Capital Z

U+1D5EE \mbfsansa Mathematical Sans-serif Bold Small A

U+1D5EF \mbfsansb Mathematical Sans-serif Bold Small B

U+1D5F0 \mbfsansc Mathematical Sans-serif Bold Small C

U+1D5F1 \mbfsansd Mathematical Sans-serif Bold Small D

U+1D5F2 \mbfsanse Mathematical Sans-serif Bold Small E

U+1D5F3 \mbfsansf Mathematical Sans-serif Bold Small F

U+1D5F4 \mbfsansg Mathematical Sans-serif Bold Small G

U+1D5F5 \mbfsansh Mathematical Sans-serif Bold Small H

U+1D5F6 \mbfsansi Mathematical Sans-serif Bold Small I

U+1D5F7 \mbfsansj Mathematical Sans-serif Bold Small J

U+1D5F8 \mbfsansk Mathematical Sans-serif Bold Small K

U+1D5F9 \mbfsansl Mathematical Sans-serif Bold Small L

U+1D5FA \mbfsansm Mathematical Sans-serif Bold Small M

U+1D5FB \mbfsansn Mathematical Sans-serif Bold Small N

U+1D5FC \mbfsanso Mathematical Sans-serif Bold Small O

U+1D5FD \mbfsansp Mathematical Sans-serif Bold Small P

U+1D5FE \mbfsansq Mathematical Sans-serif Bold Small Q

U+1D5FF \mbfsansr Mathematical Sans-serif Bold Small R

U+1D600 \mbfsanss Mathematical Sans-serif Bold Small S

U+1D601 \mbfsanst Mathematical Sans-serif Bold Small T

U+1D602 \mbfsansu Mathematical Sans-serif Bold Small U

U+1D603 \mbfsansv Mathematical Sans-serif Bold Small V

U+1D604 \mbfsansw Mathematical Sans-serif Bold SmallW

U+1D605 \mbfsansx Mathematical Sans-serif Bold Small X

U+1D606 \mbfsansy Mathematical Sans-serif Bold Small Y

U+1D607 \mbfsansz Mathematical Sans-serif Bold Small Z

U+1D608 \mitsansA Mathematical Sans-serif Italic Capital A

U+1D609 \mitsansB Mathematical Sans-serif Italic Capital B

U+1D60A \mitsansC Mathematical Sans-serif Italic Capital C

U+1D60B \mitsansD Mathematical Sans-serif Italic Capital D

U+1D60C \mitsansE Mathematical Sans-serif Italic Capital E

U+1D60D \mitsansF Mathematical Sans-serif Italic Capital F

U+1D60E \mitsansG Mathematical Sans-serif Italic Capital G

U+1D60F \mitsansH Mathematical Sans-serif Italic Capital H

U+1D610 \mitsansI Mathematical Sans-serif Italic Capital I

U+1D611 \mitsansJ Mathematical Sans-serif Italic Capital J

U+1D612 \mitsansK Mathematical Sans-serif Italic Capital K

U+1D613 \mitsansL Mathematical Sans-serif Italic Capital L

U+1D614 \mitsansM Mathematical Sans-serif Italic Capital M

U+1D615 \mitsansN Mathematical Sans-serif Italic Capital N

U+1D616 \mitsansO Mathematical Sans-serif Italic Capital O

U+1D617 \mitsansP Mathematical Sans-serif Italic Capital P

U+1D618 \mitsansQ Mathematical Sans-serif Italic Capital Q

U+1D619 \mitsansR Mathematical Sans-serif Italic Capital R

U+1D61A \mitsansS Mathematical Sans-serif Italic Capital S

U+1D61B \mitsansT Mathematical Sans-serif Italic Capital T

U+1D61C \mitsansU Mathematical Sans-serif Italic Capital U

U+1D61D \mitsansV Mathematical Sans-serif Italic Capital V

U+1D61E \mitsansW Mathematical Sans-serif Italic CapitalW

U+1D61F \mitsansX Mathematical Sans-serif Italic Capital X

U+1D620 \mitsansY Mathematical Sans-serif Italic Capital Y

U+1D621 \mitsansZ Mathematical Sans-serif Italic Capital Z

U+1D622 \mitsansa Mathematical Sans-serif Italic Small A

U+1D623 \mitsansb Mathematical Sans-serif Italic Small B

U+1D624 \mitsansc Mathematical Sans-serif Italic Small C

U+1D625 \mitsansd Mathematical Sans-serif Italic Small D

U+1D626 \mitsanse Mathematical Sans-serif Italic Small E

U+1D627 \mitsansf Mathematical Sans-serif Italic Small F

U+1D628 \mitsansg Mathematical Sans-serif Italic Small G

U+1D629 \mitsansh Mathematical Sans-serif Italic Small H

U+1D62A \mitsansi Mathematical Sans-serif Italic Small I

U+1D62B \mitsansj Mathematical Sans-serif Italic Small J

U+1D62C \mitsansk Mathematical Sans-serif Italic Small K

U+1D62D \mitsansl Mathematical Sans-serif Italic Small L

U+1D62E \mitsansm Mathematical Sans-serif Italic Small M

U+1D62F \mitsansn Mathematical Sans-serif Italic Small N

U+1D630 \mitsanso Mathematical Sans-serif Italic Small O

U+1D631 \mitsansp Mathematical Sans-serif Italic Small P

U+1D632 \mitsansq Mathematical Sans-serif Italic Small Q

U+1D633 \mitsansr Mathematical Sans-serif Italic Small R

U+1D634 \mitsanss Mathematical Sans-serif Italic Small S

U+1D635 \mitsanst Mathematical Sans-serif Italic Small T

U+1D636 \mitsansu Mathematical Sans-serif Italic Small U

U+1D637 \mitsansv Mathematical Sans-serif Italic Small V

U+1D638 \mitsansw Mathematical Sans-serif Italic SmallW

U+1D639 \mitsansx Mathematical Sans-serif Italic Small X

U+1D63A \mitsansy Mathematical Sans-serif Italic Small Y

U+1D63B \mitsansz Mathematical Sans-serif Italic Small Z

U+1D63C \mbfitsansA Mathematical Sans-serif Bold Italic Capital A

U+1D63D \mbfitsansB Mathematical Sans-serif Bold Italic Capital B

U+1D63E \mbfitsansC Mathematical Sans-serif Bold Italic Capital C

U+1D63F \mbfitsansD Mathematical Sans-serif Bold Italic Capital D

U+1D640 \mbfitsansE Mathematical Sans-serif Bold Italic Capital E

U+1D641 \mbfitsansF Mathematical Sans-serif Bold Italic Capital F

U+1D642 \mbfitsansG Mathematical Sans-serif Bold Italic Capital G

U+1D643 \mbfitsansH Mathematical Sans-serif Bold Italic Capital H

U+1D644 \mbfitsansI Mathematical Sans-serif Bold Italic Capital I

U+1D645 \mbfitsansJ Mathematical Sans-serif Bold Italic Capital J

U+1D646 \mbfitsansK Mathematical Sans-serif Bold Italic Capital K

U+1D647 \mbfitsansL Mathematical Sans-serif Bold Italic Capital L

U+1D648 \mbfitsansM Mathematical Sans-serif Bold Italic Capital M

U+1D649 \mbfitsansN Mathematical Sans-serif Bold Italic Capital N

U+1D64A \mbfitsansO Mathematical Sans-serif Bold Italic Capital O

U+1D64B \mbfitsansP Mathematical Sans-serif Bold Italic Capital P

U+1D64C \mbfitsansQ Mathematical Sans-serif Bold Italic Capital Q

U+1D64D \mbfitsansR Mathematical Sans-serif Bold Italic Capital R

U+1D64E \mbfitsansS Mathematical Sans-serif Bold Italic Capital S

U+1D64F \mbfitsansT Mathematical Sans-serif Bold Italic Capital T

U+1D650 \mbfitsansU Mathematical Sans-serif Bold Italic Capital U

U+1D651 \mbfitsansV Mathematical Sans-serif Bold Italic Capital V

U+1D652 \mbfitsansW Mathematical Sans-serif Bold Italic CapitalW

U+1D653 \mbfitsansX Mathematical Sans-serif Bold Italic Capital X

U+1D654 \mbfitsansY Mathematical Sans-serif Bold Italic Capital Y

U+1D655 \mbfitsansZ Mathematical Sans-serif Bold Italic Capital Z

U+1D656 \mbfitsansa Mathematical Sans-serif Bold Italic Small A

U+1D657 \mbfitsansb Mathematical Sans-serif Bold Italic Small B

U+1D658 \mbfitsansc Mathematical Sans-serif Bold Italic Small C

U+1D659 \mbfitsansd Mathematical Sans-serif Bold Italic Small D

U+1D65A \mbfitsanse Mathematical Sans-serif Bold Italic Small E

U+1D65B \mbfitsansf Mathematical Sans-serif Bold Italic Small F

U+1D65C \mbfitsansg Mathematical Sans-serif Bold Italic Small G

U+1D65D \mbfitsansh Mathematical Sans-serif Bold Italic Small H

U+1D65E \mbfitsansi Mathematical Sans-serif Bold Italic Small I

U+1D65F \mbfitsansj Mathematical Sans-serif Bold Italic Small J

U+1D660 \mbfitsansk Mathematical Sans-serif Bold Italic Small K

U+1D661 \mbfitsansl Mathematical Sans-serif Bold Italic Small L

U+1D662 \mbfitsansm Mathematical Sans-serif Bold Italic Small M

U+1D663 \mbfitsansn Mathematical Sans-serif Bold Italic Small N

U+1D664 \mbfitsanso Mathematical Sans-serif Bold Italic Small O

U+1D665 \mbfitsansp Mathematical Sans-serif Bold Italic Small P

U+1D666 \mbfitsansq Mathematical Sans-serif Bold Italic Small Q

U+1D667 \mbfitsansr Mathematical Sans-serif Bold Italic Small R

U+1D668 \mbfitsanss Mathematical Sans-serif Bold Italic Small S

U+1D669 \mbfitsanst Mathematical Sans-serif Bold Italic Small T

U+1D66A \mbfitsansu Mathematical Sans-serif Bold Italic Small U

U+1D66B \mbfitsansv Mathematical Sans-serif Bold Italic Small V

U+1D66C \mbfitsansw Mathematical Sans-serif Bold Italic SmallW

U+1D66D \mbfitsansx Mathematical Sans-serif Bold Italic Small X

U+1D66E \mbfitsansy Mathematical Sans-serif Bold Italic Small Y

U+1D66F \mbfitsansz Mathematical Sans-serif Bold Italic Small Z

U+1D670 \mttA Mathematical Monospace Capital A

U+1D671 \mttB Mathematical Monospace Capital B

U+1D672 \mttC Mathematical Monospace Capital C

U+1D673 \mttD Mathematical Monospace Capital D

U+1D674 \mttE Mathematical Monospace Capital E

U+1D675 \mttF Mathematical Monospace Capital F

U+1D676 \mttG Mathematical Monospace Capital G

U+1D677 \mttH Mathematical Monospace Capital H

U+1D678 \mttI Mathematical Monospace Capital I

U+1D679 \mttJ Mathematical Monospace Capital J

U+1D67A \mttK Mathematical Monospace Capital K

U+1D67B \mttL Mathematical Monospace Capital L

U+1D67C \mttM Mathematical Monospace Capital M

U+1D67D \mttN Mathematical Monospace Capital N

U+1D67E \mttO Mathematical Monospace Capital O

U+1D67F \mttP Mathematical Monospace Capital P

U+1D680 \mttQ Mathematical Monospace Capital Q

U+1D681 \mttR Mathematical Monospace Capital R

U+1D682 \mttS Mathematical Monospace Capital S

U+1D683 \mttT Mathematical Monospace Capital T

U+1D684 \mttU Mathematical Monospace Capital U

U+1D685 \mttV Mathematical Monospace Capital V

U+1D686 \mttW Mathematical Monospace CapitalW

U+1D687 \mttX Mathematical Monospace Capital X

U+1D688 \mttY Mathematical Monospace Capital Y

U+1D689 \mttZ Mathematical Monospace Capital Z

U+1D68A \mtta Mathematical Monospace Small A

U+1D68B \mttb Mathematical Monospace Small B

U+1D68C \mttc Mathematical Monospace Small C

U+1D68D \mttd Mathematical Monospace Small D

U+1D68E \mtte Mathematical Monospace Small E

U+1D68F \mttf Mathematical Monospace Small F

U+1D690 \mttg Mathematical Monospace Small G

U+1D691 \mtth Mathematical Monospace Small H

U+1D692 \mtti Mathematical Monospace Small I

U+1D693 \mttj Mathematical Monospace Small J

U+1D694 \mttk Mathematical Monospace Small K

U+1D695 \mttl Mathematical Monospace Small L

U+1D696 \mttm Mathematical Monospace Small M

U+1D697 \mttn Mathematical Monospace Small N

U+1D698 \mtto Mathematical Monospace Small O

U+1D699 \mttp Mathematical Monospace Small P

U+1D69A \mttq Mathematical Monospace Small Q

U+1D69B \mttr Mathematical Monospace Small R

U+1D69C \mtts Mathematical Monospace Small S

U+1D69D \mttt Mathematical Monospace Small T

U+1D69E \mttu Mathematical Monospace Small U

U+1D69F \mttv Mathematical Monospace Small V

U+1D6A0 \mttw Mathematical Monospace SmallW

U+1D6A1 \mttx Mathematical Monospace Small X

U+1D6A2 \mtty Mathematical Monospace Small Y

U+1D6A3 \mttz Mathematical Monospace Small Z

U+1D6A4 \imath Mathematical Italic Small Dotless I

U+1D6A5 \jmath Mathematical Italic Small Dotless J

U+1D6A8 \mbfAlpha Mathematical Bold Capital Alpha

U+1D6A9 \mbfBeta Mathematical Bold Capital Beta

U+1D6AA \mbfGamma Mathematical Bold Capital Gamma

U+1D6AB \mbfDelta Mathematical Bold Capital Delta

U+1D6AC \mbfEpsilon Mathematical Bold Capital Epsilon

U+1D6AD \mbfZeta Mathematical Bold Capital Zeta

U+1D6AE \mbfEta Mathematical Bold Capital Eta

U+1D6AF \mbfTheta Mathematical Bold Capital Theta

U+1D6B0 \mbfIota Mathematical Bold Capital Iota

U+1D6B1 \mbfKappa Mathematical Bold Capital Kappa

U+1D6B2 \mbfLambda Mathematical Bold Capital Lamda

U+1D6B3 \mbfMu Mathematical Bold Capital Mu

U+1D6B4 \mbfNu Mathematical Bold Capital Nu

U+1D6B5 \mbfXi Mathematical Bold Capital Xi

U+1D6B6 \mbfOmicron Mathematical Bold Capital Omicron

U+1D6B7 \mbfPi Mathematical Bold Capital Pi

U+1D6B8 \mbfRho Mathematical Bold Capital Rho

U+1D6B9 \mbfvarTheta Mathematical Bold Capital Theta Symbol

U+1D6BA \mbfSigma Mathematical Bold Capital Sigma

U+1D6BB \mbfTau Mathematical Bold Capital Tau

U+1D6BC \mbfUpsilon Mathematical Bold Capital Upsilon

U+1D6BD \mbfPhi Mathematical Bold Capital Phi

U+1D6BE \mbfChi Mathematical Bold Capital Chi

U+1D6BF \mbfPsi Mathematical Bold Capital Psi

U+1D6C0 \mbfOmega Mathematical Bold Capital Omega

U+1D6C1 \mbfnabla Mathematical Bold Nabla

U+1D6C2 \mbfalpha Mathematical Bold Small Alpha

U+1D6C3 \mbfbeta Mathematical Bold Small Beta

U+1D6C4 \mbfgamma Mathematical Bold Small Gamma

U+1D6C5 \mbfdelta Mathematical Bold Small Delta

U+1D6C6 \mbfepsilon Mathematical Bold Small Epsilon

U+1D6C7 \mbfzeta Mathematical Bold Small Zeta

U+1D6C8 \mbfeta Mathematical Bold Small Eta

U+1D6C9 \mbftheta Mathematical Bold Small Theta

U+1D6CA \mbfiota Mathematical Bold Small Iota

U+1D6CB \mbfkappa Mathematical Bold Small Kappa

U+1D6CC \mbflambda Mathematical Bold Small Lamda

U+1D6CD \mbfmu Mathematical Bold Small Mu

U+1D6CE \mbfnu Mathematical Bold Small Nu

U+1D6CF \mbfxi Mathematical Bold Small Xi

U+1D6D0 \mbfomicron Mathematical Bold Small Omicron

U+1D6D1 \mbfpi Mathematical Bold Small Pi

U+1D6D2 \mbfrho Mathematical Bold Small Rho

U+1D6D3 \mbfvarsigma Mathematical Bold Small Final Sigma

U+1D6D4 \mbfsigma Mathematical Bold Small Sigma

U+1D6D5 \mbftau Mathematical Bold Small Tau

U+1D6D6 \mbfupsilon Mathematical Bold Small Upsilon

U+1D6D7 \mbfvarphi Mathematical Bold Small Phi

U+1D6D8 \mbfchi Mathematical Bold Small Chi

U+1D6D9 \mbfpsi Mathematical Bold Small Psi

U+1D6DA \mbfomega Mathematical Bold Small Omega

U+1D6DB \mbfpartial Mathematical Bold Partial Differential

U+1D6DC \mbfvarepsilon Mathematical Bold Epsilon Symbol

U+1D6DD \mbfvartheta Mathematical Bold Theta Symbol

U+1D6DE \mbfvarkappa Mathematical Bold Kappa Symbol

U+1D6DF \mbfphi Mathematical Bold Phi Symbol

U+1D6E0 \mbfvarrho Mathematical Bold Rho Symbol

U+1D6E1 \mbfvarpi Mathematical Bold Pi Symbol

U+1D6E2 \mitAlpha Mathematical Italic Capital Alpha

U+1D6E3 \mitBeta Mathematical Italic Capital Beta

U+1D6E4 \mitGamma Mathematical Italic Capital Gamma

U+1D6E5 \mitDelta Mathematical Italic Capital Delta

U+1D6E6 \mitEpsilon Mathematical Italic Capital Epsilon

U+1D6E7 \mitZeta Mathematical Italic Capital Zeta

U+1D6E8 \mitEta Mathematical Italic Capital Eta

U+1D6E9 \mitTheta Mathematical Italic Capital Theta

U+1D6EA \mitIota Mathematical Italic Capital Iota

U+1D6EB \mitKappa Mathematical Italic Capital Kappa

U+1D6EC \mitLambda Mathematical Italic Capital Lamda

U+1D6ED \mitMu Mathematical Italic Capital Mu

U+1D6EE \mitNu Mathematical Italic Capital Nu

U+1D6EF \mitXi Mathematical Italic Capital Xi

U+1D6F0 \mitOmicron Mathematical Italic Capital Omicron

U+1D6F1 \mitPi Mathematical Italic Capital Pi

U+1D6F2 \mitRho Mathematical Italic Capital Rho

U+1D6F3 \mitvarTheta Mathematical Italic Capital Theta Symbol

U+1D6F4 \mitSigma Mathematical Italic Capital Sigma

U+1D6F5 \mitTau Mathematical Italic Capital Tau

U+1D6F6 \mitUpsilon Mathematical Italic Capital Upsilon

U+1D6F7 \mitPhi Mathematical Italic Capital Phi

U+1D6F8 \mitChi Mathematical Italic Capital Chi

U+1D6F9 \mitPsi Mathematical Italic Capital Psi

U+1D6FA \mitOmega Mathematical Italic Capital Omega

U+1D6FB \mitnabla Mathematical Italic Nabla

U+1D6FC \mitalpha Mathematical Italic Small Alpha

U+1D6FD \mitbeta Mathematical Italic Small Beta

U+1D6FE \mitgamma Mathematical Italic Small Gamma

U+1D6FF \mitdelta Mathematical Italic Small Delta

U+1D700 \mitepsilon Mathematical Italic Small Epsilon

U+1D701 \mitzeta Mathematical Italic Small Zeta

U+1D702 \miteta Mathematical Italic Small Eta

U+1D703 \mittheta Mathematical Italic Small Theta

U+1D704 \mitiota Mathematical Italic Small Iota

U+1D705 \mitkappa Mathematical Italic Small Kappa

U+1D706 \mitlambda Mathematical Italic Small Lamda

U+1D707 \mitmu Mathematical Italic Small Mu

U+1D708 \mitnu Mathematical Italic Small Nu

U+1D709 \mitxi Mathematical Italic Small Xi

U+1D70A \mitomicron Mathematical Italic Small Omicron

U+1D70B \mitpi Mathematical Italic Small Pi

U+1D70C \mitrho Mathematical Italic Small Rho

U+1D70D \mitvarsigma Mathematical Italic Small Final Sigma

U+1D70E \mitsigma Mathematical Italic Small Sigma

U+1D70F \mittau Mathematical Italic Small Tau

U+1D710 \mitupsilon Mathematical Italic Small Upsilon

U+1D711 \mitphi Mathematical Italic Small Phi

U+1D712 \mitchi Mathematical Italic Small Chi

U+1D713 \mitpsi Mathematical Italic Small Psi

U+1D714 \mitomega Mathematical Italic Small Omega

U+1D715 \mitpartial Mathematical Italic Partial Differential

U+1D716 \mitvarepsilon Mathematical Italic Epsilon Symbol

U+1D717 \mitvartheta Mathematical Italic Theta Symbol

U+1D718 \mitvarkappa Mathematical Italic Kappa Symbol

U+1D719 \mitvarphi Mathematical Italic Phi Symbol

U+1D71A \mitvarrho Mathematical Italic Rho Symbol

U+1D71B \mitvarpi Mathematical Italic Pi Symbol

U+1D71C \mbfitAlpha Mathematical Bold Italic Capital Alpha

U+1D71D \mbfitBeta Mathematical Bold Italic Capital Beta

U+1D71E \mbfitGamma Mathematical Bold Italic Capital Gamma

U+1D71F \mbfitDelta Mathematical Bold Italic Capital Delta

U+1D720 \mbfitEpsilon Mathematical Bold Italic Capital Epsilon

U+1D721 \mbfitZeta Mathematical Bold Italic Capital Zeta

U+1D722 \mbfitEta Mathematical Bold Italic Capital Eta

U+1D723 \mbfitTheta Mathematical Bold Italic Capital Theta

U+1D724 \mbfitIota Mathematical Bold Italic Capital Iota

U+1D725 \mbfitKappa Mathematical Bold Italic Capital Kappa

U+1D726 \mbfitLambda Mathematical Bold Italic Capital Lamda

U+1D727 \mbfitMu Mathematical Bold Italic Capital Mu

U+1D728 \mbfitNu Mathematical Bold Italic Capital Nu

U+1D729 \mbfitXi Mathematical Bold Italic Capital Xi

U+1D72A \mbfitOmicron Mathematical Bold Italic Capital Omicron

U+1D72B \mbfitPi Mathematical Bold Italic Capital Pi

U+1D72C \mbfitRho Mathematical Bold Italic Capital Rho

U+1D72D \mbfitvarTheta Mathematical Bold Italic Capital Theta Symbol

U+1D72E \mbfitSigma Mathematical Bold Italic Capital Sigma

U+1D72F \mbfitTau Mathematical Bold Italic Capital Tau

U+1D730 \mbfitUpsilon Mathematical Bold Italic Capital Upsilon

U+1D731 \mbfitPhi Mathematical Bold Italic Capital Phi

U+1D732 \mbfitChi Mathematical Bold Italic Capital Chi

U+1D733 \mbfitPsi Mathematical Bold Italic Capital Psi

U+1D734 \mbfitOmega Mathematical Bold Italic Capital Omega

U+1D735 \mbfitnabla Mathematical Bold Italic Nabla

U+1D736 \mbfitalpha Mathematical Bold Italic Small Alpha

U+1D737 \mbfitbeta Mathematical Bold Italic Small Beta

U+1D738 \mbfitgamma Mathematical Bold Italic Small Gamma

U+1D739 \mbfitdelta Mathematical Bold Italic Small Delta

U+1D73A \mbfitepsilon Mathematical Bold Italic Small Epsilon

U+1D73B \mbfitzeta Mathematical Bold Italic Small Zeta

U+1D73C \mbfiteta Mathematical Bold Italic Small Eta

U+1D73D \mbfittheta Mathematical Bold Italic Small Theta

U+1D73E \mbfitiota Mathematical Bold Italic Small Iota

U+1D73F \mbfitkappa Mathematical Bold Italic Small Kappa

U+1D740 \mbfitlambda Mathematical Bold Italic Small Lamda

U+1D741 \mbfitmu Mathematical Bold Italic Small Mu

U+1D742 \mbfitnu Mathematical Bold Italic Small Nu

U+1D743 \mbfitxi Mathematical Bold Italic Small Xi

U+1D744 \mbfitomicron Mathematical Bold Italic Small Omicron

U+1D745 \mbfitpi Mathematical Bold Italic Small Pi

U+1D746 \mbfitrho Mathematical Bold Italic Small Rho

U+1D747 \mbfitvarsigma Mathematical Bold Italic Small Final Sigma

U+1D748 \mbfitsigma Mathematical Bold Italic Small Sigma

U+1D749 \mbfittau Mathematical Bold Italic Small Tau

U+1D74A \mbfitupsilon Mathematical Bold Italic Small Upsilon

U+1D74B \mbfitphi Mathematical Bold Italic Small Phi

U+1D74C \mbfitchi Mathematical Bold Italic Small Chi

U+1D74D \mbfitpsi Mathematical Bold Italic Small Psi

U+1D74E \mbfitomega Mathematical Bold Italic Small Omega

U+1D74F \mbfitpartial Mathematical Bold Italic Partial Differential

U+1D750 \mbfitvarepsilon Mathematical Bold Italic Epsilon Symbol

U+1D751 \mbfitvartheta Mathematical Bold Italic Theta Symbol

U+1D752 \mbfitvarkappa Mathematical Bold Italic Kappa Symbol

U+1D753 \mbfitvarphi Mathematical Bold Italic Phi Symbol

U+1D754 \mbfitvarrho Mathematical Bold Italic Rho Symbol

U+1D755 \mbfitvarpi Mathematical Bold Italic Pi Symbol

U+1D756 \mbfsansAlpha Mathematical Sans-serif Bold Capital Alpha

U+1D757 \mbfsansBeta Mathematical Sans-serif Bold Capital Beta

U+1D758 \mbfsansGamma Mathematical Sans-serif Bold Capital Gamma

U+1D759 \mbfsansDelta Mathematical Sans-serif Bold Capital Delta

U+1D75A \mbfsansEpsilon Mathematical Sans-serif Bold Capital Epsilon

U+1D75B \mbfsansZeta Mathematical Sans-serif Bold Capital Zeta

U+1D75C \mbfsansEta Mathematical Sans-serif Bold Capital Eta

U+1D75D \mbfsansTheta Mathematical Sans-serif Bold Capital Theta

U+1D75E \mbfsansIota Mathematical Sans-serif Bold Capital Iota

U+1D75F \mbfsansKappa Mathematical Sans-serif Bold Capital Kappa

U+1D760 \mbfsansLambda Mathematical Sans-serif Bold Capital Lamda

U+1D761 \mbfsansMu Mathematical Sans-serif Bold Capital Mu

U+1D762 \mbfsansNu Mathematical Sans-serif Bold Capital Nu

U+1D763 \mbfsansXi Mathematical Sans-serif Bold Capital Xi

U+1D764 \mbfsansOmicron Mathematical Sans-serif Bold Capital Omicron

U+1D765 \mbfsansPi Mathematical Sans-serif Bold Capital Pi

U+1D766 \mbfsansRho Mathematical Sans-serif Bold Capital Rho

U+1D767 \mbfsansvarTheta Mathematical Sans-serif Bold Capital Theta Symbol

U+1D768 \mbfsansSigma Mathematical Sans-serif Bold Capital Sigma

U+1D769 \mbfsansTau Mathematical Sans-serif Bold Capital Tau

U+1D76A \mbfsansUpsilon Mathematical Sans-serif Bold Capital Upsilon

U+1D76B \mbfsansPhi Mathematical Sans-serif Bold Capital Phi

U+1D76C \mbfsansChi Mathematical Sans-serif Bold Capital Chi

U+1D76D \mbfsansPsi Mathematical Sans-serif Bold Capital Psi

U+1D76E \mbfsansOmega Mathematical Sans-serif Bold Capital Omega

U+1D76F \mbfsansnabla Mathematical Sans-serif Bold Nabla

U+1D770 \mbfsansalpha Mathematical Sans-serif Bold Small Alpha

U+1D771 \mbfsansbeta Mathematical Sans-serif Bold Small Beta

U+1D772 \mbfsansgamma Mathematical Sans-serif Bold Small Gamma

U+1D773 \mbfsansdelta Mathematical Sans-serif Bold Small Delta

U+1D774 \mbfsansepsilon Mathematical Sans-serif Bold Small Epsilon

U+1D775 \mbfsanszeta Mathematical Sans-serif Bold Small Zeta

U+1D776 \mbfsanseta Mathematical Sans-serif Bold Small Eta

U+1D777 \mbfsanstheta Mathematical Sans-serif Bold Small Theta

U+1D778 \mbfsansiota Mathematical Sans-serif Bold Small Iota

U+1D779 \mbfsanskappa Mathematical Sans-serif Bold Small Kappa

U+1D77A \mbfsanslambda Mathematical Sans-serif Bold Small Lamda

U+1D77B \mbfsansmu Mathematical Sans-serif Bold Small Mu

U+1D77C \mbfsansnu Mathematical Sans-serif Bold Small Nu

U+1D77D \mbfsansxi Mathematical Sans-serif Bold Small Xi

U+1D77E \mbfsansomicron Mathematical Sans-serif Bold Small Omicron

U+1D77F \mbfsanspi Mathematical Sans-serif Bold Small Pi

U+1D780 \mbfsansrho Mathematical Sans-serif Bold Small Rho

U+1D781 \mbfsansvarsigma Mathematical Sans-serif Bold Small Final Sigma

U+1D782 \mbfsanssigma Mathematical Sans-serif Bold Small Sigma

U+1D783 \mbfsanstau Mathematical Sans-serif Bold Small Tau

U+1D784 \mbfsansupsilon Mathematical Sans-serif Bold Small Upsilon

U+1D785 \mbfsansphi Mathematical Sans-serif Bold Small Phi

U+1D786 \mbfsanschi Mathematical Sans-serif Bold Small Chi

U+1D787 \mbfsanspsi Mathematical Sans-serif Bold Small Psi

U+1D788 \mbfsansomega Mathematical Sans-serif Bold Small Omega

U+1D789 \mbfsanspartial Mathematical Sans-serif Bold Partial Differential

U+1D78A \mbfsansvarepsilon Mathematical Sans-serif Bold Epsilon Symbol

U+1D78B \mbfsansvartheta Mathematical Sans-serif Bold Theta Symbol

U+1D78C \mbfsansvarkappa Mathematical Sans-serif Bold Kappa Symbol

U+1D78D \mbfsansvarphi Mathematical Sans-serif Bold Phi Symbol

U+1D78E \mbfsansvarrho Mathematical Sans-serif Bold Rho Symbol

U+1D78F \mbfsansvarpi Mathematical Sans-serif Bold Pi Symbol

U+1D790 \mbfitsansAlpha Mathematical Sans-serif Bold Italic Capital Alpha

U+1D791 \mbfitsansBeta Mathematical Sans-serif Bold Italic Capital Beta

U+1D792 \mbfitsansGamma Mathematical Sans-serif Bold Italic Capital Gamma

U+1D793 \mbfitsansDelta Mathematical Sans-serif Bold Italic Capital Delta

U+1D794 \mbfitsansEpsilon Mathematical Sans-serif Bold Italic Capital Epsilon

U+1D795 \mbfitsansZeta Mathematical Sans-serif Bold Italic Capital Zeta

U+1D796 \mbfitsansEta Mathematical Sans-serif Bold Italic Capital Eta

U+1D797 \mbfitsansTheta Mathematical Sans-serif Bold Italic Capital Theta

U+1D798 \mbfitsansIota Mathematical Sans-serif Bold Italic Capital Iota

U+1D799 \mbfitsansKappa Mathematical Sans-serif Bold Italic Capital Kappa

U+1D79A \mbfitsansLambda Mathematical Sans-serif Bold Italic Capital Lamda

U+1D79B \mbfitsansMu Mathematical Sans-serif Bold Italic Capital Mu

U+1D79C \mbfitsansNu Mathematical Sans-serif Bold Italic Capital Nu

U+1D79D \mbfitsansXi Mathematical Sans-serif Bold Italic Capital Xi

U+1D79E \mbfitsansOmicron Mathematical Sans-serif Bold Italic Capital Omicron

U+1D79F \mbfitsansPi Mathematical Sans-serif Bold Italic Capital Pi

U+1D7A0 \mbfitsansRho Mathematical Sans-serif Bold Italic Capital Rho

U+1D7A1 \mbfitsansvarTheta Mathematical Sans-serif Bold Italic Capital Theta Symbol

U+1D7A2 \mbfitsansSigma Mathematical Sans-serif Bold Italic Capital Sigma

U+1D7A3 \mbfitsansTau Mathematical Sans-serif Bold Italic Capital Tau

U+1D7A4 \mbfitsansUpsilon Mathematical Sans-serif Bold Italic Capital Upsilon

U+1D7A5 \mbfitsansPhi Mathematical Sans-serif Bold Italic Capital Phi

U+1D7A6 \mbfitsansChi Mathematical Sans-serif Bold Italic Capital Chi

U+1D7A7 \mbfitsansPsi Mathematical Sans-serif Bold Italic Capital Psi

U+1D7A8 \mbfitsansOmega Mathematical Sans-serif Bold Italic Capital Omega

U+1D7A9 \mbfitsansnabla Mathematical Sans-serif Bold Italic Nabla

U+1D7AA \mbfitsansalpha Mathematical Sans-serif Bold Italic Small Alpha

U+1D7AB \mbfitsansbeta Mathematical Sans-serif Bold Italic Small Beta

U+1D7AC \mbfitsansgamma Mathematical Sans-serif Bold Italic Small Gamma

U+1D7AD \mbfitsansdelta Mathematical Sans-serif Bold Italic Small Delta

U+1D7AE \mbfitsansepsilon Mathematical Sans-serif Bold Italic Small Epsilon

U+1D7AF \mbfitsanszeta Mathematical Sans-serif Bold Italic Small Zeta

U+1D7B0 \mbfitsanseta Mathematical Sans-serif Bold Italic Small Eta

U+1D7B1 \mbfitsanstheta Mathematical Sans-serif Bold Italic Small Theta

U+1D7B2 \mbfitsansiota Mathematical Sans-serif Bold Italic Small Iota

U+1D7B3 \mbfitsanskappa Mathematical Sans-serif Bold Italic Small Kappa

U+1D7B4 \mbfitsanslambda Mathematical Sans-serif Bold Italic Small Lamda

U+1D7B5 \mbfitsansmu Mathematical Sans-serif Bold Italic Small Mu

U+1D7B6 \mbfitsansnu Mathematical Sans-serif Bold Italic Small Nu

U+1D7B7 \mbfitsansxi Mathematical Sans-serif Bold Italic Small Xi

U+1D7B8 \mbfitsansomicron Mathematical Sans-serif Bold Italic Small Omicron

U+1D7B9 \mbfitsanspi Mathematical Sans-serif Bold Italic Small Pi

U+1D7BA \mbfitsansrho Mathematical Sans-serif Bold Italic Small Rho

U+1D7BB \mbfitsansvarsigma Mathematical Sans-serif Bold Italic Small Final Sigma

U+1D7BC \mbfitsanssigma Mathematical Sans-serif Bold Italic Small Sigma

U+1D7BD \mbfitsanstau Mathematical Sans-serif Bold Italic Small Tau

U+1D7BE \mbfitsansupsilon Mathematical Sans-serif Bold Italic Small Upsilon

U+1D7BF \mbfitsansphi Mathematical Sans-serif Bold Italic Small Phi

U+1D7C0 \mbfitsanschi Mathematical Sans-serif Bold Italic Small Chi

U+1D7C1 \mbfitsanspsi Mathematical Sans-serif Bold Italic Small Psi

U+1D7C2 \mbfitsansomega Mathematical Sans-serif Bold Italic Small Omega

U+1D7C3 \mbfitsanspartial Mathematical Sans-serif Bold Italic Partial Differential

U+1D7C4 \mbfitsansvarepsilon Mathematical Sans-serif Bold Italic Epsilon Symbol

U+1D7C5 \mbfitsansvartheta Mathematical Sans-serif Bold Italic Theta Symbol

U+1D7C6 \mbfitsansvarkappa Mathematical Sans-serif Bold Italic Kappa Symbol

U+1D7C7 \mbfitsansvarphi Mathematical Sans-serif Bold Italic Phi Symbol

U+1D7C8 \mbfitsansvarrho Mathematical Sans-serif Bold Italic Rho Symbol

U+1D7C9 \mbfitsansvarpi Mathematical Sans-serif Bold Italic Pi Symbol

U+1D7CA \mbfDigamma Mathematical Bold Capital Digamma

U+1D7CB \mbfdigamma Mathematical Bold Small Digamma

U+1D7CE \mbfzero Mathematical Bold Digit Zero

U+1D7CF \mbfone Mathematical Bold Digit One

U+1D7D0 \mbftwo Mathematical Bold Digit Two

U+1D7D1 \mbfthree Mathematical Bold Digit Three

U+1D7D2 \mbffour Mathematical Bold Digit Four

U+1D7D3 \mbffive Mathematical Bold Digit Five

U+1D7D4 \mbfsix Mathematical Bold Digit Six

U+1D7D5 \mbfseven Mathematical Bold Digit Seven

U+1D7D6 \mbfeight Mathematical Bold Digit Eight

U+1D7D7 \mbfnine Mathematical Bold Digit Nine

U+1D7D8 \Bbbzero Mathematical Double-struck Digit Zero

U+1D7D9 \Bbbone Mathematical Double-struck Digit One

U+1D7DA \Bbbtwo Mathematical Double-struck Digit Two

U+1D7DB \Bbbthree Mathematical Double-struck Digit Three

U+1D7DC \Bbbfour Mathematical Double-struck Digit Four

U+1D7DD \Bbbfive Mathematical Double-struck Digit Five

U+1D7DE \Bbbsix Mathematical Double-struck Digit Six

U+1D7DF \Bbbseven Mathematical Double-struck Digit Seven

U+1D7E0 \Bbbeight Mathematical Double-struck Digit Eight

U+1D7E1 \Bbbnine Mathematical Double-struck Digit Nine

U+1D7E2 \msanszero Mathematical Sans-serif Digit Zero

U+1D7E3 \msansone Mathematical Sans-serif Digit One

U+1D7E4 \msanstwo Mathematical Sans-serif Digit Two

U+1D7E5 \msansthree Mathematical Sans-serif Digit Three

U+1D7E6 \msansfour Mathematical Sans-serif Digit Four

U+1D7E7 \msansfive Mathematical Sans-serif Digit Five

U+1D7E8 \msanssix Mathematical Sans-serif Digit Six

U+1D7E9 \msansseven Mathematical Sans-serif Digit Seven

U+1D7EA \msanseight Mathematical Sans-serif Digit Eight

U+1D7EB \msansnine Mathematical Sans-serif Digit Nine

U+1D7EC \mbfsanszero Mathematical Sans-serif Bold Digit Zero

U+1D7ED \mbfsansone Mathematical Sans-serif Bold Digit One

U+1D7EE \mbfsanstwo Mathematical Sans-serif Bold Digit Two

U+1D7EF \mbfsansthree Mathematical Sans-serif Bold Digit Three

U+1D7F0 \mbfsansfour Mathematical Sans-serif Bold Digit Four

U+1D7F1 \mbfsansfive Mathematical Sans-serif Bold Digit Five

U+1D7F2 \mbfsanssix Mathematical Sans-serif Bold Digit Six

U+1D7F3 \mbfsansseven Mathematical Sans-serif Bold Digit Seven

U+1D7F4 \mbfsanseight Mathematical Sans-serif Bold Digit Eight

U+1D7F5 \mbfsansnine Mathematical Sans-serif Bold Digit Nine

U+1D7F6 \mttzero Mathematical Monospace Digit Zero

U+1D7F7 \mttone Mathematical Monospace Digit One

U+1D7F8 \mtttwo Mathematical Monospace Digit Two

U+1D7F9 \mttthree Mathematical Monospace Digit Three

U+1D7FA \mttfour Mathematical Monospace Digit Four

U+1D7FB \mttfive Mathematical Monospace Digit Five

U+1D7FC \mttsix Mathematical Monospace Digit Six

U+1D7FD \mttseven Mathematical Monospace Digit Seven

U+1D7FE \mtteight Mathematical Monospace Digit Eight

U+1D7FF \mttnine Mathematical Monospace Digit Nine

U+1F004 \:mahjong: Mahjong Tile RedDragon

U+1F0CF \:black_joker: Playing Card Black Joker

U+1F170 \:a: Negative Squared Latin Capital Letter A

U+1F171 \:b: Negative Squared Latin Capital Letter B

U+1F17E \:o2: Negative Squared Latin Capital Letter O

U+1F17F \:parking: Negative Squared Latin Capital Letter P

U+1F18E \:ab: Negative Squared Ab

U+1F191 \:cl: Squared Cl

U+1F192 \:cool: Squared Cool

U+1F193 \:free: Squared Free

U+1F194 \:id: Squared Id

U+1F195 \:new: Squared New

U+1F196 \:ng: Squared Ng

U+1F197 \:ok: SquaredOk

U+1F198 \:sos: Squared Sos

U+1F199 \:up: Squared UpWith ExclamationMark

U+1F19A \:vs: Squared Vs

U+1F201 \:koko: Squared Katakana Koko

U+1F202 \:sa: Squared Katakana Sa

U+1F21A \:u7121: Squared Cjk Unified Ideograph-7121

U+1F22F \:u6307: Squared Cjk Unified Ideograph-6307

U+1F232 \:u7981: Squared Cjk Unified Ideograph-7981

U+1F233 \:u7a7a: Squared Cjk Unified Ideograph-7a7a

U+1F234 \:u5408: Squared Cjk Unified Ideograph-5408

U+1F235 \:u6e80: Squared Cjk Unified Ideograph-6e80

U+1F236 \:u6709: Squared Cjk Unified Ideograph-6709

U+1F237 \:u6708: Squared Cjk Unified Ideograph-6708

U+1F238 \:u7533: Squared Cjk Unified Ideograph-7533

U+1F239 \:u5272: Squared Cjk Unified Ideograph-5272

U+1F23A \:u55b6: Squared Cjk Unified Ideograph-55b6

U+1F250 \:ideograph_advantage: Circled Ideograph Advantage

U+1F251 \:accept: Circled Ideograph Accept

U+1F300 \:cyclone: Cyclone

U+1F301 \:foggy: Foggy

U+1F302 \:closed_umbrella: Closed Umbrella

U+1F303 \:night_with_stars: NightWith Stars

U+1F304 \:sunrise_over_mountains: Sunrise OverMountains

U+1F305 \:sunrise: Sunrise

U+1F306 \:city_sunset: Cityscape At Dusk

U+1F307 \:city_sunrise: Sunset Over Buildings

U+1F308 \:rainbow: Rainbow

U+1F309 \:bridge_at_night: Bridge At Night

U+1F30A \:ocean: WaterWave

U+1F30B \:volcano: Volcano

U+1F30C \:milky_way: MilkyWay

U+1F30D \:earth_africa: Earth Globe Europe-africa

U+1F30E \:earth_americas: Earth Globe Americas

U+1F30F \:earth_asia: Earth Globe Asia-australia

U+1F310 \:globe_with_meridians: GlobeWithMeridians

U+1F311 \:new_moon: NewMoon Symbol

U+1F312 \:waxing_crescent_moon: Waxing CrescentMoon Symbol

U+1F313 \:first_quarter_moon: First QuarterMoon Symbol

U+1F314 \:moon: Waxing GibbousMoon Symbol

U+1F315 \:full_moon: Full Moon Symbol

U+1F316 \:waning_gibbous_moon: Waning GibbousMoon Symbol

U+1F317 \:last_quarter_moon: Last QuarterMoon Symbol

U+1F318 \:waning_crescent_moon: Waning CrescentMoon Symbol

U+1F319 \:crescent_moon: CrescentMoon

U+1F31A \:new_moon_with_face: NewMoonWith Face

U+1F31B \:first_quar-

ter_moon_with_face:

First QuarterMoonWith Face

U+1F31C \:last_quar-

ter_moon_with_face:

Last QuarterMoonWith Face

U+1F31D \:full_moon_with_face: Full MoonWith Face

U+1F31E \:sun_with_face: SunWith Face

U+1F31F \:star2: Glowing Star

U+1F320 \:stars: Shooting Star

U+1F330 \:chestnut: Chestnut

U+1F331 \:seedling: Seedling

U+1F332 \:evergreen_tree: Evergreen Tree

U+1F333 \:deciduous_tree: Deciduous Tree

U+1F334 \:palm_tree: Palm Tree

U+1F335 \:cactus: Cactus

U+1F337 \:tulip: Tulip

U+1F338 \:cherry_blossom: Cherry Blossom

U+1F339 \:rose: Rose

U+1F33A \:hibiscus: Hibiscus

U+1F33B \:sunflower: Sunflower

U+1F33C \:blossom: Blossom

U+1F33D \:corn: Ear OfMaize

U+1F33E \:ear_of_rice: Ear Of Rice

U+1F33F \:herb: Herb

U+1F340 \:four_leaf_clover: Four Leaf Clover

U+1F341 \:maple_leaf: Maple Leaf

U+1F342 \:fallen_leaf: Fallen Leaf

U+1F343 \:leaves: Leaf Fluttering InWind

U+1F344 \:mushroom: Mushroom

U+1F345 \:tomato: Tomato

U+1F346 \:eggplant: Aubergine

U+1F347 \:grapes: Grapes

U+1F348 \:melon: Melon

U+1F349 \:watermelon: Watermelon

U+1F34A \:tangerine: Tangerine

U+1F34B \:lemon: Lemon

U+1F34C \:banana: Banana

U+1F34D \:pineapple: Pineapple

U+1F34E \:apple: Red Apple

U+1F34F \:green_apple: Green Apple

U+1F350 \:pear: Pear

U+1F351 \:peach: Peach

U+1F352 \:cherries: Cherries

U+1F353 \:strawberry: Strawberry

U+1F354 \:hamburger: Hamburger

U+1F355 \:pizza: Slice Of Pizza

U+1F356 \:meat_on_bone: Meat On Bone

U+1F357 \:poultry_leg: Poultry Leg

U+1F358 \:rice_cracker: Rice Cracker

U+1F359 \:rice_ball: Rice Ball

U+1F35A \:rice: Cooked Rice

U+1F35B \:curry: Curry And Rice

U+1F35C \:ramen: Steaming Bowl

U+1F35D \:spaghetti: Spaghetti

U+1F35E \:bread: Bread

U+1F35F \:fries: French Fries

U+1F360 \:sweet_potato: Roasted Sweet Potato

U+1F361 \:dango: Dango

U+1F362 \:oden: Oden

U+1F363 \:sushi: Sushi

U+1F364 \:fried_shrimp: Fried Shrimp

U+1F365 \:fish_cake: Fish CakeWith Swirl Design

U+1F366 \:icecream: Soft Ice Cream

U+1F367 \:shaved_ice: Shaved Ice

U+1F368 \:ice_cream: Ice Cream

U+1F369 \:doughnut: Doughnut

U+1F36A \:cookie: Cookie

U+1F36B \:chocolate_bar: Chocolate Bar

U+1F36C \:candy: Candy

U+1F36D \:lollipop: Lollipop

U+1F36E \:custard: Custard

U+1F36F \:honey_pot: Honey Pot

U+1F370 \:cake: Shortcake

U+1F371 \:bento: Bento Box

U+1F372 \:stew: Pot Of Food

U+1F373 \:egg: Cooking

U+1F374 \:fork_and_knife: Fork And Knife

U+1F375 \:tea: TeacupWithout Handle

U+1F376 \:sake: Sake Bottle And Cup

U+1F377 \:wine_glass: Wine Glass

U+1F378 \:cocktail: Cocktail Glass

U+1F379 \:tropical_drink: Tropical Drink

U+1F37A \:beer: BeerMug

U+1F37B \:beers: Clinking BeerMugs

U+1F37C \:baby_bottle: Baby Bottle

U+1F380 \:ribbon: Ribbon

U+1F381 \:gift: Wrapped Present

U+1F382 \:birthday: Birthday Cake

U+1F383 \:jack_o_lantern: Jack-o-lantern

U+1F384 \:christmas_tree: Christmas Tree

U+1F385 \:santa: Father Christmas

U+1F386 \:fireworks: Fireworks

U+1F387 \:sparkler: Firework Sparkler

U+1F388 \:balloon: Balloon

U+1F389 \:tada: Party Popper

U+1F38A \:confetti_ball: Confetti Ball

U+1F38B \:tanabata_tree: Tanabata Tree

U+1F38C \:crossed_flags: Crossed Flags

U+1F38D \:bamboo: Pine Decoration

U+1F38E \:dolls: Japanese Dolls

U+1F38F \:flags: Carp Streamer

U+1F390 \:wind_chime: Wind Chime

U+1F391 \:rice_scene: Moon Viewing Ceremony

U+1F392 \:school_satchel: School Satchel

U+1F393 \:mortar_board: Graduation Cap

U+1F3A0 \:carousel_horse: Carousel Horse

U+1F3A1 \:ferris_wheel: FerrisWheel

U+1F3A2 \:roller_coaster: Roller Coaster

U+1F3A3 \:fishing_pole_and_fish: Fishing Pole And Fish

U+1F3A4 \:microphone: Microphone

U+1F3A5 \:movie_camera: Movie Camera

U+1F3A6 \:cinema: Cinema

U+1F3A7 \:headphones: Headphone

U+1F3A8 \:art: Artist Palette

U+1F3A9 \:tophat: TopHat

U+1F3AA \:circus_tent: Circus Tent

U+1F3AB \:ticket: Ticket

U+1F3AC \:clapper: Clapper Board

U+1F3AD \:performing_arts: Performing Arts

U+1F3AE \:video_game: Video Game

U+1F3AF \:dart: Direct Hit

U+1F3B0 \:slot_machine: SlotMachine

U+1F3B1 \:8ball: Billiards

U+1F3B2 \:game_die: GameDie

U+1F3B3 \:bowling: Bowling

U+1F3B4 \:flower_playing_cards: Flower Playing Cards

U+1F3B5 \:musical_note: Musical Note

U+1F3B6 \:notes: MultipleMusical Notes

U+1F3B7 \:saxophone: Saxophone

U+1F3B8 \:guitar: Guitar

U+1F3B9 \:musical_keyboard: Musical Keyboard

U+1F3BA \:trumpet: Trumpet

U+1F3BB \:violin: Violin

U+1F3BC \:musical_score: Musical Score

U+1F3BD \:running_shirt_with_sash: Running ShirtWith Sash

U+1F3BE \:tennis: Tennis Racquet And Ball

U+1F3BF \:ski: Ski And Ski Boot

U+1F3C0 \:basketball: Basketball AndHoop

U+1F3C1 \:checkered_flag: Chequered Flag

U+1F3C2 \:snowboarder: Snowboarder

U+1F3C3 \:runner: Runner

U+1F3C4 \:surfer: Surfer

U+1F3C6 \:trophy: Trophy

U+1F3C7 \:horse_racing: Horse Racing

U+1F3C8 \:football: American Football

U+1F3C9 \:rugby_football: Rugby Football

U+1F3CA \:swimmer: Swimmer

U+1F3E0 \:house: House Building

U+1F3E1 \:house_with_garden: HouseWith Garden

U+1F3E2 \:office: Office Building

U+1F3E3 \:post_office: Japanese Post Office

U+1F3E4 \:european_post_office: European Post Office

U+1F3E5 \:hospital: Hospital

U+1F3E6 \:bank: Bank

U+1F3E7 \:atm: Automated TellerMachine

U+1F3E8 \:hotel: Hotel

U+1F3E9 \:love_hotel: Love Hotel

U+1F3EA \:convenience_store: Convenience Store

U+1F3EB \:school: School

U+1F3EC \:department_store: Department Store

U+1F3ED \:factory: Factory

U+1F3EE \:izakaya_lantern: Izakaya Lantern

U+1F3EF \:japanese_castle: Japanese Castle

U+1F3F0 \:european_castle: European Castle

U+1F3FB \:skin-tone-2: Emoji Modifier Fitzpatrick Type-1-2

U+1F3FC \:skin-tone-3: Emoji Modifier Fitzpatrick Type-3

U+1F3FD \:skin-tone-4: Emoji Modifier Fitzpatrick Type-4

U+1F3FE \:skin-tone-5: Emoji Modifier Fitzpatrick Type-5

U+1F3FF \:skin-tone-6: Emoji Modifier Fitzpatrick Type-6

U+1F400 \:rat: Rat

U+1F401 \:mouse2: Mouse

U+1F402 \:ox: Ox

U+1F403 \:water_buffalo: Water Buffalo

U+1F404 \:cow2: Cow

U+1F405 \:tiger2: Tiger

U+1F406 \:leopard: Leopard

U+1F407 \:rabbit2: Rabbit

U+1F408 \:cat2: Cat

U+1F409 \:dragon: Dragon

U+1F40A \:crocodile: Crocodile

U+1F40B \:whale2: Whale

U+1F40C \:snail: Snail

U+1F40D \:snake: Snake

U+1F40E \:racehorse: Horse

U+1F40F \:ram: Ram

U+1F410 \:goat: Goat

U+1F411 \:sheep: Sheep

U+1F412 \:monkey: Monkey

U+1F413 \:rooster: Rooster

U+1F414 \:chicken: Chicken

U+1F415 \:dog2: Dog

U+1F416 \:pig2: Pig

U+1F417 \:boar: Boar

U+1F418 \:elephant: Elephant

U+1F419 \:octopus: Octopus

U+1F41A \:shell: Spiral Shell

U+1F41B \:bug: Bug

U+1F41C \:ant: Ant

U+1F41D \:bee: Honeybee

U+1F41E \:beetle: Lady Beetle

U+1F41F \:fish: Fish

U+1F420 \:tropical_fish: Tropical Fish

U+1F421 \:blowfish: Blowfish

U+1F422 \:turtle: Turtle

U+1F423 \:hatching_chick: Hatching Chick

U+1F424 \:baby_chick: Baby Chick

U+1F425 \:hatched_chick: Front-facing Baby Chick

U+1F426 \:bird: Bird

U+1F427 \:penguin: Penguin

U+1F428 \:koala: Koala

U+1F429 \:poodle: Poodle

U+1F42A \:dromedary_camel: Dromedary Camel

U+1F42B \:camel: Bactrian Camel

U+1F42C \:dolphin: Dolphin

U+1F42D \:mouse: Mouse Face

U+1F42E \:cow: Cow Face

U+1F42F \:tiger: Tiger Face

U+1F430 \:rabbit: Rabbit Face

U+1F431 \:cat: Cat Face

U+1F432 \:dragon_face: Dragon Face

U+1F433 \:whale: SpoutingWhale

U+1F434 \:horse: Horse Face

U+1F435 \:monkey_face: Monkey Face

U+1F436 \:dog: Dog Face

U+1F437 \:pig: Pig Face

U+1F438 \:frog: Frog Face

U+1F439 \:hamster: Hamster Face

U+1F43A \:wolf: Wolf Face

U+1F43B \:bear: Bear Face

U+1F43C \:panda_face: Panda Face

U+1F43D \:pig_nose: Pig Nose

U+1F43E \:feet: Paw Prints

U+1F440 \:eyes: Eyes

U+1F442 \:ear: Ear

U+1F443 \:nose: Nose

U+1F444 \:lips: Mouth

U+1F445 \:tongue: Tongue

U+1F446 \:point_up_2: White Up Pointing Backhand Index

U+1F447 \:point_down: White Down Pointing Backhand Index

U+1F448 \:point_left: White Left Pointing Backhand Index

U+1F449 \:point_right: White Right Pointing Backhand Index

U+1F44A \:facepunch: Fisted Hand Sign

U+1F44B \:wave: Waving Hand Sign

U+1F44C \:ok_hand: OkHand Sign

U+1F44D \:+1: Thumbs Up Sign

U+1F44E \:-1: Thumbs Down Sign

U+1F44F \:clap: Clapping Hands Sign

U+1F450 \:open_hands: OpenHands Sign

U+1F451 \:crown: Crown

U+1F452 \:womans_hat: Womans Hat

U+1F453 \:eyeglasses: Eyeglasses

U+1F454 \:necktie: Necktie

U+1F455 \:shirt: T-shirt

U+1F456 \:jeans: Jeans

U+1F457 \:dress: Dress

U+1F458 \:kimono: Kimono

U+1F459 \:bikini: Bikini

U+1F45A \:womans_clothes: Womans Clothes

U+1F45B \:purse: Purse

U+1F45C \:handbag: Handbag

U+1F45D \:pouch: Pouch

U+1F45E \:mans_shoe: Mans Shoe

U+1F45F \:athletic_shoe: Athletic Shoe

U+1F460 \:high_heel: High-heeled Shoe

U+1F461 \:sandal: Womans Sandal

U+1F462 \:boot: Womans Boots

U+1F463 \:footprints: Footprints

U+1F464 \:bust_in_silhouette: Bust In Silhouette

U+1F465 \:busts_in_silhouette: Busts In Silhouette

U+1F466 \:boy: Boy

U+1F467 \:girl: Girl

U+1F468 \:man: Man

U+1F469 \:woman: Woman

U+1F46A \:family: Family

U+1F46B \:couple: Man AndWomanHolding Hands

U+1F46C \:two_men_hold-

ing_hands:

TwoMenHolding Hands

U+1F46D \:two_women_hold-

ing_hands:

TwoWomenHolding Hands

U+1F46E \:cop: Police Officer

U+1F46F \:dancers: WomanWith Bunny Ears

U+1F470 \:bride_with_veil: BrideWith Veil

U+1F471 \:person_with_blond_hair: PersonWith BlondHair

U+1F472 \:man_with_gua_pi_mao: ManWith Gua PiMao

U+1F473 \:man_with_turban: ManWith Turban

U+1F474 \:older_man: OlderMan

U+1F475 \:older_woman: OlderWoman

U+1F476 \:baby: Baby

U+1F477 \:construction_worker: ConstructionWorker

U+1F478 \:princess: Princess

U+1F479 \:japanese_ogre: JapaneseOgre

U+1F47A \:japanese_goblin: Japanese Goblin

U+1F47B \:ghost: Ghost

U+1F47C \:angel: Baby Angel

U+1F47D \:alien: Extraterrestrial Alien

U+1F47E \:space_invader: AlienMonster

U+1F47F \:imp: Imp

U+1F480 \:skull: Skull

U+1F481 \:information_desk_per-

son:

Information Desk Person

U+1F482 \:guardsman: Guardsman

U+1F483 \:dancer: Dancer

U+1F484 \:lipstick: Lipstick

U+1F485 \:nail_care: Nail Polish

U+1F486 \:massage: FaceMassage

U+1F487 \:haircut: Haircut

U+1F488 \:barber: Barber Pole

U+1F489 \:syringe: Syringe

U+1F48A \:pill: Pill

U+1F48B \:kiss: KissMark

U+1F48C \:love_letter: Love Letter

U+1F48D \:ring: Ring

U+1F48E \:gem: Gem Stone

U+1F48F \:couplekiss: Kiss

U+1F490 \:bouquet: Bouquet

U+1F491 \:couple_with_heart: CoupleWith Heart

U+1F492 \:wedding: Wedding

U+1F493 \:heartbeat: Beating Heart

U+1F494 \:broken_heart: BrokenHeart

U+1F495 \:two_hearts: TwoHearts

U+1F496 \:sparkling_heart: Sparkling Heart

U+1F497 \:heartpulse: Growing Heart

U+1F498 \:cupid: HeartWith Arrow

U+1F499 \:blue_heart: Blue Heart

U+1F49A \:green_heart: GreenHeart

U+1F49B \:yellow_heart: YellowHeart

U+1F49C \:purple_heart: Purple Heart

U+1F49D \:gift_heart: HeartWith Ribbon

U+1F49E \:revolving_hearts: Revolving Hearts

U+1F49F \:heart_decoration: Heart Decoration

U+1F4A0 \:dia-

mond_shape_with_a_dot_in-

side:

Diamond ShapeWith ADot Inside

U+1F4A1 \:bulb: Electric Light Bulb

U+1F4A2 \:anger: Anger Symbol

U+1F4A3 \:bomb: Bomb

U+1F4A4 \:zzz: Sleeping Symbol

U+1F4A5 \:boom: Collision Symbol

U+1F4A6 \:sweat_drops: Splashing Sweat Symbol

U+1F4A7 \:droplet: Droplet

U+1F4A8 \:dash: Dash Symbol

U+1F4A9 \:hankey: Pile Of Poo

U+1F4AA \:muscle: Flexed Biceps

U+1F4AB \:dizzy: Dizzy Symbol

U+1F4AC \:speech_balloon: Speech Balloon

U+1F4AD \:thought_balloon: Thought Balloon

U+1F4AE \:white_flower: White Flower

U+1F4AF \:100: Hundred Points Symbol

U+1F4B0 \:moneybag: Money Bag

U+1F4B1 \:currency_exchange: Currency Exchange

U+1F4B2 \:heavy_dollar_sign: Heavy Dollar Sign

U+1F4B3 \:credit_card: Credit Card

U+1F4B4 \:yen: BanknoteWith Yen Sign

U+1F4B5 \:dollar: BanknoteWith Dollar Sign

U+1F4B6 \:euro: BanknoteWith Euro Sign

U+1F4B7 \:pound: BanknoteWith Pound Sign

U+1F4B8 \:money_with_wings: MoneyWithWings

U+1F4B9 \:chart: ChartWith Upwards Trend And Yen Sign

U+1F4BA \:seat: Seat

U+1F4BB \:computer: Personal Computer

U+1F4BC \:briefcase: Briefcase

U+1F4BD \:minidisc: Minidisc

U+1F4BE \:floppy_disk: Floppy Disk

U+1F4BF \:cd: Optical Disc

U+1F4C0 \:dvd: Dvd

U+1F4C1 \:file_folder: File Folder

U+1F4C2 \:open_file_folder: Open File Folder

U+1F4C3 \:page_with_curl: PageWith Curl

U+1F4C4 \:page_facing_up: Page Facing Up

U+1F4C5 \:date: Calendar

U+1F4C6 \:calendar: Tear-off Calendar

U+1F4C7 \:card_index: Card Index

U+1F4C8 \:chart_with_up-

wards_trend:

ChartWith Upwards Trend

U+1F4C9 \:chart_with_down-

wards_trend:

ChartWith Downwards Trend

U+1F4CA \:bar_chart: Bar Chart

U+1F4CB \:clipboard: Clipboard

U+1F4CC \:pushpin: Pushpin

U+1F4CD \:round_pushpin: Round Pushpin

U+1F4CE \:paperclip: Paperclip

U+1F4CF \:straight_ruler: Straight Ruler

U+1F4D0 \:triangular_ruler: Triangular Ruler

U+1F4D1 \:bookmark_tabs: Bookmark Tabs

U+1F4D2 \:ledger: Ledger

U+1F4D3 \:notebook: Notebook

U+1F4D4 \:notebook_with_decora-

tive_cover:

NotebookWith Decorative Cover

U+1F4D5 \:closed_book: Closed Book

U+1F4D6 \:book: Open Book

U+1F4D7 \:green_book: Green Book

U+1F4D8 \:blue_book: Blue Book

U+1F4D9 \:orange_book: Orange Book

U+1F4DA \:books: Books

U+1F4DB \:name_badge: Name Badge

U+1F4DC \:scroll: Scroll

U+1F4DD \:memo: Memo

U+1F4DE \:telephone_receiver: Telephone Receiver

U+1F4DF \:pager: Pager

U+1F4E0 \:fax: FaxMachine

U+1F4E1 \:satellite: Satellite Antenna

U+1F4E2 \:loudspeaker: Public Address Loudspeaker

U+1F4E3 \:mega: CheeringMegaphone

U+1F4E4 \:outbox_tray: Outbox Tray

U+1F4E5 \:inbox_tray: Inbox Tray

U+1F4E6 \:package: Package

U+1F4E7 \:e-mail: E-mail Symbol

U+1F4E8 \:incoming_envelope: Incoming Envelope

U+1F4E9 \:envelope_with_arrow: EnvelopeWith Downwards ArrowAbove

U+1F4EA \:mailbox_closed: ClosedMailboxWith Lowered Flag

U+1F4EB \:mailbox: ClosedMailboxWith Raised Flag

U+1F4EC \:mailbox_with_mail: OpenMailboxWith Raised Flag

U+1F4ED \:mailbox_with_no_mail: OpenMailboxWith Lowered Flag

U+1F4EE \:postbox: Postbox

U+1F4EF \:postal_horn: Postal Horn

U+1F4F0 \:newspaper: Newspaper

U+1F4F1 \:iphone: Mobile Phone

U+1F4F2 \:calling: Mobile PhoneWith Rightwards ArrowAt Left

U+1F4F3 \:vibration_mode: VibrationMode

U+1F4F4 \:mobile_phone_off: Mobile PhoneOff

U+1F4F5 \:no_mobile_phones: NoMobile Phones

U+1F4F6 \:signal_strength: AntennaWith Bars

U+1F4F7 \:camera: Camera

U+1F4F9 \:video_camera: Video Camera

U+1F4FA \:tv: Television

U+1F4FB \:radio: Radio

U+1F4FC \:vhs: Videocassette

U+1F500 \:twisted_rightwards_ar-

rows:

Twisted Rightwards Arrows

U+1F501 \:repeat: Clockwise Rightwards And Leftwards Open Circle Arrows

U+1F502 \:repeat_one: Clockwise Rightwards And Leftwards Open Circle Arrows

With CircledOneOverlay

U+1F503 \:arrows_clockwise: Clockwise Downwards AndUpwards Open Circle Arrows

U+1F504 \:arrows_counterclock-

wise:

Anticlockwise Downwards AndUpwards Open Circle

Arrows

U+1F505 \:low_brightness: Low Brightness Symbol

U+1F506 \:high_brightness: High Brightness Symbol

U+1F507 \:mute: SpeakerWith Cancellation Stroke

U+1F508 \:speaker: Speaker

U+1F509 \:sound: SpeakerWithOne SoundWave

U+1F50A \:loud_sound: SpeakerWith Three SoundWaves

U+1F50B \:battery: Battery

U+1F50C \:electric_plug: Electric Plug

U+1F50D \:mag: Left-pointingMagnifying Glass

U+1F50E \:mag_right: Right-pointingMagnifying Glass

U+1F50F \:lock_with_ink_pen: LockWith Ink Pen

U+1F510 \:closed_lock_with_key: Closed LockWith Key

U+1F511 \:key: Key

U+1F512 \:lock: Lock

U+1F513 \:unlock: Open Lock

U+1F514 \:bell: Bell

U+1F515 \:no_bell: BellWith Cancellation Stroke

U+1F516 \:bookmark: Bookmark

U+1F517 \:link: Link Symbol

U+1F518 \:radio_button: Radio Button

U+1F519 \:back: BackWith Leftwards ArrowAbove

U+1F51A \:end: EndWith Leftwards ArrowAbove

U+1F51B \:on: OnWith ExclamationMarkWith Left Right ArrowAbove

U+1F51C \:soon: SoonWith Rightwards ArrowAbove

U+1F51D \:top: TopWith Upwards ArrowAbove

U+1F51E \:underage: NoOneUnder Eighteen Symbol

U+1F51F \:keycap_ten: Keycap Ten

U+1F520 \:capital_abcd: Input Symbol For Latin Capital Letters

U+1F521 \:abcd: Input Symbol For Latin Small Letters

U+1F522 \:1234: Input Symbol For Numbers

U+1F523 \:symbols: Input Symbol For Symbols

U+1F524 \:abc: Input Symbol For Latin Letters

U+1F525 \:fire: Fire

U+1F526 \:flashlight: Electric Torch

U+1F527 \:wrench: Wrench

U+1F528 \:hammer: Hammer

U+1F529 \:nut_and_bolt: Nut And Bolt

U+1F52A \:hocho: Hocho

U+1F52B \:gun: Pistol

U+1F52C \:microscope: Microscope

U+1F52D \:telescope: Telescope

U+1F52E \:crystal_ball: Crystal Ball

U+1F52F \:six_pointed_star: Six Pointed StarWithMiddle Dot

U+1F530 \:beginner: Japanese Symbol For Beginner

U+1F531 \:trident: Trident Emblem

U+1F532 \:black_square_button: Black Square Button

U+1F533 \:white_square_button: White Square Button

U+1F534 \:red_circle: Large Red Circle

U+1F535 \:large_blue_circle: Large Blue Circle

U+1F536 \:large_orange_diamond: LargeOrange Diamond

U+1F537 \:large_blue_diamond: Large Blue Diamond

U+1F538 \:small_orange_diamond: Small Orange Diamond

U+1F539 \:small_blue_diamond: Small Blue Diamond

U+1F53A \:small_red_triangle: Up-pointing Red Triangle

U+1F53B \:small_red_trian-

gle_down:

Down-pointing Red Triangle

U+1F53C \:arrow_up_small: Up-pointing Small Red Triangle

U+1F53D \:arrow_down_small: Down-pointing Small Red Triangle

U+1F550 \:clock1: Clock FaceOneOclock

U+1F551 \:clock2: Clock Face TwoOclock

U+1F552 \:clock3: Clock Face ThreeOclock

U+1F553 \:clock4: Clock Face Four Oclock

U+1F554 \:clock5: Clock Face FiveOclock

U+1F555 \:clock6: Clock Face Six Oclock

U+1F556 \:clock7: Clock Face SevenOclock

U+1F557 \:clock8: Clock Face Eight Oclock

U+1F558 \:clock9: Clock Face NineOclock

U+1F559 \:clock10: Clock Face TenOclock

U+1F55A \:clock11: Clock Face ElevenOclock

U+1F55B \:clock12: Clock Face TwelveOclock

U+1F55C \:clock130: Clock FaceOne-thirty

U+1F55D \:clock230: Clock Face Two-thirty

U+1F55E \:clock330: Clock Face Three-thirty

U+1F55F \:clock430: Clock Face Four-thirty

U+1F560 \:clock530: Clock Face Five-thirty

U+1F561 \:clock630: Clock Face Six-thirty

U+1F562 \:clock730: Clock Face Seven-thirty

U+1F563 \:clock830: Clock Face Eight-thirty

U+1F564 \:clock930: Clock Face Nine-thirty

U+1F565 \:clock1030: Clock Face Ten-thirty

U+1F566 \:clock1130: Clock Face Eleven-thirty

U+1F567 \:clock1230: Clock Face Twelve-thirty

U+1F5FB \:mount_fuji: Mount Fuji

U+1F5FC \:tokyo_tower: Tokyo Tower

U+1F5FD \:statue_of_liberty: StatueOf Liberty

U+1F5FE \:japan: Silhouette Of Japan

U+1F5FF \:moyai: Moyai

U+1F600 \:grinning: Grinning Face

U+1F601 \:grin: Grinning FaceWith Smiling Eyes

U+1F602 \:joy: FaceWith Tears Of Joy

U+1F603 \:smiley: Smiling FaceWithOpenMouth

U+1F604 \:smile: Smiling FaceWithOpenMouth And Smiling Eyes

U+1F605 \:sweat_smile: Smiling FaceWithOpenMouth And Cold Sweat

U+1F606 \:laughing: Smiling FaceWithOpenMouth And Tightly-closed Eyes

U+1F607 \:innocent: Smiling FaceWith Halo

U+1F608 \:smiling_imp: Smiling FaceWith Horns

U+1F609 \:wink: Winking Face

U+1F60A \:blush: Smiling FaceWith Smiling Eyes

U+1F60B \:yum: Face Savouring Delicious Food

U+1F60C \:relieved: Relieved Face

U+1F60D \:heart_eyes: Smiling FaceWith Heart-shaped Eyes

U+1F60E \:sunglasses: Smiling FaceWith Sunglasses

U+1F60F \:smirk: Smirking Face

U+1F610 \:neutral_face: Neutral Face

U+1F611 \:expressionless: Expressionless Face

U+1F612 \:unamused: Unamused Face

U+1F613 \:sweat: FaceWith Cold Sweat

U+1F614 \:pensive: Pensive Face

U+1F615 \:confused: Confused Face

U+1F616 \:confounded: Confounded Face

U+1F617 \:kissing: Kissing Face

U+1F618 \:kissing_heart: Face Throwing A Kiss

U+1F619 \:kissing_smiling_eyes: Kissing FaceWith Smiling Eyes

U+1F61A \:kissing_closed_eyes: Kissing FaceWith Closed Eyes

U+1F61B \:stuck_out_tongue: FaceWith Stuck-out Tongue

U+1F61C \:stuck_out_tongue_wink-

ing_eye:

FaceWith Stuck-out Tongue AndWinking Eye

U+1F61D \:stuck_out_tongue_closed_eyes:FaceWith Stuck-out Tongue And Tightly-closed Eyes

U+1F61E \:disappointed: Disappointed Face

U+1F61F \:worried: Worried Face

U+1F620 \:angry: Angry Face

U+1F621 \:rage: Pouting Face

U+1F622 \:cry: Crying Face

U+1F623 \:persevere: Persevering Face

U+1F624 \:triumph: FaceWith LookOf Triumph

U+1F625 \:disappointed_relieved: Disappointed But Relieved Face

U+1F626 \:frowning: Frowning FaceWithOpenMouth

U+1F627 \:anguished: Anguished Face

U+1F628 \:fearful: Fearful Face

U+1F629 \:weary: Weary Face

U+1F62A \:sleepy: Sleepy Face

U+1F62B \:tired_face: Tired Face

U+1F62C \:grimacing: Grimacing Face

U+1F62D \:sob: Loudly Crying Face

U+1F62E \:open_mouth: FaceWithOpenMouth

U+1F62F \:hushed: Hushed Face

U+1F630 \:cold_sweat: FaceWithOpenMouth And Cold Sweat

U+1F631 \:scream: Face Screaming In Fear

U+1F632 \:astonished: Astonished Face

U+1F633 \:flushed: Flushed Face

U+1F634 \:sleeping: Sleeping Face

U+1F635 \:dizzy_face: Dizzy Face

U+1F636 \:no_mouth: FaceWithoutMouth

U+1F637 \:mask: FaceWithMedical Mask

U+1F638 \:smile_cat: Grinning Cat FaceWith Smiling Eyes

U+1F639 \:joy_cat: Cat FaceWith Tears Of Joy

U+1F63A \:smiley_cat: Smiling Cat FaceWithOpenMouth

U+1F63B \:heart_eyes_cat: Smiling Cat FaceWith Heart-shaped Eyes

U+1F63C \:smirk_cat: Cat FaceWithWry Smile

U+1F63D \:kissing_cat: Kissing Cat FaceWith Closed Eyes

U+1F63E \:pouting_cat: Pouting Cat Face

U+1F63F \:crying_cat_face: Crying Cat Face

U+1F640 \:scream_cat: Weary Cat Face

U+1F645 \:no_good: FaceWith NoGoodGesture

U+1F646 \:ok_woman: FaceWithOkGesture

U+1F647 \:bow: Person Bowing Deeply

U+1F648 \:see_no_evil: See-no-evil Monkey

U+1F649 \:hear_no_evil: Hear-no-evil Monkey

U+1F64A \:speak_no_evil: Speak-no-evil Monkey

U+1F64B \:raising_hand: Happy Person Raising OneHand

U+1F64C \:raised_hands: Person Raising Both Hands In Celebration

U+1F64D \:person_frowning: Person Frowning

U+1F64E \:person_with_pout-

ing_face:

PersonWith Pouting Face

U+1F64F \:pray: PersonWith Folded Hands

U+1F680 \:rocket: Rocket

U+1F681 \:helicopter: Helicopter

U+1F682 \:steam_locomotive: Steam Locomotive

U+1F683 \:railway_car: Railway Car

U+1F684 \:bullettrain_side: High-speed Train

U+1F685 \:bullettrain_front: High-speed TrainWith Bullet Nose

U+1F686 \:train2: Train

U+1F687 \:metro: Metro

U+1F688 \:light_rail: Light Rail

U+1F689 \:station: Station

U+1F68A \:tram: Tram

U+1F68B \:train: TramCar

U+1F68C \:bus: Bus

U+1F68D \:oncoming_bus: Oncoming Bus

U+1F68E \:trolleybus: Trolleybus

U+1F68F \:busstop: Bus Stop

U+1F690 \:minibus: Minibus

U+1F691 \:ambulance: Ambulance

U+1F692 \:fire_engine: Fire Engine

U+1F693 \:police_car: Police Car

U+1F694 \:oncoming_police_car: Oncoming Police Car

U+1F695 \:taxi: Taxi

U+1F696 \:oncoming_taxi: Oncoming Taxi

U+1F697 \:car: Automobile

U+1F698 \:oncoming_automobile: Oncoming Automobile

U+1F699 \:blue_car: Recreational Vehicle

U+1F69A \:truck: Delivery Truck

U+1F69B \:articulated_lorry: Articulated Lorry

U+1F69C \:tractor: Tractor

U+1F69D \:monorail: Monorail

U+1F69E \:mountain_railway: Mountain Railway

U+1F69F \:suspension_railway: Suspension Railway

U+1F6A0 \:mountain_cableway: Mountain Cableway

U+1F6A1 \:aerial_tramway: Aerial Tramway

U+1F6A2 \:ship: Ship

U+1F6A3 \:rowboat: Rowboat

U+1F6A4 \:speedboat: Speedboat

U+1F6A5 \:traffic_light: Horizontal Traffic Light

U+1F6A6 \:vertical_traffic_light: Vertical Traffic Light

U+1F6A7 \:construction: Construction Sign

U+1F6A8 \:rotating_light: Police Cars Revolving Light

U+1F6A9 \:triangular_flag_on_post: Triangular Flag On Post

U+1F6AA \:door: Door

U+1F6AB \:no_entry_sign: No Entry Sign

U+1F6AC \:smoking: Smoking Symbol

U+1F6AD \:no_smoking: No Smoking Symbol

U+1F6AE \:put_litter_in_its_place: Put Litter In Its Place Symbol

U+1F6AF \:do_not_litter: DoNot Litter Symbol

U+1F6B0 \:potable_water: PotableWater Symbol

U+1F6B1 \:non-potable_water: Non-potableWater Symbol

U+1F6B2 \:bike: Bicycle

U+1F6B3 \:no_bicycles: No Bicycles

U+1F6B4 \:bicyclist: Bicyclist

U+1F6B5 \:mountain_bicyclist: Mountain Bicyclist

U+1F6B6 \:walking: Pedestrian

U+1F6B7 \:no_pedestrians: No Pedestrians

U+1F6B8 \:children_crossing: Children Crossing

U+1F6B9 \:mens: Mens Symbol

U+1F6BA \:womens: Womens Symbol

U+1F6BB \:restroom: Restroom

U+1F6BC \:baby_symbol: Baby Symbol

U+1F6BD \:toilet: Toilet

U+1F6BE \:wc: Water Closet

U+1F6BF \:shower: Shower

U+1F6C0 \:bath: Bath

U+1F6C1 \:bathtub: Bathtub

U+1F6C2 \:passport_control: Passport Control

U+1F6C3 \:customs: Customs

U+1F6C4 \:baggage_claim: Baggage Claim

U+1F6C5 \:left_luggage: Left Luggage

413

Part IV

Standard Library

415

Chapter 45

Essentials

45.1 Introduction

The Julia standard library contains a range of functions andmacros appropriate for performing scientific and numerical

computing, but is also as broad as those of many general purpose programming languages. Additional functionality is

available from a growing collection of available packages. Functions are grouped by topic below.

Some general notes:

• Except for functions inbuilt-inmodules (Pkg,Collections,TestandProfile), all functionsdocumentedhere

are directly available for use in programs.

• To usemodule functions, use import Module to import themodule, and Module.fn(x) to use the functions.

• Alternatively, using Modulewill import all exported Module functions into the current namespace.

• By convention, function names ending with an exclamation point (!) modify their arguments. Some functions

have bothmodifying (e.g., sort!) and non-modifying (sort) versions.

45.2 Getting Around

Base.exit – Function.

exit([code])

Quit (or control-D at the prompt). The default exit code is zero, indicating that the processes completed success-

fully.

source

Base.quit – Function.

quit()

Quit the program indicating that the processes completed successfully. This function calls exit(0) (see exit).

source

Base.atexit – Function.

atexit(f)

417

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2486-L2491
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1381-L1386

418 CHAPTER 45. ESSENTIALS

Register a zero-argument function f() to be called at process exit. atexit() hooks are called in last in first out

(LIFO) order and run before object finalizers.

source

Base.atreplinit – Function.

atreplinit(f)

Register a one-argument function to be called before theREPL interface is initialized in interactive sessions; this is

useful to customize the interface. The argument of f is the REPL object. This function should be called fromwithin

the .juliarc.jl initialization file.

source

Base.isinteractive – Function.

isinteractive() -> Bool

Determine whether Julia is running an interactive session.

source

Base.whos – Function.

whos(io::IO=STDOUT, m::Module=current_module(), pattern::Regex=r"")

Print information about exported global variables in amodule, optionally restricted to thosematching pattern.

The memory consumption estimate is an approximate lower bound on the size of the internal structure of the ob-

ject.

source

Base.summarysize – Function.

Base.summarysize(obj; exclude=Union{...}, chargeall=Union{...}) -> Int

Compute the amount of memory used by all unique objects reachable from the argument.

Keyword Arguments

• exclude: specifies the types of objects to exclude from the traversal.

• chargeall: specifies the types of objects to always charge the size of all of their fields, even if those fields

would normally be excluded.

source

Base.edit –Method.

edit(path::AbstractString, line::Integer=0)

Edit a file or directory optionally providing a line number to edit the file at. Returns to the julia prompt when

you quit the editor. The editor can be changed by setting JULIA_EDITOR, VISUAL or EDITOR as an environment

variable.

source

Base.edit –Method.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1569-L1574
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/client.jl#L344-L351
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L537-L541
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L699-L705
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/summarysize.jl#L12-L21
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L26-L32

45.2. GETTING AROUND 419

edit(function, [types])

Edit the definition of a function, optionally specifying a tuple of types to indicate whichmethod to edit. The editor

can be changed by setting JULIA_EDITOR, VISUAL or EDITOR as an environment variable.

source

Base.@edit –Macro.

@edit

Evaluates the arguments to the function or macro call, determines their types, and calls the edit function on the

resulting expression.

source

Base.less –Method.

less(file::AbstractString, [line::Integer])

Showafile using the default pager, optionally providing a starting line number. Returns to thejulia promptwhen

you quit the pager.

source

Base.less –Method.

less(function, [types])

Show the definition of a function using the default pager, optionally specifying a tuple of types to indicate which

method to see.

source

Base.@less –Macro.

@less

Evaluates the arguments to the function or macro call, determines their types, and calls the less function on the

resulting expression.

source

Base.clipboard –Method.

clipboard(x)

Send a printed form of x to the operating system clipboard ("copy").

source

Base.clipboard –Method.

clipboard() -> AbstractString

Return a string with the contents of the operating system clipboard ("paste").

source

Base.reload – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L80-L86
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L469-L474
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L106-L111
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L114-L119
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L461-L466
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L203-L207
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L210-L214

420 CHAPTER 45. ESSENTIALS

reload(name::AbstractString)

Forcereloadingofapackage, even if ithasbeen loadedbefore. This is intendedforuseduringpackagedevelopment

as code is modified.

source

Base.require – Function.

require(module::Symbol)

This function is part of the implementation of using / import, if a module is not already defined in Main. It can

also be called directly to force reloading a module, regardless of whether it has been loaded before (for example,

when interactively developing libraries).

Loads a source file, in the context of the Mainmodule, on every active node, searching standard locations for files.

require is considered a top-level operation, so it sets the current include path but does not use it to search for

files (see help for include). This function is typically used to load library code, and is implicitly called by using to

load packages.

When searching for files, require first looks for package code under Pkg.dir(), then tries paths in the global

arrayLOAD_PATH.require is case-sensitive onall platforms, including thosewith case-insensitive filesystems like

macOS andWindows.

source

Base.compilecache – Function.

Base.compilecache(module::String)

Creates a precompiled cache file for amodule and all of its dependencies. This can be used to reduce package load

times. Cache files are stored in LOAD_CACHE_PATH[1], which defaults to ~/.julia/lib/VERSION. SeeModule

initialization and precompilation for important notes.

source

Base.__precompile__ – Function.

__precompile__(isprecompilable::Bool=true)

Specifywhether thefilecalling this function isprecompilable. Ifisprecompilable istrue, then__precompile__

throwsanexceptionwhenthefile is loadedbyusing/import/requireunless thefile isbeingprecompiled, and ina

modulefile it causes themodule tobeautomaticallyprecompiledwhen it is imported. Typically,__precompile__()

shouldoccurbefore themoduledeclaration in thefile, orbetteryetVERSION >= v"0.4" && __precompile__()

in order to be backward-compatible with Julia 0.3.

If a module or file is not safely precompilable, it should call __precompile__(false) in order to throw an error

if Julia attempts to precompile it.

__precompile__()shouldnotbeused inamoduleunlessallof itsdependenciesarealsousing__precompile__().

Failure to do so can result in a runtime error when loading themodule.

source

Base.include – Function.

include(path::AbstractString)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/loading.jl#L366-L371
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/loading.jl#L385-L403
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/loading.jl#L666-L675
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/loading.jl#L321-L336

45.2. GETTING AROUND 421

Evaluate thecontentsof the input sourcefile in thecurrent context. Returns the result of the last evaluatedexpres-

sion of the input file. During including, a task-local include path is set to the directory containing the file. Nested

calls to include will search relative to that path. All paths refer to files on node 1 when running in parallel, and

files will be fetched from node 1. This function is typically used to load source interactively, or to combine files in

packages that are broken intomultiple source files.

source

Base.include_string – Function.

include_string(code::AbstractString, filename::AbstractString="string")

Like include, except reads code from the given string rather than from a file. Since there is no file path involved,

no path processing or fetching from node 1 is done.

source

Base.include_dependency – Function.

include_dependency(path::AbstractString)

In a module, declare that the file specified by path (relative or absolute) is a dependency for precompilation; that

is, themodule will need to be recompiled if this file changes.

This is only needed if your module depends on a file that is not used via include. It has no effect outside of com-

pilation.

source

Base.Docs.apropos – Function.

apropos(string)

Search through all documentation for a string, ignoring case.

source

Base.which –Method.

which(f, types)

Returns themethod of f (a Method object) that would be called for arguments of the given types.

If types is an abstract type, then themethod that would be called by invoke is returned.

source

Base.which –Method.

which(symbol)

Return themodule in which the binding for the variable referenced by symbolwas created.

source

Base.@which –Macro.

@which

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/loading.jl#L591-L600
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/loading.jl#L516-L521
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/loading.jl#L287-L296
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/utils.jl#L440-L444
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L809-L815
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L841-L845

422 CHAPTER 45. ESSENTIALS

Applied to a function ormacro call, it evaluates the arguments to the specified call, and returns the Method object

for themethod that would be called for those arguments. Applied to a variable, it returns themodule in which the

variable was bound. It calls out to the which function.

source

Base.methods – Function.

methods(f, [types])

Returns themethod table for f.

If types is specified, returns an array of methods whose typesmatch.

source

Base.methodswith – Function.

methodswith(typ[, module or function][, showparents::Bool=false])

Return an array of methods with an argument of type typ.

The optional second argument restricts the search to a particular module or function (the default is all modules,

starting fromMain).

If optional showparents is true, also return arguments with a parent type of typ, excluding type Any.

source

Base.@show –Macro.

@show

Show an expression and result, returning the result.

source

Base.versioninfo – Function.

versioninfo(io::IO=STDOUT, verbose::Bool=false)

Print information about the version of Julia in use. If the verbose argument is true, detailed system information

is shown as well.

source

Base.workspace – Function.

workspace()

Replace the top-level module (Main) with a new one, providing a clean workspace. The previous Main module

is made available as LastMain. A previously-loaded package can be accessed using a statement such as using

LastMain.Package.

This function should only be used interactively.

source

ans – Keyword.

ans

A variable referring to the last computed value, automatically set at the interactive prompt.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L451-L458
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L572-L578
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L534-L544
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L815-L819
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L247-L252
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L648-L656
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/basedocs.jl#L684-L688

45.3. ALL OBJECTS 423

45.3 All Objects

Core.:=== – Function.

===(x,y) -> Bool

(x,y) -> Bool

Determinewhether x and y are identical, in the sense that no program could distinguish them. Comparesmutable

objects by address inmemory, and compares immutable objects (such as numbers) by contents at the bit level. This

function is sometimes called egal.

julia> a = [1, 2]; b = [1, 2];

julia> a == b

true

julia> a === b

false

julia> a === a

true

source

Core.isa – Function.

isa(x, type) -> Bool

Determine whether x is of the given type. Can also be used as an infix operator, e.g. x isa type.

source

Base.isequal –Method.

isequal(x, y)

Similar to ==, except treats all floating-point NaN values as equal to each other, and treats -0.0 as unequal to 0.0.

The default implementation of isequal calls ==, so if you have a type that doesn't have these floating-point sub-

tleties then you probably only need to define ==.

isequal is the comparison function used by hash tables (Dict). isequal(x,y) must imply that hash(x) ==

hash(y).

This typically means that if you define your own == function then youmust define a corresponding hash (and vice

versa). Collections typically implement isequal by calling isequal recursively on all contents.

Scalar types generally do not need to implement isequal separate from ==, unless they represent floating-point

numbers amenable to a more efficient implementation than that provided as a generic fallback (based on isnan,

signbit, and ==).

julia> isequal([1., NaN], [1., NaN])

true

julia> [1., NaN] == [1., NaN]

false

julia> 0.0 == -0.0

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L132-L152
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2146-L2151

424 CHAPTER 45. ESSENTIALS

true

julia> isequal(0.0, -0.0)

false

source

Base.isequal –Method.

isequal(x, y)

Similar to ==, except treats all floating-point NaN values as equal to each other, and treats -0.0 as unequal to 0.0.

The default implementation of isequal calls ==, so if you have a type that doesn't have these floating-point sub-

tleties then you probably only need to define ==.

isequal is the comparison function used by hash tables (Dict). isequal(x,y) must imply that hash(x) ==

hash(y).

This typically means that if you define your own == function then youmust define a corresponding hash (and vice

versa). Collections typically implement isequal by calling isequal recursively on all contents.

Scalar types generally do not need to implement isequal separate from ==, unless they represent floating-point

numbers amenable to a more efficient implementation than that provided as a generic fallback (based on isnan,

signbit, and ==).

julia> isequal([1., NaN], [1., NaN])

true

julia> [1., NaN] == [1., NaN]

false

julia> 0.0 == -0.0

true

julia> isequal(0.0, -0.0)

false

source

isequal(x::Nullable, y::Nullable)

If neither x nor y is null, compare them according to their values (i.e. isequal(get(x), get(y))). Else, return

true if both arguments are null, and false if one is null but not the other: nulls are considered equal.

source

Base.isless – Function.

isless(x, y)

Testwhetherx is less thany, according to a canonical total order. Values that are normally unordered, such asNaN,

areordered inanarbitrarybut consistent fashion. This is thedefault comparisonusedbysort. Non-numeric types

with a canonical total order should implement this function. Numeric types only need to implement it if they have

special values such as NaN.

source

Base.isless –Method.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L54-L86
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L54-L86
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/nullable.jl#L198-L204
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1743-L1751

45.3. ALL OBJECTS 425

isless(x::Nullable, y::Nullable)

If neither x nor y is null, compare them according to their values (i.e. isless(get(x), get(y))). Else, return

true if only y is null, and false otherwise: nulls are always considered greater than non-nulls, but not greater

than another null.

source

Base.ifelse – Function.

ifelse(condition::Bool, x, y)

Return x if condition is true, otherwise return y. This differs from ? or if in that it is an ordinary function, so

all the arguments are evaluated first. In some cases, using ifelse instead of an if statement can eliminate the

branch in generated code and provide higher performance in tight loops.

julia> ifelse(1 > 2, 1, 2)

2

source

Base.lexcmp – Function.

lexcmp(x, y)

Compare x and y lexicographically and return -1, 0, or 1 depending on whether x is less than, equal to, or greater

than y, respectively. This function should be defined for lexicographically comparable types, and lexlesswill call

lexcmp by default.

julia> lexcmp("abc", "abd")

-1

julia> lexcmp("abc", "abc")

0

source

Base.lexless – Function.

lexless(x, y)

Determine whether x is lexicographically less than y.

julia> lexless("abc", "abd")

true

source

Core.typeof – Function.

typeof(x)

Get the concrete type of x.

source

Core.tuple – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/nullable.jl#L217-L224
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L269-L281
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L305-L319
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L322-L331
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1017-L1021

426 CHAPTER 45. ESSENTIALS

tuple(xs...)

Construct a tuple of the given objects.

Example

julia> tuple(1, 'a', pi)

(1, 'a', π = 3.1415926535897...)

source

Base.ntuple – Function.

ntuple(f::Function, n::Integer)

Create a tuple of length n, computing each element as f(i), where i is the index of the element.

julia> ntuple(i -> 2*i, 4)

(2, 4, 6, 8)

source

Base.object_id – Function.

object_id(x)

Get a hash value for x based on object identity. object_id(x)==object_id(y) if x === y.

source

Base.hash – Function.

hash(x[, h::UInt])

Compute an integer hash code such that isequal(x,y) implies hash(x)==hash(y). The optional second argu-

ment h is a hash code to bemixedwith the result.

New types should implement the2-argument form, typically by calling the2-argumenthashmethod recursively in

order tomix hashes of the contents with each other (andwith h). Typically, any type that implements hash should

also implement its own == (hence isequal) to guarantee the property mentioned above.

source

Base.finalizer – Function.

finalizer(x, f)

Register a function f(x) to be calledwhen there are no program-accessible references to x. The type of xmust be

a mutable struct, otherwise the behavior of this function is unpredictable.

source

Base.finalize – Function.

finalize(x)

Immediately run finalizers registered for object x.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L580-L590
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/tuple.jl#L96-L106
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1829-L1833
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1469-L1479
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1879-L1885
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1129-L1133

45.3. ALL OBJECTS 427

Base.copy – Function.

copy(x)

Create a shallow copy of x: the outer structure is copied, but not all internal values. For example, copying an array

produces a new array with identically-same elements as the original.

source

Base.deepcopy – Function.

deepcopy(x)

Createadeepcopyofx: everything is copiedrecursively, resulting ina fully independentobject. Forexample, deep-

copying anarrayproduces anewarraywhoseelements aredeep copies of theoriginal elements. Callingdeepcopy

on an object should generally have the same effect as serializing and then deserializing it.

As a special case, functions can only be actually deep-copied if they are anonymous, otherwise they are just copied.

The difference is only relevant in the case of closures, i.e. functions whichmay contain hidden internal references.

While it isn't normally necessary, user-defined types can override the default deepcopy behavior by defining a

specialized version of the functiondeepcopy_internal(x::T, dict::ObjectIdDict) (which shouldn't oth-

erwise be used), where T is the type to be specialized for, and dict keeps track of objects copied so far within the

recursion. Within the definition, deepcopy_internal should be used in place of deepcopy, and the dict vari-

able should be updated as appropriate before returning.

source

Core.isdefined – Function.

isdefined([m::Module,] s::Symbol)

isdefined(object, s::Symbol)

isdefined(object, index::Int)

Testswhetheranassignable location is defined. Thearguments canbeamoduleanda symbolor a compositeobject

and field name (as a symbol) or index. With a single symbol argument, tests whether a global variable with that

name is defined in current_module().

source

Base.convert – Function.

convert(T, x)

Convert x to a value of type T.

IfT is anInteger type, anInexactErrorwill be raised ifx is not representablebyT, forexample ifx is not integer-

valued, or is outside the range supported by T.

Examples

julia> convert(Int, 3.0)

3

julia> convert(Int, 3.5)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Int64}, ::Float64) at ./float.jl:679

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1577-L1583
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2518-L2536
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1526-L1534

428 CHAPTER 45. ESSENTIALS

If T is a AbstractFloat or Rational type, then it will return the closest value to x representable by T.

julia> x = 1/3

0.3333333333333333

julia> convert(Float32, x)

0.33333334f0

julia> convert(Rational{Int32}, x)

1//3

julia> convert(Rational{Int64}, x)

6004799503160661//18014398509481984

If T is a collection type and x a collection, the result of convert(T, x)may alias x.

julia> x = Int[1,2,3];

julia> y = convert(Vector{Int}, x);

julia> y === x

true

Similarly, if T is a composite type and x a related instance, the result of convert(T, x)may alias part or all of x.

julia> x = speye(5);

julia> typeof(x)

SparseMatrixCSC{Float64,Int64}

julia> y = convert(SparseMatrixCSC{Float64,Int64}, x);

julia> z = convert(SparseMatrixCSC{Float32,Int64}, y);

julia> y === x

true

julia> z === x

false

julia> z.colptr === x.colptr

true

source

Base.promote – Function.

promote(xs...)

Convert all arguments to their common promotion type (if any), and return them all (as a tuple).

Example

julia> promote(Int8(1), Float16(4.5), Float32(4.1))

(1.0f0, 4.5f0, 4.1f0)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2173-L2241

45.4. TYPES 429

source

Base.oftype – Function.

oftype(x, y)

Convert y to the type of x (convert(typeof(x), y)).

source

Base.widen – Function.

widen(x)

If x is a type, return a "larger" type (for numeric types, this will be a type with at least as much range and precision

as the argument, and usually more). Otherwise x is converted to widen(typeof(x)).

Examples

julia> widen(Int32)

Int64

julia> widen(1.5f0)

1.5

source

Base.identity – Function.

identity(x)

The identity function. Returns its argument.

julia> identity("Well, what did you expect?")

"Well, what did you expect?"

source

45.4 Types

Base.supertype – Function.

supertype(T::DataType)

Return the supertype of DataType T.

julia> supertype(Int32)

Signed

source

Core.issubtype – Function.

issubtype(type1, type2)

Return true if and only if all values of type1 are also of type2. Can also be written using the <: infix operator as

type1 <: type2.

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L407-L417
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L377-L381
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2539-L2554
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L387-L396
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L30-L39

430 CHAPTER 45. ESSENTIALS

julia> issubtype(Int8, Int32)

false

julia> Int8 <: Integer

true

source

Base.:<: – Function.

<:(T1, T2)

Subtype operator, equivalent to issubtype(T1, T2).

julia> Float64 <: AbstractFloat

true

julia> Vector{Int} <: AbstractArray

true

julia> Matrix{Float64} <: Matrix{AbstractFloat}

false

source

Base.:>: – Function.

>:(T1, T2)

Supertype operator, equivalent to issubtype(T2, T1).

source

Base.subtypes – Function.

subtypes(T::DataType)

Return a list of immediate subtypes of DataType T. Note that all currently loaded subtypes are included, including

those not visible in the current module.

julia> subtypes(Integer)

4-element Array{Union{DataType, UnionAll},1}:

BigInt

Bool

Signed

Unsigned

source

Base.typemin – Function.

typemin(T)

The lowest value representable by the given (real) numeric DataType T.

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1862-L1876
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L5-L20
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L23-L27
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L445-L459

45.4. TYPES 431

julia> typemin(Float16)

-Inf16

julia> typemin(Float32)

-Inf32

source

Base.typemax – Function.

typemax(T)

The highest value representable by the given (real) numeric DataType.

source

Base.realmin – Function.

realmin(T)

The smallest in absolute value non-subnormal value representable by the given floating-point DataType T.

source

Base.realmax – Function.

realmax(T)

The highest finite value representable by the given floating-point DataType T.

Examples

julia> realmax(Float16)

Float16(6.55e4)

julia> realmax(Float32)

3.4028235f38

source

Base.maxintfloat – Function.

maxintfloat(T)

The largest integer losslessly representable by the given floating-point DataType T.

source

maxintfloat(T, S)

The largest integer losslessly representable by the given floating-point DataType T that also does not exceed the

maximum integer representable by the integer DataType S.

source

Base.sizeof –Method.

sizeof(T)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1001-L1014
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1616-L1620
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2504-L2508
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L974-L987
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1316-L1320
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1323-L1328

432 CHAPTER 45. ESSENTIALS

Size, in bytes, of the canonical binary representation of the given DataType T, if any.

Examples

julia> sizeof(Float32)

4

julia> sizeof(Complex128)

16

If T does not have a specific size, an error is thrown.

julia> sizeof(Base.LinAlg.LU)

ERROR: argument is an abstract type; size is indeterminate

Stacktrace:

[1] sizeof(::Type{T} where T) at ./essentials.jl:159

source

Base.eps –Method.

eps(::Type{T}) where T<:AbstractFloat

eps()

Returns themachine epsilon of the floating point type T (T = Float64 by default). This is defined as the gap be-

tween 1 and the next largest value representable by T, and is equivalent to eps(one(T)).

julia> eps()

2.220446049250313e-16

julia> eps(Float32)

1.1920929f-7

julia> 1.0 + eps()

1.0000000000000002

julia> 1.0 + eps()/2

1.0

source

Base.eps –Method.

eps(x::AbstractFloat)

Returns the unit in last place (ulp) ofx. This is the distance between consecutive representable floating point values

at x. In most cases, if the distance on either side of x is different, then the larger of the two is taken, that is

eps(x) == max(x-prevfloat(x), nextfloat(x)-x)

Theexceptions tothis ruleare thesmallestand largestfinitevalues (e.g. nextfloat(-Inf)andprevfloat(Inf)

for Float64), which round to the smaller of the values.

Therationale for thisbehavior is thatepsboundsthefloatingpoint roundingerror. Under thedefaultRoundNearest

roundingmode, if y is a real number andx is the nearest floating point number to y, then

|y − x| ≤ eps(x)/2.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L332-L354
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L718-L739

45.4. TYPES 433

julia> eps(1.0)

2.220446049250313e-16

julia> eps(prevfloat(2.0))

2.220446049250313e-16

julia> eps(2.0)

4.440892098500626e-16

julia> x = prevfloat(Inf) # largest finite Float64

1.7976931348623157e308

julia> x + eps(x)/2 # rounds up

Inf

julia> x + prevfloat(eps(x)/2) # rounds down

1.7976931348623157e308

source

Base.promote_type – Function.

promote_type(type1, type2)

Determine a type big enough to hold values of each argument type without loss, whenever possible. In some

cases, where no type exists to which both types can be promoted losslessly, some loss is tolerated; for example,

promote_type(Int64, Float64) returns Float64 even though strictly, not all Int64 values can be repre-

sented exactly as Float64 values.

julia> promote_type(Int64, Float64)

Float64

julia> promote_type(Int32, Int64)

Int64

julia> promote_type(Float32, BigInt)

BigFloat

source

Base.promote_rule – Function.

promote_rule(type1, type2)

Specifieswhat type should beusedbypromotewhengivenvalues of typestype1 andtype2. This function should

not be called directly, but should have definitions added to it for new types as appropriate.

source

Core.getfield – Function.

getfield(value, name::Symbol)

Extract a named field from a value of composite type. The syntax a.b calls getfield(a, :b).

Example

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L742-L782
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/promotion.jl#L134-L153
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2086-L2092

434 CHAPTER 45. ESSENTIALS

julia> a = 1//2

1//2

julia> getfield(a, :num)

1

source

Core.setfield! – Function.

setfield!(value, name::Symbol, x)

Assign x to a named field in value of composite type. The syntax a.b = c calls setfield!(a, :b, c).

source

Base.fieldoffset – Function.

fieldoffset(type, i)

The byte offset of field i of a type relative to the data start. For example, we could use it in the following manner

to summarize information about a struct:

julia> structinfo(T) = [(fieldoffset(T,i), fieldname(T,i), fieldtype(T,i)) for i =

1:nfields(T)];↪→

julia> structinfo(Base.Filesystem.StatStruct)

12-element Array{Tuple{UInt64,Symbol,DataType},1}:

(0x0000000000000000, :device, UInt64)

(0x0000000000000008, :inode, UInt64)

(0x0000000000000010, :mode, UInt64)

(0x0000000000000018, :nlink, Int64)

(0x0000000000000020, :uid, UInt64)

(0x0000000000000028, :gid, UInt64)

(0x0000000000000030, :rdev, UInt64)

(0x0000000000000038, :size, Int64)

(0x0000000000000040, :blksize, Int64)

(0x0000000000000048, :blocks, Int64)

(0x0000000000000050, :mtime, Float64)

(0x0000000000000058, :ctime, Float64)

source

Core.fieldtype – Function.

fieldtype(T, name::Symbol | index::Int)

Determine the declared type of a field (specified by name or index) in a composite DataType T.

julia> struct Foo

x::Int64

y::String

end

julia> fieldtype(Foo, :x)

Int64

julia> fieldtype(Foo, 2)

String

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L836-L850
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1909-L1914
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L310-L334

45.4. TYPES 435

source

Base.isimmutable – Function.

isimmutable(v)

Returntrue iff valuev is immutable. SeeMutableComposite Types for a discussionof immutability. Note that this

function works on values, so if you give it a type, it will tell you that a value of DataType is mutable.

julia> isimmutable(1)

true

julia> isimmutable([1,2])

false

source

Base.isbits – Function.

isbits(T)

Return true if T is a "plain data" type, meaning it is immutable and contains no references to other values. Typical

examples are numeric types such as UInt8, Float64, and Complex{Float64}.

julia> isbits(Complex{Float64})

true

julia> isbits(Complex)

false

source

Base.isleaftype – Function.

isleaftype(T)

Determine whether T's only subtypes are itself and Union{}. This means T is a concrete type that can have in-

stances.

julia> isleaftype(Complex)

false

julia> isleaftype(Complex{Float32})

true

julia> isleaftype(Vector{Complex})

true

julia> isleaftype(Vector{Complex{Float32}})

true

source

Base.typejoin – Function.

typejoin(T, S)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L337-L354
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L199-L213
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L218-L232
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L237-L256

436 CHAPTER 45. ESSENTIALS

Compute a type that contains both T and S.

source

Base.typeintersect – Function.

typeintersect(T, S)

Compute a type that contains the intersection of T and S. Usually this will be the smallest such type or one close to

it.

source

Base.Val – Type.

Val{c}

Create a "value type" out of c, which must be an isbits value. The intent of this construct is to be able to dis-

patch on constants, e.g., f(Val{false}) allows you to dispatch directly (at compile-time) to an implementation

f(::Type{Val{false}}), without having to test the boolean value at runtime.

source

Base.Enums.@enum –Macro.

@enum EnumName[::BaseType] value1[=x] value2[=y]

Create anEnum{BaseType} subtypewith nameEnumName andenummember values ofvalue1 andvalue2with

optional assigned values of x and y, respectively. EnumName can be used just like other types and enum member

values as regular values, such as

julia> @enum Fruit apple=1 orange=2 kiwi=3

julia> f(x::Fruit) = "I'm a Fruit with value: $(Int(x))"

f (generic function with 1 method)

julia> f(apple)

"I'm a Fruit with value: 1"

BaseType, which defaults to Int32, must be a primitive subtype of Integer. Member values can be converted

between the enum type and BaseType. read and write perform these conversions automatically.

source

Base.instances – Function.

instances(T::Type)

Return a collection of all instances of the given type, if applicable. Mostly used for enumerated types (see @enum).

julia> @enum Color red blue green

julia> instances(Color)

(red::Color = 0, blue::Color = 1, green::Color = 2)

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1389-L1393
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L301-L306
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2574-L2581
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/Enums.jl#L31-L51
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L386-L398

45.5. GENERIC FUNCTIONS 437

45.5 Generic Functions

Core.Function – Type.

Function

Abstract type of all functions.

julia> isa(+, Function)

true

julia> typeof(sin)

Base.#sin

julia> ans <: Function

true

source

Base.method_exists – Function.

method_exists(f, Tuple type, world=typemax(UInt)) -> Bool

Determinewhether the given generic functionhas amethodmatching the givenTupleof argument typeswith the

upper bound of world age given by world.

julia> method_exists(length, Tuple{Array})

true

source

Core.applicable – Function.

applicable(f, args...) -> Bool

Determine whether the given generic function has amethod applicable to the given arguments.

Examples

julia> function f(x, y)

x + y

end;

julia> applicable(f, 1)

false

julia> applicable(f, 1, 2)

true

source

Core.invoke – Function.

invoke(f, types <: Tuple, args...)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/basedocs.jl#L726-L741
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L921-L931
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2244-L2261

438 CHAPTER 45. ESSENTIALS

Invoke a method for the given generic function matching the specified types, on the specified arguments. The ar-

guments must be compatible with the specified types. This allows invoking a method other than the most specific

matchingmethod, which is useful when the behavior of amore general definition is explicitly needed (often as part

of the implementation of amore specificmethod of the same function).

source

Base.invokelatest – Function.

invokelatest(f, args...)

Calls f(args...), but guarantees that the most recent method of fwill be executed. This is useful in specialized

circumstances, e.g. long-running event loops or callback functions that may call obsolete versions of a function f.

(The drawback is that invokelatest is somewhat slower than calling f directly, and the type of the result cannot

be inferred by the compiler.)

source

Base.:|> – Function.

|>(x, f)

Applies a function to the preceding argument. This allows for easy function chaining.

julia> [1:5;] |> x->x.^2 |> sum |> inv

0.01818181818181818

source

Base.: – Function.

f g

Compose functions: i.e. (f g)(args...)meansf(g(args...)). The symbol canbeentered in the JuliaREPL

(andmost editors, appropriately configured) by typing \circ<tab>. Example:

julia> map(uppercasehex, 250:255)

6-element Array{String,1}:

"FA"

"FB"

"FC"

"FD"

"FE"

"FF"

source

45.6 Syntax

Core.eval – Function.

eval([m::Module], expr::Expr)

Evaluateanexpression in thegivenmoduleandreturntheresult. EveryModule (except thosedefinedwithbaremodule)

has its own 1-argument definition of eval, which evaluates expressions in that module.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1143-L1151
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/essentials.jl#L360-L369
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L852-L861
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L866-L883
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/expr.jl#L102-L108

45.6. SYNTAX 439

Base.@eval –Macro.

@eval [mod,] ex

Evaluate an expression with values interpolated into it using eval. If two arguments are provided, the first is the

module to evaluate in.

source

Base.evalfile – Function.

evalfile(path::AbstractString, args::Vector{String}=String[])

Load the file using include, evaluate all expressions, and return the value of the last one.

source

Base.esc – Function.

esc(e::ANY)

Only valid in the context of anExpr returned fromamacro. Prevents themacro hygiene pass from turning embed-

ded variables into gensym variables. See the Macros section of the Metaprogramming chapter of the manual for

more details and examples.

source

Base.@inbounds –Macro.

@inbounds(blk)

Eliminates array bounds checking within expressions.

In the example below the bound check of array A is skipped to improve performance.

function sum(A::AbstractArray)

r = zero(eltype(A))

for i = 1:length(A)

@inbounds r += A[i]

end

return r

end

Warning

Using@inboundsmayreturn incorrect results/crashes/corruption forout-of-bounds indices. Theuser

is responsible for checking it manually.

source

Base.@inline –Macro.

@inline

Give a hint to the compiler that this function is worth inlining.

Small functions typically do not need the @inline annotation, as the compiler does it automatically. By using

@inlineonbigger functions, an extra nudge can be given to the compiler to inline it. This is shown in the following

example:

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/essentials.jl#L46-L51
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/loading.jl#L603-L608
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/essentials.jl#L193-L199
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/essentials.jl#L209-L230

440 CHAPTER 45. ESSENTIALS

@inline function bigfunction(x)

#=

Function Definition

=#

end

source

Base.@noinline –Macro.

@noinline

Prevents the compiler from inlining a function.

Small functions are typically inlined automatically. By using @noinline on small functions, auto-inlining can be

prevented. This is shown in the following example:

@noinline function smallfunction(x)

#=

Function Definition

=#

end

source

Base.gensym – Function.

gensym([tag])

Generates a symbol which will not conflict with other variable names.

source

Base.@gensym –Macro.

@gensym

Generates a gensym symbol for a variable. For example, @gensym x y is transformed into x = gensym("x");

y = gensym("y").

source

Base.@polly –Macro.

@polly

Tells the compiler to apply the polyhedral optimizer Polly to a function.

source

Base.parse –Method.

parse(str, start; greedy=true, raise=true)

Parse the expression string and return an expression (which could later be passed to eval for execution). start is

the indexof thefirst character to start parsing. Ifgreedy istrue (default),parsewill try to consumeasmuch input

as it can; otherwise, it will stop as soon as it has parsed a valid expression. Incomplete but otherwise syntactically

valid expressions will return Expr(:incomplete, "(error message)"). If raise is true (default), syntax

errors other than incomplete expressions will raise an error. If raise is false, parse will return an expression

that will raise an error upon evaluation.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/expr.jl#L111-L128
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/expr.jl#L133-L149
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/expr.jl#L5-L9
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/expr.jl#L18-L23
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/expr.jl#L173-L177

45.7. NULLABLES 441

julia> parse("x = 3, y = 5", 7)

(:(y = 5), 13)

julia> parse("x = 3, y = 5", 5)

(:((3, y) = 5), 13)

source

Base.parse –Method.

parse(str; raise=true)

Parse the expression string greedily, returning a single expression. An error is thrown if there are additional char-

acters after the first expression. If raise is true (default), syntax errors will raise an error; otherwise, parsewill

return an expression that will raise an error upon evaluation.

julia> parse("x = 3")

:(x = 3)

julia> parse("x = ")

:($(Expr(:incomplete, "incomplete: premature end of input")))

julia> parse("1.0.2")

ERROR: ParseError("invalid numeric constant \"1.0.\"")

Stacktrace:

[...]

julia> parse("1.0.2"; raise = false)

:($(Expr(:error, "invalid numeric constant \"1.0.\"")))

source

45.7 Nullables

Base.Nullable – Type.

Nullable(x, hasvalue::Bool=true)

Wrap value x in an object of type Nullable, which indicates whether a value is present. Nullable(x) yields a

non-emptywrapper andNullable{T}() yields an empty instance of awrapper thatmight contain a value of type

T.

Nullable(x, false) yields Nullable{typeof(x)}()with x stored in the result's value field.

Examples

julia> Nullable(1)

Nullable{Int64}(1)

julia> Nullable{Int64}()

Nullable{Int64}()

julia> Nullable(1, false)

Nullable{Int64}()

julia> dump(Nullable(1, false))

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1154-L1172
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1175-L1198

442 CHAPTER 45. ESSENTIALS

Nullable{Int64}

hasvalue: Bool false

value: Int64 1

source

Base.get –Method.

get(x::Nullable[, y])

Attempt to access the value of x. Returns the value if it is present; otherwise, returns y if provided, or throws a

NullException if not.

source

Base.isnull – Function.

isnull(x)

Return whether or not x is null for Nullable x; return false for all other x.

Examples

julia> x = Nullable(1, false)

Nullable{Int64}()

julia> isnull(x)

true

julia> x = Nullable(1, true)

Nullable{Int64}(1)

julia> isnull(x)

false

julia> x = 1

1

julia> isnull(x)

false

source

Base.unsafe_get – Function.

unsafe_get(x)

Return the value of x for Nullable x; return x for all other x.

This method does not check whether or not x is null before attempting to access the value of x for x::Nullable

(hence "unsafe").

julia> x = Nullable(1)

Nullable{Int64}(1)

julia> unsafe_get(x)

1

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/nullable.jl#L6-L33
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/nullable.jl#L78-L83
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/nullable.jl#L128-L155

45.8. SYSTEM 443

julia> x = Nullable{String}()

Nullable{String}()

julia> unsafe_get(x)

ERROR: UndefRefError: access to undefined reference

Stacktrace:

[1] unsafe_get(::Nullable{String}) at ./nullable.jl:125

julia> x = 1

1

julia> unsafe_get(x)

1

source

45.8 System

Base.run – Function.

run(command, args...)

Run a command object, constructedwith backticks. Throws an error if anything goeswrong, including the process

exiting with a non-zero status.

source

Base.spawn – Function.

spawn(command)

Run a command object asynchronously, returning the resulting Process object.

source

Base.DevNull – Constant.

DevNull

Used in a stream redirect to discard all data written to it. Essentially equivalent to /dev/null on Unix or NUL on

Windows. Usage:

run(pipeline(`cat test.txt`, DevNull))

source

Base.success – Function.

success(command)

Run a command object, constructedwith backticks, and tell whether it was successful (exitedwith a code of 0). An

exception is raised if the process cannot be started.

source

Base.process_running – Function.

process_running(p::Process)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/nullable.jl#L94-L124
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/process.jl#L643-L648
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1519-L1523
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/basedocs.jl#L714-L723
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/process.jl#L672-L677

444 CHAPTER 45. ESSENTIALS

Determine whether a process is currently running.

source

Base.process_exited – Function.

process_exited(p::Process)

Determine whether a process has exited.

source

Base.kill –Method.

kill(p::Process, signum=SIGTERM)

Send a signal to a process. The default is to terminate the process.

source

Base.Sys.set_process_title – Function.

Sys.set_process_title(title::AbstractString)

Set the process title. No-op on some operating systems.

source

Base.Sys.get_process_title – Function.

Sys.get_process_title()

Get the process title. On some systems, will always return an empty string.

source

Base.readandwrite – Function.

readandwrite(command)

Starts running a command asynchronously, and returns a tuple (stdout,stdin,process) of the output stream and

input stream of the process, and the process object itself.

source

Base.ignorestatus – Function.

ignorestatus(command)

Mark a command object so that running it will not throw an error if the result code is non-zero.

source

Base.detach – Function.

detach(command)

Mark a command object so that it will be run in a newprocess group, allowing it to outlive the julia process, and not

have Ctrl-C interrupts passed to it.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/process.jl#L728-L732
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/process.jl#L737-L741
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/process.jl#L705-L709
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sysinfo.jl#L181-L185
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sysinfo.jl#L169-L173
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/process.jl#L614-L619
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/process.jl#L180-L184
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/process.jl#L189-L193

45.8. SYSTEM 445

Base.Cmd – Type.

Cmd(cmd::Cmd; ignorestatus, detach, windows_verbatim, windows_hide, env, dir)

Construct a new Cmd object, representing an external program and arguments, from cmd, while changing the set-

tings of the optional keyword arguments:

• ignorestatus::Bool: If true (defaults to false), then the Cmdwill not throw an error if the return code

is nonzero.

• detach::Bool: If true (defaults to false), then the Cmdwill be run in a new process group, allowing it to

outlive the julia process and not have Ctrl-C passed to it.

• windows_verbatim::Bool: If true (defaults to false), then onWindows the Cmdwill send a command-

line string to the process with no quoting or escaping of arguments, even arguments containing spaces. (On

Windows, arguments are sent to a program as a single "command-line" string, and programs are responsible

for parsing it into arguments. By default, empty arguments and arguments with spaces or tabs are quoted

withdoublequotes" in thecommand line, and\or"areprecededbybackslashes. windows_verbatim=true

is useful for launching programs that parse their command line in nonstandard ways.) Has no effect on non-

Windows systems.

• windows_hide::Bool: If true (defaults to false), then onWindows no new console window is displayed

when the Cmd is executed. This has no effect if a console is already open or on non-Windows systems.

• env: Set environment variables to use when running the Cmd. env is either a dictionary mapping strings

to strings, an array of strings of the form "var=val", an array or tuple of "var"=>val pairs, or nothing.

In order to modify (rather than replace) the existing environment, create env by copy(ENV) and then set

env["var"]=val as desired.

• dir::AbstractString: Specify a working directory for the command (instead of the current directory).

For any keywords that are not specified, the current settings from cmd are used. Normally, to create a Cmd object

in the first place, one uses backticks, e.g.

Cmd(`echo "Hello world"`, ignorestatus=true, detach=false)

source

Base.setenv – Function.

setenv(command::Cmd, env; dir="")

Set environment variables to use when running the given command. env is either a dictionary mapping strings to

strings, anarrayof stringsof the form"var=val", or zeroormore"var"=>valpair arguments. Inorder tomodify

(rather than replace) the existing environment, create env by copy(ENV) and then setting env["var"]=val as

desired, or use withenv.

The dir keyword argument can be used to specify a working directory for the command.

source

Base.withenv – Function.

withenv(f::Function, kv::Pair...)

Executef() inanenvironment that is temporarilymodified (not replacedas insetenv)byzeroormore"var"=>val

argumentskv. withenv is generally usedvia thewithenv(kv...) do ... end syntax. Avalueofnothing can

beused to temporarilyunsetanenvironmentvariable (if it is set). Whenwithenv returns, theoriginal environment

has been restored.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/process.jl#L33-L67
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/process.jl#L214-L224
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/env.jl#L142-L150

446 CHAPTER 45. ESSENTIALS

Base.pipeline –Method.

pipeline(from, to, ...)

Create a pipeline from a data source to a destination. The source and destination can be commands, I/O streams,

strings, or results of other pipeline calls. At least one argument must be a command. Strings refer to filenames.

Whencalledwithmorethantwoarguments, theyarechainedtogether fromleft toright. Forexamplepipeline(a,b,c)

isequivalent topipeline(pipeline(a,b),c). Thisprovidesamoreconcisewaytospecifymulti-stagepipelines.

Examples:

run(pipeline(`ls`, `grep xyz`))

run(pipeline(`ls`, "out.txt"))

run(pipeline("out.txt", `grep xyz`))

source

Base.pipeline –Method.

pipeline(command; stdin, stdout, stderr, append=false)

Redirect I/O to or from the given command. Keyword arguments specify which of the command's streams should

be redirected. append controls whether file output appends to the file. This is a more general version of the

2-argument pipeline function. pipeline(from, to) is equivalent to pipeline(from, stdout=to)when

from is a command, and to pipeline(to, stdin=from)when from is another kind of data source.

Examples:

run(pipeline(`dothings`, stdout="out.txt", stderr="errs.txt"))

run(pipeline(`update`, stdout="log.txt", append=true))

source

Base.Libc.gethostname – Function.

gethostname() -> AbstractString

Get the local machine's host name.

source

Base.getipaddr – Function.

getipaddr() -> IPAddr

Get the IP address of the local machine.

source

Base.Libc.getpid – Function.

getpid() -> Int32

Get Julia's process ID.

source

Base.Libc.time –Method.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/process.jl#L283-L300
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/process.jl#L248-L263
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L236-L240
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/socket.jl#L666-L670
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L227-L231

45.8. SYSTEM 447

time()

Get the system time in seconds since the epoch, with fairly high (typically, microsecond) resolution.

source

Base.time_ns – Function.

time_ns()

Get the time in nanoseconds. The time corresponding to 0 is undefined, andwraps every 5.8 years.

source

Base.tic – Function.

tic()

Seta timer tobereadbythenextcall totocortoq. Themacrocall@time exprcanalsobeusedto timeevaluation.

julia> tic()

0x0000c45bc7abac95

julia> sleep(0.3)

julia> toc()

elapsed time: 0.302745944 seconds

0.302745944

source

Base.toc – Function.

toc()

Print and return the time elapsed since the last tic. The macro call @time expr can also be used to time evalua-

tion.

julia> tic()

0x0000c45bc7abac95

julia> sleep(0.3)

julia> toc()

elapsed time: 0.302745944 seconds

0.302745944

source

Base.toq – Function.

toq()

Return, but do not print, the time elapsed since the last tic. Themacro calls @timed expr and @elapsed expr

also return evaluation time.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1926-L1930
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/util.jl#L9-L13
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/util.jl#L79-L95
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/util.jl#L129-L145

448 CHAPTER 45. ESSENTIALS

julia> tic()

0x0000c46477a9675d

julia> sleep(0.3)

julia> toq()

0.302251004

source

Base.@time –Macro.

@time

A macro to execute an expression, printing the time it took to execute, the number of allocations, and the total

number of bytes its execution caused to be allocated, before returning the value of the expression.

See also @timev, @timed, @elapsed, and @allocated.

julia> @time rand(10^6);

0.001525 seconds (7 allocations: 7.630 MiB)

julia> @time begin

sleep(0.3)

1+1

end

0.301395 seconds (8 allocations: 336 bytes)

source

Base.@timev –Macro.

@timev

This is a verbose version of the @time macro. It first prints the same information as @time, then any non-zero

memory allocation counters, and then returns the value of the expression.

See also @time, @timed, @elapsed, and @allocated.

julia> @timev rand(10^6);

0.001006 seconds (7 allocations: 7.630 MiB)

elapsed time (ns): 1005567

bytes allocated: 8000256

pool allocs: 6

malloc() calls: 1

source

Base.@timed –Macro.

@timed

A macro to execute an expression, and return the value of the expression, elapsed time, total bytes allocated,

garbage collection time, and an object with variousmemory allocation counters.

See also @time, @timev, @elapsed, and @allocated.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/util.jl#L102-L117
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/util.jl#L212-L232
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/util.jl#L246-L264

45.8. SYSTEM 449

julia> val, t, bytes, gctime, memallocs = @timed rand(10^6);

julia> t

0.006634834

julia> bytes

8000256

julia> gctime

0.0055765

julia> fieldnames(typeof(memallocs))

9-element Array{Symbol,1}:

:allocd

:malloc

:realloc

:poolalloc

:bigalloc

:freecall

:total_time

:pause

:full_sweep

julia> memallocs.total_time

5576500

source

Base.@elapsed –Macro.

@elapsed

Amacro to evaluate an expression, discarding the resulting value, instead returning the number of seconds it took

to execute as a floating-point number.

See also @time, @timev, @timed, and @allocated.

julia> @elapsed sleep(0.3)

0.301391426

source

Base.@allocated –Macro.

@allocated

Amacro to evaluate an expression, discarding the resulting value, instead returning the total number of bytes allo-

cated during evaluation of the expression. Note: the expression is evaluated inside a local function, instead of the

current context, in order to eliminate the effects of compilation, however, there still may be some allocations due

to JIT compilation. This also makes the results inconsistent with the @timemacros, which do not try to adjust for

the effects of compilation.

See also @time, @timev, @timed, and @elapsed.

julia> @allocated rand(10^6)

8000080

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/util.jl#L336-L373
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/util.jl#L276-L289

450 CHAPTER 45. ESSENTIALS

source

Base.EnvHash – Type.

EnvHash() -> EnvHash

A singleton of this type provides a hash table interface to environment variables.

source

Base.ENV – Constant.

ENV

Reference to the singleton EnvHash, providing a dictionary interface to system environment variables.

source

Base.is_unix – Function.

is_unix([os])

Predicate for testing if the OS provides a Unix-like interface. See documentation in Handling Operating System

Variation.

source

Base.is_apple – Function.

is_apple([os])

Predicate for testing if the OS is a derivative of AppleMacintosh OS X or Darwin. See documentation in Handling

Operating SystemVariation.

source

Base.is_linux – Function.

is_linux([os])

Predicate for testing if theOS is a derivative of Linux. See documentation inHandlingOperating SystemVariation.

source

Base.is_bsd – Function.

is_bsd([os])

Predicate for testing if theOS is a derivative of BSD. See documentation in Handling Operating SystemVariation.

source

Base.is_windows – Function.

is_windows([os])

Predicate for testing if theOS is a derivative ofMicrosoftWindowsNT. See documentation inHandlingOperating

SystemVariation.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/util.jl#L304-L321
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/env.jl#L61-L65
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/env.jl#L68-L73
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/osutils.jl#L3-L8
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/osutils.jl#L43-L48
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/osutils.jl#L19-L24
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/osutils.jl#L27-L32
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/osutils.jl#L35-L40

45.9. ERRORS 451

Base.Sys.windows_version – Function.

Sys.windows_version()

Returns the version number for theWindowsNTKernel as a (major, minor) pair, or (0, 0) if this is not running on

Windows.

source

Base.@static –Macro.

@static

Partially evaluates an expression at parse time.

For example,@static is_windows() ? foo : barwill evaluateis_windows() and insert eitherfooorbar

into theexpression. This isuseful in caseswhereaconstructwouldbe invalidonotherplatforms, suchasaccall to

a non-existent function. @static if is_apple() foo end and @static foo <&&,||> bar are also valid

syntax.

source

45.9 Errors

Base.error – Function.

error(message::AbstractString)

Raise an ErrorExceptionwith the givenmessage.

source

Core.throw – Function.

throw(e)

Throw an object as an exception.

source

Base.rethrow – Function.

rethrow([e])

Throwan objectwithout changing the current exception backtrace. The default argument is the current exception

(if called within a catch block).

source

Base.backtrace – Function.

backtrace()

Get a backtrace object for the current program point.

source

Base.catch_backtrace – Function.

catch_backtrace()

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sysinfo.jl#L201-L206
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/osutils.jl#L51-L60
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1761-L1765
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2319-L2323
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/error.jl#L32-L37
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/error.jl#L41-L45

452 CHAPTER 45. ESSENTIALS

Get the backtrace of the current exception, for use within catch blocks.

source

Base.assert – Function.

assert(cond)

Throw an AssertionError if cond is false. Also available as themacro @assert expr.

source

Base.@assert –Macro.

@assert cond [text]

ThrowanAssertionError ifcond isfalse. Preferred syntax forwriting assertions. Messagetext is optionally

displayed upon assertion failure.

source

Base.ArgumentError – Type.

ArgumentError(msg)

The parameters to a function call do not match a valid signature. Argument msg is a descriptive error string.

source

Base.AssertionError – Type.

AssertionError([msg])

The asserted condition did not evaluate to true. Optional argument msg is a descriptive error string.

source

Core.BoundsError – Type.

BoundsError([a],[i])

An indexing operation into an array, a, tried to access an out-of-bounds element, i.

source

Base.DimensionMismatch – Type.

DimensionMismatch([msg])

The objects called do not havematching dimensionality. Optional argument msg is a descriptive error string.

source

Core.DivideError – Type.

DivideError()

Integer division was attemptedwith a denominator value of 0.

source

Core.DomainError – Type.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/error.jl#L48-L52
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L182-L187
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1989-L1994
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/base.jl#L27-L32
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/base.jl#L79-L84
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1136-L1140
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/base.jl#L68-L73
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2661-L2665

45.9. ERRORS 453

DomainError()

The arguments to a function or constructor are outside the valid domain.

source

Base.EOFError – Type.

EOFError()

Nomore data was available to read from a file or stream.

source

Core.ErrorException – Type.

ErrorException(msg)

Generic error type. The error message, in the .msg field, may providemore specific details.

source

Core.InexactError – Type.

InexactError()

Type conversion cannot be done exactly.

source

Core.InterruptException – Type.

InterruptException()

The process was stopped by a terminal interrupt (CTRL+C).

source

Base.KeyError – Type.

KeyError(key)

An indexing operation into an Associative (Dict) or Set like object tried to access or delete a non-existent ele-

ment.

source

Base.LoadError – Type.

LoadError(file::AbstractString, line::Int, error)

An error occurred while includeing, requireing, or using a file. The error specifics should be available in the

.error field.

source

Base.MethodError – Type.

MethodError(f, args)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1623-L1627
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/base.jl#L61-L65
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L693-L697
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1609-L1613
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2048-L2052
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/base.jl#L37-L42
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/base.jl#L95-L100

454 CHAPTER 45. ESSENTIALS

Amethod with the required type signature does not exist in the given generic function. Alternatively, there is no

uniquemost-specificmethod.

source

Base.NullException – Type.

NullException()

An attempted access to a Nullablewith no defined value.

source

Core.OutOfMemoryError – Type.

OutOfMemoryError()

An operation allocated toomuchmemory for either the system or the garbage collector to handle properly.

source

Core.ReadOnlyMemoryError – Type.

ReadOnlyMemoryError()

An operation tried to write tomemory that is read-only.

source

Core.OverflowError – Type.

OverflowError()

The result of an expression is too large for the specified type andwill cause a wraparound.

source

Base.ParseError – Type.

ParseError(msg)

The expression passed to the parse function could not be interpreted as a valid Julia expression.

source

Base.Distributed.ProcessExitedException – Type.

ProcessExitedException()

After a client Julia process has exited, further attempts to reference the dead child will throw this exception.

source

Core.StackOverflowError – Type.

StackOverflowError()

The function call grew beyond the size of the call stack. This usually happens when a call recurses infinitely.

source

Base.SystemError – Type.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/base.jl#L47-L52
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2062-L2066
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1121-L1126
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L357-L361
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1822-L1826
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/base.jl#L17-L22
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L815-L820
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1666-L1671

45.9. ERRORS 455

SystemError(prefix::AbstractString, [errno::Int32])

A system call failed with an error code (in the errno global variable).

source

Core.TypeError – Type.

TypeError(func::Symbol, context::AbstractString, expected::Type, got)

A type assertion failure, or calling an intrinsic function with an incorrect argument type.

source

Core.UndefRefError – Type.

UndefRefError()

The item or field is not defined for the given object.

source

Core.UndefVarError – Type.

UndefVarError(var::Symbol)

A symbol in the current scope is not defined.

source

Base.InitError – Type.

InitError(mod::Symbol, error)

Anerroroccurredwhen runningamodule's__init__ function. Theactual error thrown is available in the.error

field.

source

Base.retry – Function.

retry(f::Function; delays=ExponentialBackOff(), check=nothing) -> Function

Returns an anonymous function that calls function f. If an exception arises, f is repeatedly called again, each time

check returns true, after waiting the number of seconds specified in delays. check should input delays's cur-

rent state and the Exception.

Examples

retry(f, delays=fill(5.0, 3))

retry(f, delays=rand(5:10, 2))

retry(f, delays=Base.ExponentialBackOff(n=3, first_delay=5, max_delay=1000))

retry(http_get, check=(s,e)->e.status == "503")(url)

retry(read, check=(s,e)->isa(e, UVError))(io, 128; all=false)

source

Base.ExponentialBackOff – Type.

ExponentialBackOff(; n=1, first_delay=0.05, max_delay=10.0, factor=5.0, jitter=0.1)

AFloat64 iteratorof lengthnwhoseelementsexponentially increaseatarate in the intervalfactor * (1±jitter).

The first element is first_delay and all elements are clamped to max_delay.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/base.jl#L3-L7
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1902-L1906
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L749-L753
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1775-L1779
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/base.jl#L107-L112
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/error.jl#L117-L133
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/error.jl#L98-L104

456 CHAPTER 45. ESSENTIALS

45.10 Events

Base.Timer –Method.

Timer(callback::Function, delay, repeat=0)

Create a timer to call the given callback function. The callback is passed one argument, the timer object itself.

The callbackwill be invoked after the specified initial delay, and then repeatingwith the given repeat interval. If

repeat is 0, the timer is only triggered once. Times are in seconds. A timer is stopped and has its resources freed

by calling close on it.

source

Base.Timer – Type.

Timer(delay, repeat=0)

Create a timer that wakes up tasks waiting for it (by calling wait on the timer object) at a specified interval. Times

are in seconds. Waiting tasks are woken with an error when the timer is closed (by close. Use isopen to check

whether a timer is still active.

source

Base.AsyncCondition – Type.

AsyncCondition()

Create a async condition that wakes up tasks waiting for it (by calling wait on the object) when notified fromC by

a call touv_async_send. Waiting tasks arewokenwith an errorwhen the object is closed (byclose. Useisopen

to check whether it is still active.

source

Base.AsyncCondition –Method.

AsyncCondition(callback::Function)

Create a async condition that calls the givencallback function. Thecallback is passedoneargument, the async

condition object itself.

source

45.11 Reflection

Base.module_name – Function.

module_name(m::Module) -> Symbol

Get the name of a Module as a Symbol.

julia> module_name(Base.LinAlg)

:LinAlg

source

Base.module_parent – Function.

module_parent(m::Module) -> Module

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/event.jl#L416-L424
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/event.jl#L316-L322
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/event.jl#L259-L267
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/event.jl#L289-L294
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L5-L14

45.11. REFLECTION 457

Get amodule's enclosing Module. Main is its own parent, as is LastMain after workspace().

julia> module_parent(Main)

Main

julia> module_parent(Base.LinAlg.BLAS)

Base.LinAlg

source

Base.current_module – Function.

current_module() -> Module

Get the dynamically current Module, which is the Module code is currently being read from. In general, this is not

the same as themodule containing the call to this function.

source

Base.fullname – Function.

fullname(m::Module)

Get the fully-qualified name of amodule as a tuple of symbols. For example,

julia> fullname(Base.Pkg)

(:Base, :Pkg)

julia> fullname(Main)

()

source

Base.names – Function.

names(x::Module, all::Bool=false, imported::Bool=false)

Get an array of the names exported by a Module, excluding deprecated names. If all is true, then the list also in-

cludesnon-exportednamesdefined in themodule, deprecatednames, andcompiler-generatednames. Ifimported

is true, then names explicitly imported from other modules are also included.

As a special case, all names defined in Main are considered "exported", since it is not idiomatic to explicitly export

names from Main.

source

Core.nfields – Function.

nfields(x::DataType) -> Int

Get the number of fields of a DataType.

source

Base.fieldnames – Function.

fieldnames(x::DataType)

Get an array of the fields of a DataType.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L17-L29
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L32-L37
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L40-L52
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L75-L86
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1698-L1702

458 CHAPTER 45. ESSENTIALS

julia> fieldnames(Hermitian)

2-element Array{Symbol,1}:

:data

:uplo

source

Base.fieldname – Function.

fieldname(x::DataType, i::Integer)

Get the name of field i of a DataType.

julia> fieldname(SparseMatrixCSC,1)

:m

julia> fieldname(SparseMatrixCSC,5)

:nzval

source

Base.datatype_module – Function.

Base.datatype_module(t::DataType) -> Module

Determine themodule containing the definition of a DataType.

source

Base.datatype_name – Function.

Base.datatype_name(t) -> Symbol

Get the name of a (potentially UnionAll-wrapped) DataType (without its parent module) as a symbol.

source

Base.isconst – Function.

isconst([m::Module], s::Symbol) -> Bool

Determinewhetheraglobal isdeclaredconst inagivenModule. ThedefaultModuleargument iscurrent_module().

source

Base.function_name – Function.

Base.function_name(f::Function) -> Symbol

Get the name of a generic Function as a symbol, or :anonymous.

source

Base.function_module –Method.

Base.function_module(f::Function) -> Module

Determine themodule containing the (first) definition of a generic function.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L124-L135
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L107-L119
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L155-L159
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L147-L151
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L164-L169
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L856-L860
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L900-L905

45.12. INTERNALS 459

Base.function_module –Method.

Base.function_module(f::Function, types) -> Module

Determine themodule containing a given definition of a generic function.

source

Base.functionloc –Method.

functionloc(f::Function, types)

Returns a tuple (filename,line) giving the location of a generic Function definition.

source

Base.functionloc –Method.

functionloc(m::Method)

Returns a tuple (filename,line) giving the location of a Method definition.

source

Base.@functionloc –Macro.

@functionloc

Appliedtoa functionormacrocall, it evaluates thearguments tothespecifiedcall, andreturnsatuple(filename,line)

giving the location for themethod thatwould be called for those arguments. It calls out to thefunctionloc func-

tion.

source

45.12 Internals

Base.gc – Function.

gc()

Perform garbage collection. This should not generally be used.

source

Base.gc_enable – Function.

gc_enable(on::Bool)

Control whether garbage collection is enabled using a boolean argument (true for enabled, false for disabled).

Returns previous GC state. Disabling garbage collection should be used only with extreme caution, as it can cause

memory use to growwithout bound.

source

Base.macroexpand – Function.

macroexpand(x)

Takes the expression x and returns an equivalent expression with all macros removed (expanded).

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L908-L912
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L878-L882
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L865-L869
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L477-L483
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1782-L1786
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1806-L1812
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/expr.jl#L56-L60

460 CHAPTER 45. ESSENTIALS

Base.@macroexpand –Macro.

@macroexpand

Return equivalent expression with all macros removed (expanded).

There is a subtle difference between @macroexpand and macroexpand in that expansion takes place in different

contexts. This is best seen in the following example:

julia> module M

macro m()

1

end

function f()

(@macroexpand(@m), macroexpand(:(@m)))

end

end

M

julia> macro m()

2

end

@m (macro with 1 method)

julia> M.f()

(1, 2)

With @macroexpand the expression expands where @macroexpand appears in the code (module M in the exam-

ple). With macroexpand the expression expands in the current module where the code was finally called (REPL

in the example). Note that when calling macroexpand or @macroexpand directly from the REPL, both of these

contexts coincide, hence there is no difference.

source

Base.expand – Function.

expand(x)

Takes the expression x and returns an equivalent expression in lowered form. See also code_lowered.

source

Base.code_lowered – Function.

code_lowered(f, types)

Returns an array of lowered ASTs for themethodsmatching the given generic function and type signature.

source

Base.@code_lowered –Macro.

@code_lowered

Evaluates the arguments to the function or macro call, determines their types, and calls code_lowered on the

resulting expression.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/expr.jl#L63-L94
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/expr.jl#L48-L53
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L479-L483
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L502-L507

45.12. INTERNALS 461

Base.code_typed – Function.

code_typed(f, types; optimize=true)

Returns an array of lowered and type-inferredASTs for themethodsmatching the given generic function and type

signature. The keyword argument optimize controls whether additional optimizations, such as inlining, are also

applied.

source

Base.@code_typed –Macro.

@code_typed

Evaluates the arguments to the function or macro call, determines their types, and calls code_typed on the re-

sulting expression.

source

Base.code_warntype – Function.

code_warntype([io::IO], f, types)

Prints lowered and type-inferred ASTs for themethodsmatching the given generic function and type signature to

iowhich defaults to STDOUT. The ASTs are annotated in such away as to cause "non-leaf" types to be emphasized

(if color is available, displayed in red). This serves as a warning of potential type instability. Not all non-leaf types

are particularly problematic for performance, so the results need to be used judiciously. See@code_warntype for

more information.

source

Base.@code_warntype –Macro.

@code_warntype

Evaluates the arguments to the function or macro call, determines their types, and calls code_warntype on the

resulting expression.

source

Base.code_llvm – Function.

code_llvm([io], f, types)

Prints theLLVMbitcodesgenerated for running themethodmatching thegivengeneric functionandtypesignature

to iowhich defaults to STDOUT.

All metadata and dbg.* calls are removed from the printed bitcode. Use code_llvm_raw for the full IR.

source

Base.@code_llvm –Macro.

@code_llvm

Evaluates the arguments to the function ormacro call, determines their types, and calls code_llvm on the result-

ing expression.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L766-L772
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L486-L491
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L316-L325
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L494-L499
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L732-L739
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L510-L515

462 CHAPTER 45. ESSENTIALS

Base.code_native – Function.

code_native([io], f, types, [syntax])

Prints the native assembly instructions generated for running themethodmatching the given generic function and

type signature to io which defaults to STDOUT. Switch assembly syntax using syntax symbol parameter set to

:att for AT&T syntax or :intel for Intel syntax. Output is AT&T syntax by default.

source

Base.@code_native –Macro.

@code_native

Evaluates the arguments to the function or macro call, determines their types, and calls code_native on the re-

sulting expression.

source

Base.precompile – Function.

precompile(f,args::Tuple{Vararg{Any}})

Compile the given function f for the argument tuple (of types) args, but do not execute it.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reflection.jl#L745-L751
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L518-L523
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1404-L1408

Chapter 46

Collections andData Structures

46.1 Iteration

Sequential iteration is implemented by themethods start(), done(), and next(). The general for loop:

for i = I # or "for i in I"

body

end

is translated into:

state = start(I)

while !done(I, state)

(i, state) = next(I, state)

body

end

The state object may be anything, and should be chosen appropriately for each iterable type. See the manual section

on the iteration interface for more details about defining a custom iterable type.

Base.start – Function.

start(iter) -> state

Get initial iteration state for an iterable object.

Examples

julia> start(1:5)

1

julia> start([1;2;3])

1

julia> start([4;2;3])

1

source

Base.done – Function.

463

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2119-L2135

464 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

done(iter, state) -> Bool

Test whether we are done iterating.

Examples

julia> done(1:5, 3)

false

julia> done(1:5, 5)

false

julia> done(1:5, 6)

true

source

Base.next – Function.

next(iter, state) -> item, state

For a given iterable object and iteration state, return the current item and the next iteration state.

Examples

julia> next(1:5, 3)

(3, 4)

julia> next(1:5, 5)

(5, 6)

source

Base.iteratorsize – Function.

iteratorsize(itertype::Type) -> IteratorSize

Given the type of an iterator, returns one of the following values:

• SizeUnknown() if the length (number of elements) cannot be determined in advance.

• HasLength() if there is a fixed, finite length.

• HasShape() if there is a known length plus a notion of multidimensional shape (as for an array). In this case

the size function is valid for the iterator.

• IsInfinite() if the iterator yields values forever.

The default value (for iterators that do not define this function) is HasLength(). This means that most iterators

are assumed to implement length.

This trait is generally used to select betweenalgorithms thatpre-allocate space for their result, andalgorithms that

resize their result incrementally.

julia> Base.iteratorsize(1:5)

Base.HasShape()

julia> Base.iteratorsize((2,3))

Base.HasLength()

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2154-L2170
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1098-L1111

46.2. GENERAL COLLECTIONS 465

source

Base.iteratoreltype – Function.

iteratoreltype(itertype::Type) -> IteratorEltype

Given the type of an iterator, returns one of the following values:

• EltypeUnknown() if the type of elements yielded by the iterator is not known in advance.

• HasEltype() if the element type is known, and eltypewould return ameaningful value.

HasEltype() is the default, since iterators are assumed to implement eltype.

This trait is generally used to select between algorithms that pre-allocate a specific type of result, and algorithms

that pick a result type based on the types of yielded values.

julia> Base.iteratoreltype(1:5)

Base.HasEltype()

source

Fully implemented by:

• Range

• UnitRange

• Tuple

• Number

• AbstractArray

• IntSet

• ObjectIdDict

• Dict

• WeakKeyDict

• EachLine

• AbstractString

• Set

46.2 General Collections

Base.isempty – Function.

isempty(collection) -> Bool

Determine whether a collection is empty (has no elements).

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/generator.jl#L57-L81
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/generator.jl#L89-L107

466 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

julia> isempty([])

true

julia> isempty([1 2 3])

false

source

Base.empty! – Function.

empty!(collection) -> collection

Remove all elements from a collection.

julia> A = Dict("a" => 1, "b" => 2)

Dict{String,Int64} with 2 entries:

"b" => 2

"a" => 1

julia> empty!(A);

julia> A

Dict{String,Int64} with 0 entries

source

Base.length –Method.

length(collection) -> Integer

For ordered, indexable collections, returns themaximum index i for which getindex(collection, i) is valid.

For unordered collections, returns the number of elements.

Examples

julia> length(1:5)

5

julia> length([1; 2; 3; 4])

4

source

Base.endof – Function.

endof(collection) -> Integer

Returns the last index of the collection.

Example

julia> endof([1,2,4])

3

source

Fully implemented by:

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1586-L1599
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dict.jl#L286-L302
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2008-L2023
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1085-L1095

46.3. ITERABLE COLLECTIONS 467

• Range

• UnitRange

• Tuple

• Number

• AbstractArray

• IntSet

• ObjectIdDict

• Dict

• WeakKeyDict

• AbstractString

• Set

46.3 Iterable Collections

Base.in – Function.

in(item, collection) -> Bool

(item,collection) -> Bool

(collection,item) -> Bool

(item,collection) -> Bool

(collection,item) -> Bool

Determinewhether an item is in thegiven collection, in the sense that it is== tooneof thevalues generatedby iter-

ating over the collection. Some collections need a slightly different definition; for exampleSets checkwhether the

itemisequal to oneof the elements. Dicts look for(key,value)pairs, and the key is comparedusingisequal.

To test for the presence of a key in a dictionary, use haskey or k in keys(dict).

julia> a = 1:3:20

1:3:19

julia> 4 in a

true

julia> 5 in a

false

source

Base.eltype – Function.

eltype(type)

Determine the typeof theelements generatedby iteratinga collectionof thegiventype. For associative collection

types, this will be a Pair{KeyType,ValType}. The definition eltype(x) = eltype(typeof(x)) is provided

for convenience so that instances can be passed instead of types. However the form that accepts a type argument

should be defined for new types.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L606-L630

468 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

julia> eltype(ones(Float32,2,2))

Float32

julia> eltype(ones(Int8,2,2))

Int8

source

Base.indexin – Function.

indexin(a, b)

Returns a vector containing the highest index in b for each value in a that is a member of b . The output vector

contains 0 wherever a is not amember of b.

Examples

julia> a = ['a', 'b', 'c', 'b', 'd', 'a'];

julia> b = ['a','b','c'];

julia> indexin(a,b)

6-element Array{Int64,1}:

1

2

3

2

0

1

julia> indexin(b,a)

3-element Array{Int64,1}:

6

4

3

source

Base.findin – Function.

findin(a, b)

Returns the indices of elements in collection a that appear in collection b.

Examples

julia> a = collect(1:3:15)

5-element Array{Int64,1}:

1

4

7

10

13

julia> b = collect(2:4:10)

3-element Array{Int64,1}:

2

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L26-L42
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1779-L1807

46.3. ITERABLE COLLECTIONS 469

6

10

julia> findin(a,b) # 10 is the only common element

1-element Array{Int64,1}:

4

source

Base.unique – Function.

unique(itr)

Returns an array containing one value from itr for each unique value, as determined by isequal.

julia> unique([1; 2; 2; 6])

3-element Array{Int64,1}:

1

2

6

source

unique(f, itr)

Returns an array containing one value from itr for each unique value produced by f applied to elements of itr.

julia> unique(isodd, [1; 2; 2; 6])

2-element Array{Int64,1}:

1

2

source

unique(itr[, dim])

Returns an array containing only the unique elements of the iterable itr, in the order that the first of each set of

equivalent elements originally appears. If dim is specified, returns unique regions of the array itr along dim.

julia> A = map(isodd, reshape(collect(1:8), (2,2,2)))

2×2×2 Array{Bool,3}:

[:, :, 1] =

true true

false false

[:, :, 2] =

true true

false false

julia> unique(A)

2-element Array{Bool,1}:

true

false

julia> unique(A, 2)

2×1×2 Array{Bool,3}:

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1813-L1838
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/set.jl#L115-L128
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/set.jl#L170-L182

470 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

[:, :, 1] =

true

false

[:, :, 2] =

true

false

julia> unique(A, 3)

2×2×1 Array{Bool,3}:

[:, :, 1] =

true true

false false

source

Base.allunique – Function.

allunique(itr) -> Bool

Return true if all values from itr are distinct when comparedwith isequal.

julia> a = [1; 2; 3]

3-element Array{Int64,1}:

1

2

3

julia> allunique([a, a])

false

source

Base.reduce –Method.

reduce(op, v0, itr)

Reduce the given collection ìtrwith the given binary operator op. v0must be a neutral element for op that will

be returned for empty collections. It is unspecifiedwhether v0 is used for non-empty collections.

Reductions for certain commonly-used operators have special implementations which should be used instead:

maximum(itr), minimum(itr), sum(itr), prod(itr), any(itr), all(itr).

The associativity of the reduction is implementation dependent. This means that you can't use non-associative

operations like-because it is undefinedwhetherreduce(-,[1,2,3]) shouldbeevaluatedas(1-2)-3or1-(2-

3). Use foldl or foldr instead for guaranteed left or right associativity.

Some operations accumulate error, and parallelism will also be easier if the reduction can be executed in groups.

Futureversionsof Juliamightchangethealgorithm. Note that theelementsarenot reordered if youuseanordered

collection.

Examples

julia> reduce(*, 1, [2; 3; 4])

24

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L1353-L1392
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/set.jl#L196-L211
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L289-L315

46.3. ITERABLE COLLECTIONS 471

Base.reduce –Method.

reduce(op, itr)

Likereduce(op, v0, itr). This cannotbeusedwithemptycollections, except for somespecial cases (e.g. when

op is one of +, *, max, min, &, |) when Julia can determine the neutral element of op.

julia> reduce(*, [2; 3; 4])

24

source

Base.foldl –Method.

foldl(op, v0, itr)

Like reduce, but with guaranteed left associativity. v0will be used exactly once.

julia> foldl(-, 1, 2:5)

-13

source

Base.foldl –Method.

foldl(op, itr)

Like foldl(op, v0, itr), but using the first element of itr as v0. In general, this cannot be used with empty

collections (see reduce(op, itr)).

julia> foldl(-, 2:5)

-10

source

Base.foldr –Method.

foldr(op, v0, itr)

Like reduce, but with guaranteed right associativity. v0will be used exactly once.

julia> foldr(-, 1, 2:5)

-1

source

Base.foldr –Method.

foldr(op, itr)

Like foldr(op, v0, itr), but using the last element of itr as v0. In general, this cannot be used with empty

collections (see reduce(op, itr)).

julia> foldr(-, 2:5)

-2

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L318-L329
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L76-L86
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L89-L99
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L142-L152

472 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

source

Base.maximum –Method.

maximum(itr)

Returns the largest element in a collection.

julia> maximum(-20.5:10)

9.5

julia> maximum([1,2,3])

3

source

Base.maximum –Method.

maximum(A, dims)

Compute the maximum value of an array over the given dimensions. See also the max(a,b) function to take the

maximum of two ormore arguments, which can be applied elementwise to arrays via max.(a,b).

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> maximum(A, 1)

1×2 Array{Int64,2}:

3 4

julia> maximum(A, 2)

2×1 Array{Int64,2}:

2

4

source

Base.maximum! – Function.

maximum!(r, A)

Compute themaximum value of A over the singleton dimensions of r, and write results to r.

Examples

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> maximum!([1; 1], A)

2-element Array{Int64,1}:

2

4

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L155-L165
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L441-L453
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L378-L400

46.3. ITERABLE COLLECTIONS 473

julia> maximum!([1 1], A)

1×2 Array{Int64,2}:

3 4

source

Base.minimum –Method.

minimum(itr)

Returns the smallest element in a collection.

julia> minimum(-20.5:10)

-20.5

julia> minimum([1,2,3])

1

source

Base.minimum –Method.

minimum(A, dims)

Compute the minimum value of an array over the given dimensions. See also the min(a,b) function to take the

minimum of two ormore arguments, which can be applied elementwise to arrays via min.(a,b).

Examples

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> minimum(A, 1)

1×2 Array{Int64,2}:

1 2

julia> minimum(A, 2)

2×1 Array{Int64,2}:

1

3

source

Base.minimum! – Function.

minimum!(r, A)

Compute theminimum value of A over the singleton dimensions of r, and write results to r.

Examples

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L403-L424
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L456-L468
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L427-L450

474 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

julia> minimum!([1; 1], A)

2-element Array{Int64,1}:

1

3

julia> minimum!([1 1], A)

1×2 Array{Int64,2}:

1 2

source

Base.extrema –Method.

extrema(itr) -> Tuple

Compute both theminimum andmaximum element in a single pass, and return them as a 2-tuple.

julia> extrema(2:10)

(2, 10)

julia> extrema([9,pi,4.5])

(3.141592653589793, 9.0)

source

Base.extrema –Method.

extrema(A, dims) -> Array{Tuple}

Compute theminimum andmaximum elements of an array over the given dimensions.

Example

julia> A = reshape(collect(1:2:16), (2,2,2))

2×2×2 Array{Int64,3}:

[:, :, 1] =

1 5

3 7

[:, :, 2] =

9 13

11 15

julia> extrema(A, (1,2))

1×1×2 Array{Tuple{Int64,Int64},3}:

[:, :, 1] =

(1, 7)

[:, :, 2] =

(9, 15)

source

Base.indmax – Function.

indmax(itr) -> Integer

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L453-L474
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L476-L488
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L1464-L1489

46.3. ITERABLE COLLECTIONS 475

Returns the index of the maximum element in a collection. If there are multiple maximal elements, then the first

onewill be returned. NaN values are ignored, unless all elements are NaN.

The collectionmust not be empty.

Examples

julia> indmax([8,0.1,-9,pi])

1

julia> indmax([1,7,7,6])

2

julia> indmax([1,7,7,NaN])

2

source

Base.indmin – Function.

indmin(itr) -> Integer

Returns the indexof theminimumelement in a collection. If there aremultipleminimal elements, then thefirst one

will be returned. NaN values are ignored, unless all elements are NaN.

The collectionmust not be empty.

Examples

julia> indmin([8,0.1,-9,pi])

3

julia> indmin([7,1,1,6])

2

julia> indmin([7,1,1,NaN])

2

source

Base.findmax –Method.

findmax(itr) -> (x, index)

Returns themaximumelement of the collectionitr and its index. If there aremultiplemaximal elements, then the

first onewill be returned. NaN values are ignored, unless all elements are NaN.

The collectionmust not be empty.

Examples

julia> findmax([8,0.1,-9,pi])

(8.0, 1)

julia> findmax([1,7,7,6])

(7, 2)

julia> findmax([1,7,7,NaN])

(7.0, 2)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1732-L1752
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1755-L1775

476 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

source

Base.findmax –Method.

findmax(A, region) -> (maxval, index)

For an array input, returns the value and index of themaximum over the given region.

Examples

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> findmax(A,1)

([3 4], [2 4])

julia> findmax(A,2)

([2; 4], [3; 4])

source

Base.findmin –Method.

findmin(itr) -> (x, index)

Returns theminimum element of the collection itr and its index. If there aremultipleminimal elements, then the

first onewill be returned. NaN values are ignored, unless all elements are NaN.

The collectionmust not be empty.

Examples

julia> findmin([8,0.1,-9,pi])

(-9.0, 3)

julia> findmin([7,1,1,6])

(1, 2)

julia> findmin([7,1,1,NaN])

(1.0, 2)

source

Base.findmin –Method.

findmin(A, region) -> (minval, index)

For an array input, returns the value and index of theminimum over the given region.

Examples

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1654-L1674
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L687-L705
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1693-L1713

46.3. ITERABLE COLLECTIONS 477

julia> findmin(A, 1)

([1 2], [1 3])

julia> findmin(A, 2)

([1; 3], [1; 2])

source

Base.findmax! – Function.

findmax!(rval, rind, A, [init=true]) -> (maxval, index)

Find themaximumofA and the corresponding linear index along singletondimensions ofrval andrind, and store

the results in rval and rind.

source

Base.findmin! – Function.

findmin!(rval, rind, A, [init=true]) -> (minval, index)

Find theminimumofA and the corresponding linear index along singleton dimensions ofrval andrind, and store

the results in rval and rind.

source

Base.sum – Function.

sum(f, itr)

Sum the results of calling function f on each element of itr.

julia> sum(abs2, [2; 3; 4])

29

source

sum(itr)

Returns the sum of all elements in a collection.

julia> sum(1:20)

210

source

sum(A, dims)

Sum elements of an array over the given dimensions.

Examples

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> sum(A, 1)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L648-L666
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L676-L681
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L637-L642
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L337-L346
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L349-L358

478 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

1×2 Array{Int64,2}:

4 6

julia> sum(A, 2)

2×1 Array{Int64,2}:

3

7

source

Base.sum! – Function.

sum!(r, A)

Sum elements of A over the singleton dimensions of r, and write results to r.

Examples

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> sum!([1; 1], A)

2-element Array{Int64,1}:

3

7

julia> sum!([1 1], A)

1×2 Array{Int64,2}:

4 6

source

Base.prod – Function.

prod(f, itr)

Returns the product of f applied to each element of itr.

julia> prod(abs2, [2; 3; 4])

576

source

prod(itr)

Returns the product of all elements of a collection.

julia> prod(1:20)

2432902008176640000

source

prod(A, dims)

Multiply elements of an array over the given dimensions.

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L282-L303
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L306-L327
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L395-L404
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L407-L416

46.3. ITERABLE COLLECTIONS 479

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> prod(A, 1)

1×2 Array{Int64,2}:

3 8

julia> prod(A, 2)

2×1 Array{Int64,2}:

2

12

source

Base.prod! – Function.

prod!(r, A)

Multiply elements of A over the singleton dimensions of r, and write results to r.

Examples

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> prod!([1; 1], A)

2-element Array{Int64,1}:

2

12

julia> prod!([1 1], A)

1×2 Array{Int64,2}:

3 8

source

Base.any –Method.

any(itr) -> Bool

Test whether any elements of a boolean collection are true, returning true as soon as the first true value in itr

is encountered (short-circuiting).

julia> a = [true,false,false,true]

4-element Array{Bool,1}:

true

false

false

true

julia> any(a)

true

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L330-L351
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L354-L375

480 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

julia> any((println(i); v) for (i, v) in enumerate(a))

1

true

source

Base.any –Method.

any(A, dims)

Test whether any values along the given dimensions of an array are true.

Examples

julia> A = [true false; true false]

2×2 Array{Bool,2}:

true false

true false

julia> any(A, 1)

1×2 Array{Bool,2}:

true false

julia> any(A, 2)

2×1 Array{Bool,2}:

true

true

source

Base.any! – Function.

any!(r, A)

Test whether any values in A along the singleton dimensions of r are true, and write results to r.

Examples

julia> A = [true false; true false]

2×2 Array{Bool,2}:

true false

true false

julia> any!([1; 1], A)

2-element Array{Int64,1}:

1

1

julia> any!([1 1], A)

1×2 Array{Int64,2}:

1 0

source

Base.all –Method.

all(itr) -> Bool

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L504-L525
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L525-L546
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L549-L571

46.3. ITERABLE COLLECTIONS 481

Testwhether all elements of a boolean collection aretrue, returningfalse as soon as thefirstfalse value initr

is encountered (short-circuiting).

julia> a = [true,false,false,true]

4-element Array{Bool,1}:

true

false

false

true

julia> all(a)

false

julia> all((println(i); v) for (i, v) in enumerate(a))

1

2

false

source

Base.all –Method.

all(A, dims)

Test whether all values along the given dimensions of an array are true.

Examples

julia> A = [true false; true true]

2×2 Array{Bool,2}:

true false

true true

julia> all(A, 1)

1×2 Array{Bool,2}:

true false

julia> all(A, 2)

2×1 Array{Bool,2}:

false

true

source

Base.all! – Function.

all!(r, A)

Test whether all values in A along the singleton dimensions of r are true, and write results to r.

Examples

julia> A = [true false; true false]

2×2 Array{Bool,2}:

true false

true false

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L528-L550
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L477-L498

482 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

julia> all!([1; 1], A)

2-element Array{Int64,1}:

0

0

julia> all!([1 1], A)

1×2 Array{Int64,2}:

1 0

source

Base.count – Function.

count(p, itr) -> Integer

count(itr) -> Integer

Count the number of elements in itr for which predicate p returns true. If p is omitted, counts the number of

true elements in itr (which should be a collection of boolean values).

julia> count(i->(4<=i<=6), [2,3,4,5,6])

3

julia> count([true, false, true, true])

3

source

Base.any –Method.

any(p, itr) -> Bool

Determine whether predicate p returns true for any elements of itr, returning true as soon as the first item in

itr for which p returns true is encountered (short-circuiting).

julia> any(i->(4<=i<=6), [3,5,7])

true

julia> any(i -> (println(i); i > 3), 1:10)

1

2

3

4

true

source

Base.all –Method.

all(p, itr) -> Bool

Determine whether predicate p returns true for all elements of itr, returning false as soon as the first item in

itr for which p returns false is encountered (short-circuiting).

julia> all(i->(4<=i<=6), [4,5,6])

true

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L501-L522
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L673-L688
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L553-L571

46.3. ITERABLE COLLECTIONS 483

julia> all(i -> (println(i); i < 3), 1:10)

1

2

3

false

source

Base.foreach – Function.

foreach(f, c...) -> Void

Call function f on each element of iterable c. For multiple iterable arguments, f is called elementwise. foreach

should be used instead of mapwhen the results of f are not needed, for example in foreach(println, array).

Example

julia> a = 1:3:7;

julia> foreach(x -> println(x^2), a)

1

16

49

source

Base.map – Function.

map(f, c...) -> collection

Transform collection c by applying f to each element. For multiple collection arguments, apply f elementwise.

Examples

julia> map(x -> x * 2, [1, 2, 3])

3-element Array{Int64,1}:

2

4

6

julia> map(+, [1, 2, 3], [10, 20, 30])

3-element Array{Int64,1}:

11

22

33

source

map(f, x::Nullable)

Returnfappliedtothevalueofx if ithasone, asaNullable. Ifx isnull, thenreturnanull valueof typeNullable{S}.

S is guaranteed to be either Union{} or a concrete type. Whichever of these is chosen is an implementation de-

tail, but typically the choice that maximizes performance would be used. If x has a value, then the return type is

guaranteed to be of type Nullable{typeof(f(x))}.

source

Base.map! – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L579-L596
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L1714-L1731
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L1871-L1891
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/nullable.jl#L270-L279

484 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

map!(function, destination, collection...)

Like map, but stores the result in destination rather than a new collection. destination must be at least as

large as the first collection.

Example

julia> x = zeros(3);

julia> map!(x -> x * 2, x, [1, 2, 3]);

julia> x

3-element Array{Float64,1}:

2.0

4.0

6.0

source

Base.mapreduce –Method.

mapreduce(f, op, v0, itr)

Apply function f to each element in itr, and then reduce the result using the binary function op. v0 must be a

neutral element for op that will be returned for empty collections. It is unspecified whether v0 is used for non-

empty collections.

mapreduce is functionally equivalent to calling reduce(op, v0, map(f, itr)), but will in general execute

faster since no intermediate collection needs to be created. See documentation for reduce and map.

julia> mapreduce(x->x^2, +, [1:3;]) # == 1 + 4 + 9

14

The associativity of the reduction is implementation-dependent. Additionally, some implementations may reuse

the return value off for elements that appearmultiple times initr. Usemapfoldlormapfoldr instead for guar-

anteed left or right associativity and invocation of f for every value.

source

Base.mapreduce –Method.

mapreduce(f, op, itr)

Like mapreduce(f, op, v0, itr). In general, this cannot be used with empty collections (see reduce(op,

itr)).

source

Base.mapfoldl –Method.

mapfoldl(f, op, v0, itr)

Like mapreduce, but with guaranteed left associativity, as in foldl. v0will be used exactly once.

source

Base.mapfoldl –Method.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L1914-L1932
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L208-L228
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L200-L205
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L52-L57

46.3. ITERABLE COLLECTIONS 485

mapfoldl(f, op, itr)

Like mapfoldl(f, op, v0, itr), but using the first element of itr as v0. In general, this cannot be used with

empty collections (see reduce(op, itr)).

source

Base.mapfoldr –Method.

mapfoldr(f, op, v0, itr)

Like mapreduce, but with guaranteed right associativity, as in foldr. v0will be used exactly once.

source

Base.mapfoldr –Method.

mapfoldr(f, op, itr)

Like mapfoldr(f, op, v0, itr), but using the first element of itr as v0. In general, this cannot be used with

empty collections (see reduce(op, itr)).

source

Base.first – Function.

first(coll)

Get the first element of an iterable collection. Returns the start point of a Range even if it is empty.

julia> first(2:2:10)

2

julia> first([1; 2; 3; 4])

1

source

Base.last – Function.

last(coll)

Get the last element of an ordered collection, if it can be computed in O(1) time. This is accomplished by calling

endof to get the last index. Returns the end point of a Range even if it is empty.

julia> last(1:2:10)

9

julia> last([1; 2; 3; 4])

4

source

Base.step – Function.

step(r)

Get the step size of a Range object.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L60-L65
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L120-L125
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L128-L133
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L137-L150
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L157-L171

486 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

julia> step(1:10)

1

julia> step(1:2:10)

2

julia> step(2.5:0.3:10.9)

0.3

julia> step(linspace(2.5,10.9,85))

0.1

source

Base.collect –Method.

collect(collection)

ReturnanArrayofall items inacollectionor iterator. Forassociativecollections, returnsPair{KeyType, ValType}.

If the argument is array-like or is an iterator with the HasShape() trait, the result will have the same shape and

number of dimensions as the argument.

Example

julia> collect(1:2:13)

7-element Array{Int64,1}:

1

3

5

7

9

11

13

source

Base.collect –Method.

collect(element_type, collection)

Return an Arraywith the given element type of all items in a collection or iterable. The result has the same shape

and number of dimensions as collection.

julia> collect(Float64, 1:2:5)

3-element Array{Float64,1}:

1.0

3.0

5.0

source

Base.issubset –Method.

issubset(a, b)

(a,b) -> Bool

(a,b) -> Bool

(a,b) -> Bool

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/range.jl#L343-L360
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L411-L430
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L379-L392

46.3. ITERABLE COLLECTIONS 487

Determine whether every element of a is also in b, using in.

Examples

julia> issubset([1, 2], [1, 2, 3])

true

julia> issubset([1, 2, 3], [1, 2])

false

source

Base.filter – Function.

filter(function, collection)

Return a copy of collection, removing elements for which function is false. For associative collections, the

function is passed two arguments (key and value).

Examples

julia> a = 1:10

1:10

julia> filter(isodd, a)

5-element Array{Int64,1}:

1

3

5

7

9

julia> d = Dict(1=>"a", 2=>"b")

Dict{Int64,String} with 2 entries:

2 => "b"

1 => "a"

julia> filter((x,y)->isodd(x), d)

Dict{Int64,String} with 1 entry:

1 => "a"

source

filter(p, x::Nullable)

Return null if either x is null or p(get(x)) is false, and x otherwise.

source

Base.filter! – Function.

filter!(function, collection)

Update collection, removing elements for which function is false. For associative collections, the function

is passed two arguments (key and value).

Example

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2326-L2342
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1874-L1902
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/nullable.jl#L251-L255

488 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

julia> filter!(isodd, collect(1:10))

5-element Array{Int64,1}:

1

3

5

7

9

source

46.4 Indexable Collections

Base.getindex –Method.

getindex(collection, key...)

Retrieve the value(s) stored at the given key or index within a collection. The syntax a[i,j,...] is converted by

the compiler to getindex(a, i, j, ...).

Example

julia> A = Dict("a" => 1, "b" => 2)

Dict{String,Int64} with 2 entries:

"b" => 2

"a" => 1

julia> getindex(A, "a")

1

source

Base.setindex! –Method.

setindex!(collection, value, key...)

Store the given value at the given key or index within a collection. The syntax a[i,j,...] = x is converted by

the compiler to (setindex!(a, x, i, j, ...); x).

source

Fully implemented by:

• Array

• BitArray

• AbstractArray

• SubArray

• ObjectIdDict

• Dict

• WeakKeyDict

• AbstractString

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L313-L329
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L150-L166
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2295-L2300

46.5. ASSOCIATIVE COLLECTIONS 489

Partially implemented by:

• Range

• UnitRange

• Tuple

46.5 Associative Collections

Dict is the standard associative collection. Its implementation uses hash() as the hashing function for the key, and

isequal() to determine equality. Define these two functions for custom types to override how they are stored in a

hash table.

ObjectIdDict is a special hash table where the keys are always object identities.

WeakKeyDict is a hash table implementationwhere the keys areweak references to objects, and thusmay be garbage

collected evenwhen referenced in a hash table.

Dicts can be created by passing pair objects constructedwith=>() to aDict constructor: Dict("A"=>1, "B"=>2).

This call will attempt to infer type information from the keys and values (i.e. this example creates a Dict{String,

Int64}). Toexplicitly specify typesusethesyntaxDict{KeyType,ValueType}(...). Forexample,Dict{String,Int32}("A"=>1,

"B"=>2).

Associative collectionsmay also be created with generators. For example, Dict(i => f(i) for i = 1:10).

Given adictionaryD, the syntaxD[x] returns the valueof keyx (if it exists) or throws anerror, andD[x] = y stores the

key-value pair x => y in D (replacing any existing value for the key x). Multiple arguments to D[...] are converted to

tuples; for example, the syntax D[x,y] is equivalent to D[(x,y)], i.e. it refers to the value keyed by the tuple (x,y).

Base.Dict – Type.

Dict([itr])

Dict{K,V}() constructs a hash table with keys of type K and values of type V.

Given a single iterable argument, constructs a Dictwhose key-value pairs are taken from 2-tuples (key,value)

generated by the argument.

julia> Dict([("A", 1), ("B", 2)])

Dict{String,Int64} with 2 entries:

"B" => 2

"A" => 1

Alternatively, a sequence of pair arguments may be passed.

julia> Dict("A"=>1, "B"=>2)

Dict{String,Int64} with 2 entries:

"B" => 2

"A" => 1

source

Base.ObjectIdDict – Type.

ObjectIdDict([itr])

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dict.jl#L68-L91

490 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

ObjectIdDict() constructs a hash table where the keys are (always) object identities. Unlike Dict it is not pa-

rameterized on its key and value type and thus its eltype is always Pair{Any,Any}.

See Dict for further help.

source

Base.WeakKeyDict – Type.

WeakKeyDict([itr])

WeakKeyDict() constructs a hash tablewhere the keys areweak references to objects, and thusmay be garbage

collected evenwhen referenced in a hash table.

See Dict for further help.

source

Base.haskey – Function.

haskey(collection, key) -> Bool

Determine whether a collection has amapping for a given key.

julia> a = Dict('a'=>2, 'b'=>3)

Dict{Char,Int64} with 2 entries:

'b' => 3

'a' => 2

julia> haskey(a,'a')

true

julia> haskey(a,'c')

false

source

Base.get –Method.

get(collection, key, default)

Return the value stored for the given key, or the given default value if nomapping for the key is present.

Examples

julia> d = Dict("a"=>1, "b"=>2);

julia> get(d, "a", 3)

1

julia> get(d, "c", 3)

3

source

Base.get – Function.

get(f::Function, collection, key)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/associative.jl#L379-L387
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/weakkeydict.jl#L5-L13
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dict.jl#L487-L504
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1418-L1434

46.5. ASSOCIATIVE COLLECTIONS 491

Return the value stored for the givenkey, or if nomapping for the key is present, returnf(). Useget! to also store

the default value in the dictionary.

This is intended to be called using do block syntax

get(dict, key) do

default value calculated here

time()

end

source

Base.get! –Method.

get!(collection, key, default)

Return the value stored for the given key, or if no mapping for the key is present, store key => default, and

return default.

Examples

julia> d = Dict("a"=>1, "b"=>2, "c"=>3);

julia> get!(d, "a", 5)

1

julia> get!(d, "d", 4)

4

julia> d

Dict{String,Int64} with 4 entries:

"c" => 3

"b" => 2

"a" => 1

"d" => 4

source

Base.get! –Method.

get!(f::Function, collection, key)

Return the value stored for the given key, or if no mapping for the key is present, store key => f(), and return

f().

This is intended to be called using do block syntax:

get!(dict, key) do

default value calculated here

time()

end

source

Base.getkey – Function.

getkey(collection, key, default)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1437-L1451
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1947-L1970
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1973-L1986

492 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

Return the keymatching argument key if one exists in collection, otherwise return default.

julia> a = Dict('a'=>2, 'b'=>3)

Dict{Char,Int64} with 2 entries:

'b' => 3

'a' => 2

julia> getkey(a,'a',1)

'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

julia> getkey(a,'d','a')

'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

source

Base.delete! – Function.

delete!(collection, key)

Delete themapping for the given key in a collection, and return the collection.

Example

julia> d = Dict("a"=>1, "b"=>2)

Dict{String,Int64} with 2 entries:

"b" => 2

"a" => 1

julia> delete!(d, "b")

Dict{String,Int64} with 1 entry:

"a" => 1

source

Base.pop! –Method.

pop!(collection, key[, default])

Delete and return themapping for key if it exists in collection, otherwise return default, or throw an error if

default is not specified.

Examples

julia> d = Dict("a"=>1, "b"=>2, "c"=>3);

julia> pop!(d, "a")

1

julia> pop!(d, "d")

ERROR: KeyError: key "d" not found

Stacktrace:

[1] pop!(::Dict{String,Int64}, ::String) at ./dict.jl:539

julia> pop!(d, "e", 4)

4

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dict.jl#L508-L525
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1331-L1347
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2600-L2621

46.5. ASSOCIATIVE COLLECTIONS 493

Base.keys – Function.

keys(a::Associative)

Return an iterator over all keys in a collection. collect(keys(a)) returns an array of keys. Since the keys are

stored internally in a hash table, the order inwhich they are returnedmayvary. Butkeys(a) andvalues(a)both

iterate a and return the elements in the same order.

julia> a = Dict('a'=>2, 'b'=>3)

Dict{Char,Int64} with 2 entries:

'b' => 3

'a' => 2

julia> collect(keys(a))

2-element Array{Char,1}:

'b'

'a'

source

Base.values – Function.

values(a::Associative)

Return an iterator over all values in a collection. collect(values(a)) returns an array of values. Since the

values are stored internally in a hash table, the order in which they are returned may vary. But keys(a) and

values(a) both iterate a and return the elements in the same order.

julia> a = Dict('a'=>2, 'b'=>3)

Dict{Char,Int64} with 2 entries:

'b' => 3

'a' => 2

julia> collect(values(a))

2-element Array{Int64,1}:

3

2

source

Base.merge – Function.

merge(d::Associative, others::Associative...)

Construct a merged collection from the given collections. If necessary, the types of the resulting collection will be

promoted to accommodate the types of the merged collections. If the same key is present in another collection,

the value for that key will be the value it has in the last collection listed.

julia> a = Dict("foo" => 0.0, "bar" => 42.0)

Dict{String,Float64} with 2 entries:

"bar" => 42.0

"foo" => 0.0

julia> b = Dict("baz" => 17, "bar" => 4711)

Dict{String,Int64} with 2 entries:

"bar" => 4711

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/associative.jl#L63-L84
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/associative.jl#L88-L109

494 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

"baz" => 17

julia> merge(a, b)

Dict{String,Float64} with 3 entries:

"bar" => 4711.0

"baz" => 17.0

"foo" => 0.0

julia> merge(b, a)

Dict{String,Float64} with 3 entries:

"bar" => 42.0

"baz" => 17.0

"foo" => 0.0

source

merge(combine, d::Associative, others::Associative...)

Construct a merged collection from the given collections. If necessary, the types of the resulting collection will be

promoted to accommodate the types of the merged collections. Values with the same key will be combined using

the combiner function.

julia> a = Dict("foo" => 0.0, "bar" => 42.0)

Dict{String,Float64} with 2 entries:

"bar" => 42.0

"foo" => 0.0

julia> b = Dict("baz" => 17, "bar" => 4711)

Dict{String,Int64} with 2 entries:

"bar" => 4711

"baz" => 17

julia> merge(+, a, b)

Dict{String,Float64} with 3 entries:

"bar" => 4753.0

"baz" => 17.0

"foo" => 0.0

source

Base.merge! – Function.

Merge changes into current head

source

Internal implementation of merge. Returns true if merge was successful, otherwise false

source

merge!(repo::GitRepo; kwargs...) -> Bool

Perform a git merge on the repository repo, merging commits with diverging history into the current branch. Re-

turns true if themerge succeeded, false if not.

The keyword arguments are:

• committish::AbstractString="": Merge the named commit(s) in committish.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/associative.jl#L224-L255
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/associative.jl#L259-L284
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/merge.jl#L66
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/merge.jl#L80-L83

46.5. ASSOCIATIVE COLLECTIONS 495

• branch::AbstractString="": Merge the branch branch and all its commits since it diverged from the

current branch.

• fastforward::Bool=false: If fastforward is true, only merge if the merge is a fast-forward (the cur-

rent branch head is an ancestor of the commits to bemerged), otherwise refuse tomerge and return false.

This is equivalent to the git CLI option --ff-only.

• merge_opts::MergeOptions=MergeOptions(): merge_opts specifies options for the merge, such as

merge strategy in case of conflicts.

• checkout_opts::CheckoutOptions=CheckoutOptions(): checkout_opts specifies options for the

checkout step.

Equivalent to git merge [--ff-only] [<committish> | <branch>].

Note

If you specify a branch, this must be done in reference format, since the string will be turned into a

GitReference. Forexample, if youwantedtomergebranchbranch_a, youwouldcallmerge!(repo,

branch="refs/heads/branch_a").

source

merge!(d::Associative, others::Associative...)

Update collection with pairs from the other collections. See also merge.

julia> d1 = Dict(1 => 2, 3 => 4);

julia> d2 = Dict(1 => 4, 4 => 5);

julia> merge!(d1, d2);

julia> d1

Dict{Int64,Int64} with 3 entries:

4 => 5

3 => 4

1 => 4

source

merge!(combine, d::Associative, others::Associative...)

Update collectionwith pairs from the other collections. Valueswith the same keywill be combined using the com-

biner function.

julia> d1 = Dict(1 => 2, 3 => 4);

julia> d2 = Dict(1 => 4, 4 => 5);

julia> merge!(+, d1, d2);

julia> d1

Dict{Int64,Int64} with 3 entries:

4 => 5

3 => 4

1 => 6

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L625-L652
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/associative.jl#L120-L139

496 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

julia> merge!(-, d1, d1);

julia> d1

Dict{Int64,Int64} with 3 entries:

4 => 0

3 => 0

1 => 0

source

Base.sizehint! – Function.

sizehint!(s, n)

Suggest that collection s reserve capacity for at least n elements. This can improve performance.

source

Base.keytype – Function.

keytype(type)

Get the key type of an associative collection type. Behaves similarly to eltype.

julia> keytype(Dict(Int32(1) => "foo"))

Int32

source

Base.valtype – Function.

valtype(type)

Get the value type of an associative collection type. Behaves similarly to eltype.

julia> valtype(Dict(Int32(1) => "foo"))

String

source

Fully implemented by:

• ObjectIdDict

• Dict

• WeakKeyDict

Partially implemented by:

• IntSet

• Set

• EnvHash

• Array

• BitArray

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/associative.jl#L149-L177
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1114-L1118
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/associative.jl#L196-L205
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/associative.jl#L210-L219

46.6. SET-LIKE COLLECTIONS 497

46.6 Set-Like Collections

Base.Set – Type.

Set([itr])

Construct a Set of the values generated by the given iterable object, or an empty set. Should be used instead of

IntSet for sparse integer sets, or for sets of arbitrary objects.

source

Base.IntSet – Type.

IntSet([itr])

Construct a sorted set of positive Ints generated by the given iterable object, or an empty set. Implemented as a

bit string, and therefore designed for dense integer sets. Only Ints greater than 0 can be stored. If the set will be

sparse (for example holding a few very large integers), use Set instead.

source

Base.union – Function.

union(s1,s2...)

(s1,s2...)

Construct the union of two ormore sets. Maintains order with arrays.

Examples

julia> union([1, 2], [3, 4])

4-element Array{Int64,1}:

1

2

3

4

julia> union([1, 2], [2, 4])

3-element Array{Int64,1}:

1

2

4

julia> union([4, 2], [1, 2])

3-element Array{Int64,1}:

4

2

1

source

Base.union! – Function.

union!(s, iterable)

Union each element of iterable into set s in-place.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2557-L2563
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1630-L1637
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L944-L971
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2511-L2515

498 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

Base.intersect – Function.

intersect(s1,s2...)

(s1,s2)

Construct the intersection of two or more sets. Maintains order and multiplicity of the first argument for arrays

and ranges.

source

Base.setdiff – Function.

setdiff(a, b)

Construct the set of elements in a but not b. Maintains order with arrays. Note that both arguments must be

collections, and both will be iterated over. In particular, setdiff(set,element)where element is a potential

member of set, will not work in general.

Example

julia> setdiff([1,2,3],[3,4,5])

2-element Array{Int64,1}:

1

2

source

Base.setdiff! – Function.

setdiff!(s, iterable)

Remove each element of iterable from set s in-place.

source

Base.symdiff – Function.

symdiff(a, b, rest...)

Construct the symmetric difference of elements in the passed in sets or arrays. Maintains order with arrays.

Example

julia> symdiff([1,2,3],[3,4,5],[4,5,6])

3-element Array{Int64,1}:

1

2

6

source

Base.symdiff! –Method.

symdiff!(s, n)

The set s is destructively modified to toggle the inclusion of integer n.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2069-L2075
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1968-L1983
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L792-L796
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L2004-L2018
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intset.jl#L137-L141

46.7. DEQUEUES 499

Base.symdiff! –Method.

symdiff!(s, itr)

For each element in itr, destructively toggle its inclusion in set s.

source

Base.symdiff! –Method.

symdiff!(s, itr)

For each element in itr, destructively toggle its inclusion in set s.

source

Base.intersect! – Function.

intersect!(s1::IntSet, s2::IntSet)

Intersects setss1 ands2 and overwrites the sets1with the result. If needed,s1will be expanded to the size ofs2.

source

Base.issubset – Function.

issubset(A, S) -> Bool

(A,S) -> Bool

Return true if A is a subset of or equal to S.

source

Fully implemented by:

• IntSet

• Set

Partially implemented by:

• Array

46.7 Dequeues

Base.push! – Function.

push!(collection, items...) -> collection

Insert one ormore items at the end of collection.

Example

julia> push!([1, 2, 3], 4, 5, 6)

6-element Array{Int64,1}:

1

2

3

4

5

6

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intset.jl#L131-L135
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intset.jl#L131-L135
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intset.jl#L112-L117
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2345-L2350

500 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

Use append! to add all the elements of another collection to collection. The result of the preceding example is

equivalent to append!([1, 2, 3], [4, 5, 6]).

source

Base.pop! –Method.

pop!(collection) -> item

Remove the last item in collection and return it.

Examples

julia> A=[1, 2, 3, 4, 5, 6]

6-element Array{Int64,1}:

1

2

3

4

5

6

julia> pop!(A)

6

julia> A

5-element Array{Int64,1}:

1

2

3

4

5

source

Base.unshift! – Function.

unshift!(collection, items...) -> collection

Insert one ormore items at the beginning of collection.

Example

julia> unshift!([1, 2, 3, 4], 5, 6)

6-element Array{Int64,1}:

5

6

1

2

3

4

source

Base.shift! – Function.

shift!(collection) -> item

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L384-L404
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2624-L2651
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L798-L814

46.7. DEQUEUES 501

Remove the first item from collection.

Example

julia> A = [1, 2, 3, 4, 5, 6]

6-element Array{Int64,1}:

1

2

3

4

5

6

julia> shift!(A)

1

julia> A

5-element Array{Int64,1}:

2

3

4

5

6

source

Base.insert! – Function.

insert!(a::Vector, index::Integer, item)

Insert an item into a at the given index. index is the index of item in the resulting a.

Example

julia> insert!([6, 5, 4, 2, 1], 4, 3)

6-element Array{Int64,1}:

6

5

4

3

2

1

source

Base.deleteat! – Function.

deleteat!(a::Vector, i::Integer)

Remove the item at the given i and return themodified a. Subsequent items are shifted to fill the resulting gap.

Example

julia> deleteat!([6, 5, 4, 3, 2, 1], 2)

5-element Array{Int64,1}:

6

4

3

2

1

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1489-L1516
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L831-L848

502 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

source

deleteat!(a::Vector, inds)

Remove the items at the indices given by inds, and return the modified a. Subsequent items are shifted to fill the

resulting gap.

inds can be either an iterator or a collection of sorted and unique integer indices, or a boolean vector of the same

length as awith true indicating entries to delete.

Examples

julia> deleteat!([6, 5, 4, 3, 2, 1], 1:2:5)

3-element Array{Int64,1}:

5

3

1

julia> deleteat!([6, 5, 4, 3, 2, 1], [true, false, true, false, true, false])

3-element Array{Int64,1}:

5

3

1

julia> deleteat!([6, 5, 4, 3, 2, 1], (2, 2))

ERROR: ArgumentError: indices must be unique and sorted

Stacktrace:

[1] _deleteat!(::Array{Int64,1}, ::Tuple{Int64,Int64}) at ./array.jl:926

[2] deleteat!(::Array{Int64,1}, ::Tuple{Int64,Int64}) at ./array.jl:913

source

Base.splice! – Function.

splice!(a::Vector, index::Integer, [replacement]) -> item

Remove the item at the given index, and return the removed item. Subsequent items are shifted left to fill the

resulting gap. If specified, replacement values from an ordered collection will be spliced in place of the removed

item.

Examples

julia> A = [6, 5, 4, 3, 2, 1]; splice!(A, 5)

2

julia> A

5-element Array{Int64,1}:

6

5

4

3

1

julia> splice!(A, 5, -1)

1

julia> A

5-element Array{Int64,1}:

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L858-L874
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L883-L912

46.7. DEQUEUES 503

6

5

4

3

-1

julia> splice!(A, 1, [-1, -2, -3])

6

julia> A

7-element Array{Int64,1}:

-1

-2

-3

5

4

3

-1

To insertreplacementbeforean indexnwithoutremovingany items, usesplice!(collection, n:n-1, replacement).

source

splice!(a::Vector, range, [replacement]) -> items

Remove items in the specified index range, and returnacollectioncontaining the removed items. Subsequent items

are shifted left to fill the resulting gap. If specified, replacement values from an ordered collection will be spliced

in place of the removed items.

To insertreplacementbeforean indexnwithoutremovingany items, usesplice!(collection, n:n-1, replacement).

Example

julia> splice!(A, 4:3, 2)

0-element Array{Int64,1}

julia> A

8-element Array{Int64,1}:

-1

-2

-3

2

5

4

3

-1

source

Base.resize! – Function.

resize!(a::Vector, n::Integer) -> Vector

Resizea tocontainnelements. Ifn is smaller than thecurrent collection length, thefirstnelementswill be retained.

If n is larger, the new elements are not guaranteed to be initialized.

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L960-L1008
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1027-L1055

504 CHAPTER 46. COLLECTIONS ANDDATA STRUCTURES

julia> resize!([6, 5, 4, 3, 2, 1], 3)

3-element Array{Int64,1}:

6

5

4

julia> a = resize!([6, 5, 4, 3, 2, 1], 8);

julia> length(a)

8

julia> a[1:6]

6-element Array{Int64,1}:

6

5

4

3

2

1

source

Base.append! – Function.

append!(collection, collection2) -> collection.

Add the elements of collection2 to the end of collection.

Examples

julia> append!([1],[2,3])

3-element Array{Int64,1}:

1

2

3

julia> append!([1, 2, 3], [4, 5, 6])

6-element Array{Int64,1}:

1

2

3

4

5

6

Use push! to add individual items to collection which are not already themselves in another collection. The

result is of the preceding example is equivalent to push!([1, 2, 3], 4, 5, 6).

source

Base.prepend! – Function.

prepend!(a::Vector, items) -> collection

Insert the elements of items to the beginning of a.

Example

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L741-L770
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L756-L782

46.7. DEQUEUES 505

julia> prepend!([3],[1,2])

3-element Array{Int64,1}:

1

2

3

source

Fully implemented by:

• Vector (a.k.a. 1-dimensional Array)

• BitVector (a.k.a. 1-dimensional BitArray)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L690-L703

Chapter 47

Mathematics

47.1 Mathematical Operators

Base.:- –Method.

-(x)

Unaryminus operator.

source

Base.:+ – Function.

+(x, y...)

Addition operator. x+y+z+... calls this function with all arguments, i.e. +(x, y, z, ...).

source

Base.:- –Method.

-(x, y)

Subtraction operator.

source

Base.:* –Method.

*(x, y...)

Multiplication operator. x*y*z*... calls this function with all arguments, i.e. *(x, y, z, ...).

source

Base.:/ – Function.

/(x, y)

Right division operator: multiplication of x by the inverse of y on the right. Gives floating-point results for integer

arguments.

source

Base.:\ –Method.

507

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L66-L70
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2281-L2285
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L73-L77
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1917-L1923
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L522-L527

508 CHAPTER 47. MATHEMATICS

\(x, y)

Left division operator: multiplication of y by the inverse of x on the left. Gives floating-point results for integer

arguments.

julia> 3 \ 6

2.0

julia> inv(3) * 6

2.0

julia> A = [1 2; 3 4]; x = [5, 6];

julia> A \ x

2-element Array{Float64,1}:

-4.0

4.5

julia> inv(A) * x

2-element Array{Float64,1}:

-4.0

4.5

source

Base.:^ –Method.

^(x, y)

Exponentiation operator. If x is a matrix, computesmatrix exponentiation.

Ify is anInt literal (e.g. 2 inx^2or-3 inx^-3), theJuliacodex^y is transformedbythecompiler toBase.literal_pow(^,

x, Val{y}), to enable compile-time specialization on the value of the exponent. (As a default fallback we have

Base.literal_pow(^, x, Val{y}) = ^(x,y), whereusually^ == Base.^unless^hasbeendefined in the

calling namespace.)

julia> 3^5

243

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> A^3

2×2 Array{Int64,2}:

37 54

81 118

source

Base.fma – Function.

fma(x, y, z)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L431-L456
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/promotion.jl#L254-L280

47.1. MATHEMATICAL OPERATORS 509

Computesx*y+zwithout rounding the intermediate resultx*y. On some systems this is significantlymore expen-

sive than x*y+z. fma is used to improve accuracy in certain algorithms. See muladd.

source

Base.muladd – Function.

muladd(x, y, z)

Combinedmultiply-add, computesx*y+z inanefficientmanner. Thismayonsomesystemsbeequivalent tox*y+z,

or to fma(x,y,z). muladd is used to improve performance. See fma.

Example

julia> muladd(3, 2, 1)

7

julia> 3 * 2 + 1

7

source

Base.div – Function.

div(x, y)

÷(x, y)

The quotient from Euclidean division. Computes x/y, truncated to an integer.

julia> 9 ÷ 4

2

julia> -5 ÷ 3

-1

source

Base.fld – Function.

fld(x, y)

Largest integer less than or equal to x/y.

julia> fld(7.3,5.5)

1.0

source

Base.cld – Function.

cld(x, y)

Smallest integer larger than or equal to x/y.

julia> cld(5.5,2.2)

3.0

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2264-L2270
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L927-L942
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L616-L629
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L568-L577

510 CHAPTER 47. MATHEMATICS

source

Base.mod – Function.

mod(x, y)

rem(x, y, RoundDown)

The reduction of xmodulo y, or equivalently, the remainder of x after floored division by y, i.e.

x - y*fld(x,y)

if computedwithout intermediate rounding.

The result will have the same sign as y, andmagnitude less than abs(y) (with some exceptions, see note below).

Note

When used with floating point values, the exact result may not be representable by the type, and so

rounding error may occur. In particular, if the exact result is very close to y, then it may be rounded to

y.

julia> mod(8, 3)

2

julia> mod(9, 3)

0

julia> mod(8.9, 3)

2.9000000000000004

julia> mod(eps(), 3)

2.220446049250313e-16

julia> mod(-eps(), 3)

3.0

source

rem(x::Integer, T::Type{<:Integer}) -> T

mod(x::Integer, T::Type{<:Integer}) -> T

%(x::Integer, T::Type{<:Integer}) -> T

Find y::T such that x y (mod n), where n is the number of integers representable in T, and y is an integer in

[typemin(T),typemax(T)]. IfTcanrepresentany integer (e.g. T == BigInt), then thisoperationcorresponds

to a conversion to T.

julia> 129 % Int8

-127

source

Base.rem – Function.

rem(x, y)

%(x, y)

Remainder from Euclidean division, returning a value of the same sign as x, and smaller in magnitude than y. This

value is always exact.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L580-L588
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/int.jl#L132-L168
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/int.jl#L369-L383

47.1. MATHEMATICAL OPERATORS 511

julia> x = 15; y = 4;

julia> x % y

3

julia> x == div(x, y) * y + rem(x, y)

true

source

Base.Math.rem2pi – Function.

rem2pi(x, r::RoundingMode)

Compute the remainder of x after integer division by 2π, with the quotient rounded according to the rounding

mode r. In other words, the quantity

x - π2*round(xπ/(2),r)

without any intermediate rounding. This internally uses a high precision approximation of 2π, and so will give a

more accurate result than rem(x,2π,r)

• ifr == RoundNearest, then theresult is in the interval [−,]. Thiswill generallybe themostaccurate result.

• if r == RoundToZero, then the result is in the interval [0, 2] if x is positive,. or [−2, 0] otherwise.

• if r == RoundDown, then the result is in the interval [0, 2].

• if r == RoundUp, then the result is in the interval [−2, 0].

Example

julia> rem2pi(7pi/4, RoundNearest)

-0.7853981633974485

julia> rem2pi(7pi/4, RoundDown)

5.497787143782138

source

Base.Math.mod2pi – Function.

mod2pi(x)

Modulus after division by 2π, returning in the range [0, 2).

This function computes a floating point representation of the modulus after division by numerically exact 2π, and

is therefore not exactly the same as mod(x,2π), whichwould compute themodulus of x relative to division by the

floating-point number 2π.

Example

julia> mod2pi(9*pi/4)

0.7853981633974481

source

Base.divrem – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L596-L612
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L761-L790
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L908-L922

512 CHAPTER 47. MATHEMATICS

divrem(x, y)

The quotient and remainder from Euclidean division. Equivalent to (div(x,y), rem(x,y)) or (x÷y, x%y).

julia> divrem(3,7)

(0, 3)

julia> divrem(7,3)

(2, 1)

source

Base.fldmod – Function.

fldmod(x, y)

The floored quotient andmodulus after division. Equivalent to (fld(x,y), mod(x,y)).

source

Base.fld1 – Function.

fld1(x, y)

Flooring division, returning a value consistent with mod1(x,y)

See also: mod1.

julia> x = 15; y = 4;

julia> fld1(x, y)

4

julia> x == fld(x, y) * y + mod(x, y)

true

julia> x == (fld1(x, y) - 1) * y + mod1(x, y)

true

source

Base.mod1 – Function.

mod1(x, y)

Modulus after flooring division, returning a value r such that mod(r, y) == mod(x, y) in the range (0, y] for
positive y and in the range [y, 0) for negative y.

julia> mod1(4, 2)

2

julia> mod1(4, 3)

1

source

Base.fldmod1 – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/number.jl#L50-L63
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/number.jl#L66-L70
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L652-L671
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L633-L646

47.1. MATHEMATICAL OPERATORS 513

fldmod1(x, y)

Return (fld1(x,y), mod1(x,y)).

See also: fld1, mod1.

source

Base.:// – Function.

//(num, den)

Divide two integers or rational numbers, giving a Rational result.

julia> 3 // 5

3//5

julia> (3 // 5) // (2 // 1)

3//10

source

Base.rationalize – Function.

rationalize([T<:Integer=Int,] x; tol::Real=eps(x))

ApproximatefloatingpointnumberxasaRationalnumberwithcomponentsof thegiven integer type. The result

will differ from x by nomore than tol. If T is not provided, it defaults to Int.

julia> rationalize(5.6)

28//5

julia> a = rationalize(BigInt, 10.3)

103//10

julia> typeof(numerator(a))

BigInt

source

Base.numerator – Function.

numerator(x)

Numerator of the rational representation of x.

julia> numerator(2//3)

2

julia> numerator(4)

4

source

Base.denominator – Function.

denominator(x)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L676-L682
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rational.jl#L27-L39
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rational.jl#L109-L126
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rational.jl#L189-L201

514 CHAPTER 47. MATHEMATICS

Denominator of the rational representation of x.

julia> denominator(2//3)

3

julia> denominator(4)

1

source

Base.:<< – Function.

<<(x, n)

Left bit shift operator, x << n. For n >= 0, the result is x shifted left by n bits, filling with 0s. This is equivalent to

x * 2^n. For n < 0, this is equivalent to x >> -n.

julia> Int8(3) << 2

12

julia> bits(Int8(3))

"00000011"

julia> bits(Int8(12))

"00001100"

See also >>, >>>.

source

<<(B::BitVector, n) -> BitVector

Left bit shift operator,B << n. Forn >= 0, the result isBwith elements shiftedn positions backwards, fillingwith

false values. If n < 0, elements are shifted forwards. Equivalent to B >> -n.

Examples

julia> B = BitVector([true, false, true, false, false])

5-element BitArray{1}:

true

false

true

false

false

julia> B << 1

5-element BitArray{1}:

false

true

false

false

false

julia> B << -1

5-element BitArray{1}:

false

true

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rational.jl#L205-L217
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L463-L481

47.1. MATHEMATICAL OPERATORS 515

false

true

false

source

Base.:>> – Function.

>>(x, n)

Right bit shift operator, x >> n. For n >= 0, the result is x shifted right by n bits, where n >= 0, filling with 0s if

x >= 0, 1s if x < 0, preserving the sign of x. This is equivalent to fld(x, 2^n). For n < 0, this is equivalent to

x << -n.

julia> Int8(13) >> 2

3

julia> bits(Int8(13))

"00001101"

julia> bits(Int8(3))

"00000011"

julia> Int8(-14) >> 2

-4

julia> bits(Int8(-14))

"11110010"

julia> bits(Int8(-4))

"11111100"

See also >>>, <<.

source

>>(B::BitVector, n) -> BitVector

Right bit shift operator, B >> n. For n >= 0, the result is Bwith elements shifted n positions forward, filling with

false values. If n < 0, elements are shifted backwards. Equivalent to B << -n.

Example

julia> B = BitVector([true, false, true, false, false])

5-element BitArray{1}:

true

false

true

false

false

julia> B >> 1

5-element BitArray{1}:

false

true

false

true

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L1422-L1457
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L491-L520

516 CHAPTER 47. MATHEMATICS

false

julia> B >> -1

5-element BitArray{1}:

false

true

false

false

false

source

Base.:>>> – Function.

>>>(x, n)

Unsigned right bit shift operator, x >>> n. For n >= 0, the result is x shifted right by n bits, where n >= 0, filling

with 0s. For n < 0, this is equivalent to x << -n.

ForUnsigned integer types, this isequivalent to>>. ForSigned integer types, this isequivalent tosigned(unsigned(x)

>> n).

julia> Int8(-14) >>> 2

60

julia> bits(Int8(-14))

"11110010"

julia> bits(Int8(60))

"00111100"

BigInts are treated as if having infinite size, so no filling is required and this is equivalent to >>.

See also >>, <<.

source

>>>(B::BitVector, n) -> BitVector

Unsigned right bitshift operator, B >>> n. Equivalent to B >> n. See >> for details and examples.

source

Base.colon – Function.

colon(start, [step], stop)

Called by : syntax for constructing ranges.

julia> colon(1, 2, 5)

1:2:5

source

:(start, [step], stop)

Range operator. a:b constructs a range from a to bwith a step size of 1, and a:s:b is similar but uses a step size

of s. These syntaxes call the function colon. The colon is also used in indexing to select whole dimensions.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L1383-L1418
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L530-L555
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L1460-L1465
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/range.jl#L18-L27
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/range.jl#L39-L45

47.1. MATHEMATICAL OPERATORS 517

Base.range – Function.

range(start, [step], length)

Construct a range by length, given a starting value and optional step (defaults to 1).

source

Base.OneTo – Type.

Base.OneTo(n)

DefineanAbstractUnitRange thatbehaves like1:n,with theaddeddistinctionthat the lower limit isguaranteed

(by the type system) to be 1.

source

Base.StepRangeLen – Type.

StepRangeLen{T,R,S}(ref::R, step::S, len, [offset=1])

A range rwhere r[i] produces values of type T, parametrized by a reference value, a step, and the length. By

defaultref is the starting valuer[1], but alternatively you can supply it as the valueofr[offset] for someother

index 1 <= offset <= len. In conjunction with TwicePrecision this can be used to implement ranges that

are free of roundoff error.

source

Base.:== – Function.

==(x, y)

Generic equality operator, giving a single Bool result. Falls back to ===. Should be implemented for all types with

a notion of equality, based on the abstract value that an instance represents. For example, all numeric types are

compared by numeric value, ignoring type. Strings are compared as sequences of characters, ignoring encoding.

Follows IEEE semantics for floating-point numbers.

Collections should generally implement == by calling == recursively on all contents.

New numeric types should implement this function for two arguments of the new type, and handle comparison to

other types via promotion rules where possible.

source

Base.:!= – Function.

!=(x, y)≠

(x,y)

Not-equals comparison operator. Always gives the opposite answer as ==. New types should generally not imple-

ment this, and rely on the fallback definition !=(x,y) = !(x==y) instead.

julia> 3 != 2

true

julia> "foo" ≠ "foo"

false

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/range.jl#L55-L59
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/range.jl#L166-L172
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/range.jl#L181-L190
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1674-L1688
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L114-L128

518 CHAPTER 47. MATHEMATICS

Base.:!== – Function.

!==(x, y)

(x,y)

Equivalent to !(x === y).

julia> a = [1, 2]; b = [1, 2];

julia> a b

true

julia> a a

false

source

Base.:< – Function.

<(x, y)

Less-than comparison operator. Newnumeric types should implement this function for two arguments of the new

type. Because of the behavior of floating-point NaN values, < implements a partial order. Types with a canonical

partial order should implement <, and types with a canonical total order should implement isless.

julia> 'a' < 'b'

true

julia> "abc" < "abd"

true

julia> 5 < 3

false

source

Base.:<= – Function.

<=(x, y)≤

(x,y)

Less-than-or-equals comparison operator.

julia> 'a' <= 'b'

true

julia> 7 ≤ 7 ≤ 9

true

julia> "abc" ≤ "abc"

true

julia> 5 <= 3

false

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L156-L171
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L175-L193
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L218-L237

47.1. MATHEMATICAL OPERATORS 519

Base.:> – Function.

>(x, y)

Greater-than comparison operator. Generally, new types should implement < instead of this function, and rely on

the fallback definition >(x, y) = y < x.

julia> 'a' > 'b'

false

julia> 7 > 3 > 1

true

julia> "abc" > "abd"

false

julia> 5 > 3

true

source

Base.:>= – Function.

>=(x, y)≥

(x,y)

Greater-than-or-equals comparison operator.

julia> 'a' >= 'b'

false

julia> 7 ≥ 7 ≥ 3

true

julia> "abc" ≥ "abc"

true

julia> 5 >= 3

true

source

Base.cmp – Function.

cmp(x,y)

Return -1, 0, or 1 depending onwhetherx is less than, equal to, or greater thany, respectively. Uses the total order

implemented by isless. For floating-point numbers, uses < but throws an error for unordered arguments.

julia> cmp(1, 2)

-1

julia> cmp(2, 1)

1

julia> cmp(2+im, 3-im)

ERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64})

[...]

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L196-L215
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L241-L260

520 CHAPTER 47. MATHEMATICS

source

Base.:~ – Function.

~(x)

Bitwise not.

Examples

julia> ~4

-5

julia> ~10

-11

julia> ~true

false

source

Base.:& – Function.

&(x, y)

Bitwise and.

Examples

julia> 4 & 10

0

julia> 4 & 12

4

source

Base.:| – Function.

|(x, y)

Bitwise or.

Examples

julia> 4 | 10

14

julia> 4 | 1

5

source

Base.xor – Function.

xor(x, y)

(x, y)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L284-L302
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1275-L1291
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L639-L652
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2584-L2597

47.1. MATHEMATICAL OPERATORS 521

Bitwise exclusive or of x and y. The infix operation a b is a synonym for xor(a,b), and can be typed by tab-

completing \xor or \veebar in the Julia REPL.

julia> [true; true; false] . [true; false; false]

3-element BitArray{1}:

false

true

false

source

Base.:! – Function.

!(x)

Boolean not.

julia> !true

false

julia> !false

true

julia> .![true false true]

1×3 BitArray{2}:

false true false

source

!f::Function

Predicate functionnegation: whentheargumentof! is a function, it returnsa functionwhichcomputes theboolean

negation of f. Example:

julia> str = " ε > 0, δ > 0: |x-y| < δ |f(x)-f(y)| < ε"

" ε > 0, δ > 0: |x-y| < δ |f(x)-f(y)| < ε"

julia> filter(isalpha, str)

"εδxyδfxfyε"

julia> filter(!isalpha, str)

" > 0, > 0: |-| < |()-()| < "

source

&& – Keyword.

x && y

Short-circuiting boolean AND.

source

|| – Keyword.

x || y

Short-circuiting booleanOR.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bool.jl#L44-L60
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bool.jl#L17-L33
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L887-L903
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/basedocs.jl#L543-L547
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/basedocs.jl#L550-L554

522 CHAPTER 47. MATHEMATICS

47.2 Mathematical Functions

Base.isapprox – Function.

isapprox(x, y; rtol::Real=sqrt(eps), atol::Real=0, nans::Bool=false, norm::Function)

Inexact equality comparison: true if norm(x-y) <= atol + rtol*max(norm(x), norm(y)). The default

atol is zero and the default rtol depends on the types of x and y. The keyword argument nans determines

whether or not NaN values are considered equal (defaults to false).

For real or complexfloating-point values,rtoldefaults tosqrt(eps(typeof(real(x-y)))). This corresponds

to requiring equality of about half of the significand digits. For other types, rtol defaults to zero.

x and ymay also be arrays of numbers, in which case norm defaults to vecnorm but may be changed by passing a

norm::Function keyword argument. (For numbers, norm is the same thing as abs.) When x and y are arrays, if

norm(x-y) is not finite (i.e. ±Inf or NaN), the comparison falls back to checking whether all elements of x and y

are approximately equal component-wise.

Thebinaryoperator≈ isequivalent toisapproxwiththedefaultarguments, andx y isequivalent to!isapprox(x,y).

julia> 0.1 ≈ (0.1 - 1e-10)

true

julia> isapprox(10, 11; atol = 2)

true

julia> isapprox([10.0^9, 1.0], [10.0^9, 2.0])

true

source

Base.sin – Function.

sin(x)

Compute sine of x, where x is in radians.

source

Base.cos – Function.

cos(x)

Compute cosine of x, where x is in radians.

source

Base.tan – Function.

tan(x)

Compute tangent of x, where x is in radians.

source

Base.Math.sind – Function.

sind(x)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/floatfuncs.jl#L173-L203
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L303-L307
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L310-L314
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L317-L321

47.2. MATHEMATICAL FUNCTIONS 523

Compute sine of x, where x is in degrees.

source

Base.Math.cosd – Function.

cosd(x)

Compute cosine of x, where x is in degrees.

source

Base.Math.tand – Function.

tand(x)

Compute tangent of x, where x is in degrees.

source

Base.Math.sinpi – Function.

sinpi(x)

Compute sin(πx)more accurately than sin(pi*x), especially for large x.

source

Base.Math.cospi – Function.

cospi(x)

Compute cos(πx)more accurately than cos(pi*x), especially for large x.

source

Base.sinh – Function.

sinh(x)

Compute hyperbolic sine of x.

source

Base.cosh – Function.

cosh(x)

Compute hyperbolic cosine of x.

source

Base.tanh – Function.

tanh(x)

Compute hyperbolic tangent of x.

source

Base.asin – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L413-L415
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L413-L415
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L413-L415
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L101-L105
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L164-L168
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L195-L199
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L202-L206
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L209-L213

524 CHAPTER 47. MATHEMATICS

asin(x)

Compute the inverse sine of x, where the output is in radians.

source

Base.acos – Function.

acos(x)

Compute the inverse cosine of x, where the output is in radians

source

Base.atan – Function.

atan(x)

Compute the inverse tangent of x, where the output is in radians.

source

Base.Math.atan2 – Function.

atan2(y, x)

Compute the inverse tangent of y/x, using the signs of both x and y to determine the quadrant of the return value.

source

Base.Math.asind – Function.

asind(x)

Compute the inverse sine of x, where the output is in degrees.

source

Base.Math.acosd – Function.

acosd(x)

Compute the inverse cosine of x, where the output is in degrees.

source

Base.Math.atand – Function.

atand(x)

Compute the inverse tangent of x, where the output is in degrees.

source

Base.Math.sec – Function.

sec(x)

Compute the secant of x, where x is in radians.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L324-L328
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L331-L335
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L216-L220
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L488-L493
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L423-L426
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L423-L426
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L423-L426
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1895-L1899

47.2. MATHEMATICAL FUNCTIONS 525

Base.Math.csc – Function.

csc(x)

Compute the cosecant of x, where x is in radians.

source

Base.Math.cot – Function.

cot(x)

Compute the cotangent of x, where x is in radians.

source

Base.Math.secd – Function.

secd(x)

Compute the secant of x, where x is in degrees.

source

Base.Math.cscd – Function.

cscd(x)

Compute the cosecant of x, where x is in degrees.

source

Base.Math.cotd – Function.

cotd(x)

Compute the cotangent of x, where x is in degrees.

source

Base.Math.asec – Function.

asec(x)

Compute the inverse secant of x, where the output is in radians.

source

Base.Math.acsc – Function.

acsc(x)

Compute the inverse cosecant of x, where the output is in radians.

source

Base.Math.acot – Function.

acot(x)

Compute the inverse cotangent of x, where the output is in radians.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1462-L1466
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1411-L1415
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1815-L1819
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2471-L2475
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1537-L1541
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L323-L325
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L323-L325
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L323-L325

526 CHAPTER 47. MATHEMATICS

Base.Math.asecd – Function.

asecd(x)

Compute the inverse secant of x, where the output is in degrees.

source

Base.Math.acscd – Function.

acscd(x)

Compute the inverse cosecant of x, where the output is in degrees.

source

Base.Math.acotd – Function.

acotd(x)

Compute the inverse cotangent of x, where the output is in degrees.

source

Base.Math.sech – Function.

sech(x)

Compute the hyperbolic secant of x

source

Base.Math.csch – Function.

csch(x)

Compute the hyperbolic cosecant of x.

source

Base.Math.coth – Function.

coth(x)

Compute the hyperbolic cotangent of x.

source

Base.asinh – Function.

asinh(x)

Compute the inverse hyperbolic sine of x.

source

Base.acosh – Function.

acosh(x)

Compute the inverse hyperbolic cosine of x.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L423-L426
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L423-L426
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L423-L426
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L190-L194
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1888-L1892
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2112-L2116
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L223-L227
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L338-L342

47.2. MATHEMATICAL FUNCTIONS 527

Base.atanh – Function.

atanh(x)

Compute the inverse hyperbolic tangent of x.

source

Base.Math.asech – Function.

asech(x)

Compute the inverse hyperbolic secant of x.

source

Base.Math.acsch – Function.

acsch(x)

Compute the inverse hyperbolic cosecant of x.

source

Base.Math.acoth – Function.

acoth(x)

Compute the inverse hyperbolic cotangent of x.

source

Base.Math.sinc – Function.

sinc(x)

Compute sin(πx)/(πx) ifx 6= 0, and 1 ifx = 0.

source

Base.Math.cosc – Function.

cosc(x)

Compute cos(πx)/x− sin(πx)/(πx2) ifx 6= 0, and 0 ifx = 0. This is the derivative of sinc(x).

source

Base.Math.deg2rad – Function.

deg2rad(x)

Convert x from degrees to radians.

julia> deg2rad(90)

1.5707963267948966

source

Base.Math.rad2deg – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L345-L349
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L326-L328
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L326-L328
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L326-L328
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L288-L292
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/trig.jl#L298-L303
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L145-L154

528 CHAPTER 47. MATHEMATICS

rad2deg(x)

Convert x from radians to degrees.

julia> rad2deg(pi)

180.0

source

Base.Math.hypot – Function.

hypot(x, y)

Compute the hypotenuse
√

x2 + y2 avoiding overflow and underflow.

Examples

julia> a = 10^10;

julia> hypot(a, a)

1.4142135623730951e10

julia> √(a^2 + a^2) # a^2 overflows

ERROR: DomainError:

sqrt will only return a complex result if called with a complex argument. Try

sqrt(complex(x)).↪→

Stacktrace:

[1] sqrt(::Int64) at ./math.jl:434

source

hypot(x...)

Compute the hypotenuse
√∑

x2
i avoiding overflow and underflow.

source

Base.log –Method.

log(x)

Compute the natural logarithm of x. Throws DomainError for negative Real arguments. Use complex negative

arguments to obtain complex results.

There is an experimental variant in the Base.Math.JuliaLibmmodule, which is typically faster and more accu-

rate.

source

Base.log –Method.

log(b,x)

Compute the base b logarithm of x. Throws DomainError for negative Real arguments.

julia> log(4,8)

1.5

julia> log(4,2)

0.5

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L133-L142
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L436-L454
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L481-L485
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L352-L360

47.2. MATHEMATICAL FUNCTIONS 529

Note

If b is a power of 2 or 10, log2 or log10 should be used, as these will typically be faster and more

accurate. For example,

julia> log(100,1000000)

2.9999999999999996

julia> log10(1000000)/2

3.0

source

Base.log2 – Function.

log2(x)

Compute the logarithm of x to base 2. Throws DomainError for negative Real arguments.

Example

julia> log2(4)

2.0

julia> log2(10)

3.321928094887362

source

Base.log10 – Function.

log10(x)

Compute the logarithm of x to base 10. Throws DomainError for negative Real arguments.

Example

julia> log10(100)

2.0

julia> log10(2)

0.3010299956639812

source

Base.log1p – Function.

log1p(x)

Accurate natural logarithm of 1+x. Throws DomainError for Real arguments less than -1.

There is an experimental variant in the Base.Math.JuliaLibmmodule, which is typically faster and more accu-

rate.

Examples

julia> log1p(-0.5)

-0.6931471805599453

julia> log1p(0)

0.0

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L161-L186
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L363-L377
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L380-L394

530 CHAPTER 47. MATHEMATICS

source

Base.Math.frexp – Function.

frexp(val)

Return (x,exp) such that x has amagnitude in the interval [1/2, 1) or 0, and val is equal tox× 2exp.

source

Base.exp – Function.

exp(x)

Compute the natural base exponential of x, in other words ex.

source

Base.exp2 – Function.

exp2(x)

Compute 2x.

julia> exp2(5)

32.0

source

Base.exp10 – Function.

exp10(x)

Compute 10x.

Examples

julia> exp10(2)

100.0

julia> exp10(0.2)

1.5848931924611136

source

Base.Math.ldexp – Function.

ldexp(x, n)

Computex× 2n.

Example

julia> ldexp(5., 2)

20.0

source

Base.Math.modf – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L397-L414
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L614-L619
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/exp.jl#L62-L66
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L262-L271
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L623-L636
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L512-L522

47.2. MATHEMATICAL FUNCTIONS 531

modf(x)

Return a tuple (fpart,ipart) of the fractional and integral parts of a number. Both parts have the same sign as the

argument.

Example

julia> modf(3.5)

(0.5, 3.0)

source

Base.expm1 – Function.

expm1(x)

Accurately compute ex − 1.

source

Base.round –Method.

round([T,] x, [digits, [base]], [r::RoundingMode])

Rounds x to an integer value according to the provided RoundingMode, returning a value of the same type as x.

When not specifying a rounding mode the global mode will be used (see rounding), which by default is round to

the nearest integer (RoundNearestmode), with ties (fractional values of 0.5) being rounded to the nearest even

integer.

julia> round(1.7)

2.0

julia> round(1.5)

2.0

julia> round(2.5)

2.0

The optional RoundingMode argument will change how the number gets rounded.

round(T, x, [r::RoundingMode]) converts the result to type T, throwing an InexactError if the value is

not representable.

round(x, digits) roundstothespecifiednumberofdigitsafter thedecimalplace (orbefore ifnegative). round(x,

digits, base) rounds using a base other than 10.

julia> round(pi, 2)

3.14

julia> round(pi, 3, 2)

3.125

Note

Rounding to specified digits in bases other than 2 can be inexact when operating on binary floating

point numbers. For example, theFloat64 value represented by1.15 is actually less than1.15, yetwill

be rounded to 1.2.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L673-L684
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L230-L234

532 CHAPTER 47. MATHEMATICS

julia> x = 1.15

1.15

julia> @sprintf "%.20f" x

"1.14999999999999991118"

julia> x < 115//100

true

julia> round(x, 1)

1.2

source

Base.Rounding.RoundingMode – Type.

RoundingMode

A type used for controlling the rounding mode of floating point operations (via rounding/setrounding func-

tions), or as optional arguments for rounding to the nearest integer (via the round function).

Currently supported roundingmodes are:

• RoundNearest (default)

• RoundNearestTiesAway

• RoundNearestTiesUp

• RoundToZero

• RoundFromZero (BigFloat only)

• RoundUp

• RoundDown

source

Base.Rounding.RoundNearest – Constant.

RoundNearest

The default roundingmode. Rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the

nearest even integer.

source

Base.Rounding.RoundNearestTiesAway – Constant.

RoundNearestTiesAway

Rounds to nearest integer, with ties rounded away from zero (C/C++ round behaviour).

source

Base.Rounding.RoundNearestTiesUp – Constant.

RoundNearestTiesUp

Rounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript round behaviour).

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/floatfuncs.jl#L42-L99
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rounding.jl#L26-L43
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rounding.jl#L46-L51
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rounding.jl#L77-L82
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rounding.jl#L85-L90

47.2. MATHEMATICAL FUNCTIONS 533

Base.Rounding.RoundToZero – Constant.

RoundToZero

round using this roundingmode is an alias for trunc.

source

Base.Rounding.RoundUp – Constant.

RoundUp

round using this roundingmode is an alias for ceil.

source

Base.Rounding.RoundDown – Constant.

RoundDown

round using this roundingmode is an alias for floor.

source

Base.round –Method.

round(z, RoundingModeReal, RoundingModeImaginary)

Returns the nearest integral value of the same type as the complex-valued z to z, breaking ties using the specified

RoundingModes. The first RoundingMode is used for rounding the real components while the second is used for

rounding the imaginary components.

source

Base.ceil – Function.

ceil([T,] x, [digits, [base]])

ceil(x) returns the nearest integral value of the same type as x that is greater than or equal to x.

ceil(T, x) converts the result to type T, throwing an InexactError if the value is not representable.

digits and basework as for round.

source

Base.floor – Function.

floor([T,] x, [digits, [base]])

floor(x) returns the nearest integral value of the same type as x that is less than or equal to x.

floor(T, x) converts the result to type T, throwing an InexactError if the value is not representable.

digits and basework as for round.

source

Base.trunc – Function.

trunc([T,] x, [digits, [base]])

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rounding.jl#L54-L58
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rounding.jl#L61-L65
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rounding.jl#L68-L72
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/complex.jl#L876-L883
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L364-L374
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L680-L690

534 CHAPTER 47. MATHEMATICS

trunc(x) returns the nearest integral value of the same type as xwhose absolute value is less than or equal to x.

trunc(T, x) converts the result to type T, throwing an InexactError if the value is not representable.

digits and basework as for round.

source

Base.unsafe_trunc – Function.

unsafe_trunc(T, x)

unsafe_trunc(T, x) returns the nearest integral value of type Twhose absolute value is less than or equal to

x. If the value is not representable by T, an arbitrary value will be returned.

source

Base.signif – Function.

signif(x, digits, [base])

Rounds (in the sense of round) x so that there are digits significant digits, under a base base representation,

default 10. E.g., signif(123.456, 2) is 120.0, and signif(357.913, 4, 2) is 352.0.

source

Base.min – Function.

min(x, y, ...)

Return theminimumof the arguments. See also theminimum function to take theminimumelement froma collec-

tion.

julia> min(2, 5, 1)

1

source

Base.max – Function.

max(x, y, ...)

Return the maximum of the arguments. See also the maximum function to take the maximum element from a col-

lection.

julia> max(2, 5, 1)

5

source

Base.minmax – Function.

minmax(x, y)

Return (min(x,y), max(x,y)). See also: extrema that returns (minimum(x), maximum(x)).

julia> minmax('c','b')

('b', 'c')

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1024-L1034
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1789-L1795
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2303-L2309
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L350-L360
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L337-L347

47.2. MATHEMATICAL FUNCTIONS 535

source

Base.Math.clamp – Function.

clamp(x, lo, hi)

Return x if lo <= x <= hi. If x < lo, return lo. If x > hi, return hi. Arguments are promoted to a common

type.

julia> clamp.([pi, 1.0, big(10.)], 2., 9.)

3-element Array{BigFloat,1}:

3.141592653589793238462643383279502884197169399375105820974944592307816406286198

2.00

9.00

source

Base.Math.clamp! – Function.

clamp!(array::AbstractArray, lo, hi)

Restrict values in array to the specified range, in-place. See also clamp.

source

Base.abs – Function.

abs(x)

The absolute value of x.

When abs is applied to signed integers, overflowmay occur, resulting in the return of a negative value. This over-

flow occurs only when abs is applied to the minimum representable value of a signed integer. That is, when x ==

typemin(typeof(x)), abs(x) == x < 0, not -x asmight be expected.

julia> abs(-3)

3

julia> abs(1 + im)

1.4142135623730951

julia> abs(typemin(Int64))

-9223372036854775808

source

Base.Checked.checked_abs – Function.

Base.checked_abs(x)

Calculatesabs(x), checking foroverflowerrorswhereapplicable. Forexample, standardtwo'scomplementsigned

integers (e.g. Int) cannot represent abs(typemin(Int)), thus leading to an overflow.

The overflow protectionmay impose a perceptible performance penalty.

source

Base.Checked.checked_neg – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L363-L372
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L42-L55
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L62-L67
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/int.jl#L87-L108
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/checked.jl#L107-L115

536 CHAPTER 47. MATHEMATICS

Base.checked_neg(x)

Calculates -x, checking for overflow errors where applicable. For example, standard two's complement signed

integers (e.g. Int) cannot represent -typemin(Int), thus leading to an overflow.

The overflow protectionmay impose a perceptible performance penalty.

source

Base.Checked.checked_add – Function.

Base.checked_add(x, y)

Calculates x+y, checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

source

Base.Checked.checked_sub – Function.

Base.checked_sub(x, y)

Calculates x-y, checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

source

Base.Checked.checked_mul – Function.

Base.checked_mul(x, y)

Calculates x*y, checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

source

Base.Checked.checked_div – Function.

Base.checked_div(x, y)

Calculates div(x,y), checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

source

Base.Checked.checked_rem – Function.

Base.checked_rem(x, y)

Calculates x%y, checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

source

Base.Checked.checked_fld – Function.

Base.checked_fld(x, y)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/checked.jl#L81-L89
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/checked.jl#L155-L161
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/checked.jl#L212-L218
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/checked.jl#L277-L283
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/checked.jl#L306-L312
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/checked.jl#L315-L321

47.2. MATHEMATICAL FUNCTIONS 537

Calculates fld(x,y), checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

source

Base.Checked.checked_mod – Function.

Base.checked_mod(x, y)

Calculates mod(x,y), checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

source

Base.Checked.checked_cld – Function.

Base.checked_cld(x, y)

Calculates cld(x,y), checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

source

Base.Checked.add_with_overflow – Function.

Base.add_with_overflow(x, y) -> (r, f)

Calculates r = x+y, with the flag f indicating whether overflow has occurred.

source

Base.Checked.sub_with_overflow – Function.

Base.sub_with_overflow(x, y) -> (r, f)

Calculates r = x-y, with the flag f indicating whether overflow has occurred.

source

Base.Checked.mul_with_overflow – Function.

Base.mul_with_overflow(x, y) -> (r, f)

Calculates r = x*y, with the flag f indicating whether overflow has occurred.

source

Base.abs2 – Function.

abs2(x)

Squared absolute value of x.

julia> abs2(-3)

9

source

Base.copysign – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/checked.jl#L324-L330
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/checked.jl#L333-L339
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/checked.jl#L342-L348
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/checked.jl#L128-L132
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/checked.jl#L187-L191
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/checked.jl#L227-L231
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/number.jl#L84-L93

538 CHAPTER 47. MATHEMATICS

copysign(x, y) -> z

Return zwhich has themagnitude of x and the same sign as y.

Examples

julia> copysign(1, -2)

-1

julia> copysign(-1, 2)

1

source

Base.sign – Function.

sign(x)

Return zero if x==0 andx/|x| otherwise (i.e., ±1 for real x).

source

Base.signbit – Function.

signbit(x)

Returns true if the value of the sign of x is negative, otherwise false.

Examples

julia> signbit(-4)

true

julia> signbit(5)

false

julia> signbit(5.5)

false

julia> signbit(-4.1)

true

source

Base.flipsign – Function.

flipsign(x, y)

Return xwith its sign flipped if y is negative. For example abs(x) = flipsign(x,x).

julia> flipsign(5, 3)

5

julia> flipsign(5, -3)

-5

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L799-L812
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/number.jl#L74-L78
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2449-L2468
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/number.jl#L96-L108

47.2. MATHEMATICAL FUNCTIONS 539

Base.sqrt – Function.

sqrt(x)

Return
√
x. Throws DomainError for negative Real arguments. Use complex negative arguments instead. The

prefix operator √ is equivalent to sqrt.

source

Base.isqrt – Function.

isqrt(n::Integer)

Integer square root: the largest integer m such that m*m <= n.

julia> isqrt(5)

2

source

Base.Math.cbrt – Function.

cbrt(x::Real)

Return the cube root of x, i.e. x1/3. Negative values are accepted (returning the negative real root whenx < 0).

The prefix operator is equivalent to cbrt.

julia> cbrt(big(27))

3.00

source

Base.real –Method.

real(z)

Return the real part of the complex number z.

julia> real(1 + 3im)

1

source

Base.imag – Function.

imag(z)

Return the imaginary part of the complex number z.

julia> imag(1 + 3im)

3

source

Base.reim – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L428-L433
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L745-L754
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L247-L259
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/complex.jl#L44-L53
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/complex.jl#L56-L65

540 CHAPTER 47. MATHEMATICS

reim(z)

Return both the real and imaginary parts of the complex number z.

julia> reim(1 + 3im)

(1, 3)

source

Base.conj – Function.

conj(v::RowVector)

Returns a ConjArray lazy view of the input, where each element is conjugated.

Example

julia> v = [1+im, 1-im].'

1×2 RowVector{Complex{Int64},Array{Complex{Int64},1}}:

1+1im 1-1im

julia> conj(v)

1×2 RowVector{Complex{Int64},ConjArray{Complex{Int64},1,Array{Complex{Int64},1}}}:

1-1im 1+1im

source

conj(z)

Compute the complex conjugate of a complex number z.

julia> conj(1 + 3im)

1 - 3im

source

Base.angle – Function.

angle(z)

Compute the phase angle in radians of a complex number z.

source

Base.cis – Function.

cis(z)

Return exp(iz).

source

Base.binomial – Function.

binomial(n, k)

Number of ways to choose k out of n items.

Example

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/complex.jl#L70-L79
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/rowvector.jl#L88-L104
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/complex.jl#L204-L213
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/complex.jl#L444-L448
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/complex.jl#L434-L438

47.2. MATHEMATICAL FUNCTIONS 541

julia> binomial(5, 3)

10

julia> factorial(5) ÷ (factorial(5-3) * factorial(3))

10

source

Base.factorial – Function.

factorial(n)

Factorial of n. If n is an Integer, the factorial is computed as an integer (promoted to at least 64 bits). Note that

thismay overflow ifn is not small, but you can usefactorial(big(n)) to compute the result exactly in arbitrary

precision. If n is not an Integer, factorial(n) is equivalent to gamma(n+1).

julia> factorial(6)

720

julia> factorial(21)

ERROR: OverflowError()

[...]

julia> factorial(21.0)

5.109094217170944e19

julia> factorial(big(21))

51090942171709440000

source

Base.gcd – Function.

gcd(x,y)

Greatest common (positive) divisor (or zero if x and y are both zero).

Examples

julia> gcd(6,9)

3

julia> gcd(6,-9)

3

source

Base.lcm – Function.

lcm(x,y)

Least common (non-negative) multiple.

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L776-L789
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/number.jl#L216-L238
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L5-L18

542 CHAPTER 47. MATHEMATICS

julia> lcm(2,3)

6

julia> lcm(-2,3)

6

source

Base.gcdx – Function.

gcdx(x,y)

Computes the greatest common (positive) divisor of x and y and their Bézout coefficients, i.e. the integer coeffi-

cients u and v that satisfyux+ vy = d = gcd(x, y). gcdx(x, y) returns (d, u, v).

Examples

julia> gcdx(12, 42)

(6, -3, 1)

julia> gcdx(240, 46)

(2, -9, 47)

Note

Bézout coefficients are not uniquely defined. gcdx returns the minimal Bézout coefficients that are

computed by the extended Euclidean algorithm. (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.) For

signed integers, these coefficients u and v areminimal in the sense that |u| < |y/d| and |v| < |x/d|.
Furthermore, thesignsofuandvarechosensothatd ispositive. Forunsigned integers, thecoefficients

uandvmightbenear theirtypemax, and the identity thenholdsonlyvia theunsigned integers'modulo

arithmetic.

source

Base.ispow2 – Function.

ispow2(n::Integer) -> Bool

Test whether n is a power of two.

Examples

julia> ispow2(4)

true

julia> ispow2(5)

false

source

Base.nextpow2 – Function.

nextpow2(n::Integer)

The smallest power of two not less than n. Returns 0 for n==0, and returns -nextpow2(-n) for negative argu-

ments.

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L51-L64
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L85-L111
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L311-L324

47.2. MATHEMATICAL FUNCTIONS 543

julia> nextpow2(16)

16

julia> nextpow2(17)

32

source

Base.prevpow2 – Function.

prevpow2(n::Integer)

The largest power of two not greater than n. Returns 0 for n==0, and returns -prevpow2(-n) for negative argu-

ments.

Examples

julia> prevpow2(5)

4

julia> prevpow2(0)

0

source

Base.nextpow – Function.

nextpow(a, x)

The smallesta^nnot less thanx, wheren is a non-negative integer. amust be greater than1, andxmust be greater

than 0.

Examples

julia> nextpow(2, 7)

8

julia> nextpow(2, 9)

16

julia> nextpow(5, 20)

25

julia> nextpow(4, 16)

16

See also prevpow.

source

Base.prevpow – Function.

prevpow(a, x)

The largest a^n not greater than x, where n is a non-negative integer. amust be greater than 1, and xmust not be

less than 1.

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L275-L289
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L293-L307
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L327-L349

544 CHAPTER 47. MATHEMATICS

julia> prevpow(2, 7)

4

julia> prevpow(2, 9)

8

julia> prevpow(5, 20)

5

julia> prevpow(4, 16)

16

See also nextpow.

source

Base.nextprod – Function.

nextprod([k_1, k_2,...], n)

Next integer greater than or equal to n that can bewritten as
∏

kpi

i for integers p1, p2, etc.

Example

julia> nextprod([2, 3], 105)

108

julia> 2^2 * 3^3

108

source

Base.invmod – Function.

invmod(x,m)

Take the inverse of xmodulo m: y such thatxy = 1 (mod m), withdiv(x, y) = 0. This is undefined form = 0,
or if gcd(x,m) 6= 1.

Examples

julia> invmod(2,5)

3

julia> invmod(2,3)

2

julia> invmod(5,6)

5

source

Base.powermod – Function.

powermod(x::Integer, p::Integer, m)

Computexp (mod m).

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L359-L380
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/combinatorics.jl#L234-L248
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L129-L147

47.2. MATHEMATICAL FUNCTIONS 545

julia> powermod(2, 6, 5)

4

julia> mod(2^6, 5)

4

julia> powermod(5, 2, 20)

5

julia> powermod(5, 2, 19)

6

julia> powermod(5, 3, 19)

11

source

Base.Math.gamma – Function.

gamma(x)

Compute the gamma function of x.

source

Base.Math.lgamma – Function.

lgamma(x)

Compute the logarithm of the absolute value of gamma for Real x, while for Complex x compute the principal

branch cut of the logarithm of gamma(x) (defined for negative real(x) by analytic continuation from positive

real(x)).

source

Base.Math.lfact – Function.

lfact(x)

Compute the logarithmic factorial of a nonnegative integerx. Equivalent tolgammaofx + 1, butlgammaextends

this function to non-integer x.

source

Base.Math.beta – Function.

beta(x, y)

Euler integral of the first kindB(x, y) = Γ(x)Γ(y)/Γ(x+ y).

source

Base.Math.lbeta – Function.

lbeta(x, y)

Natural logarithm of the absolute value of the beta function log(|B(x, y)|).

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L226-L248
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/gamma.jl#L6-L10
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/gamma.jl#L36-L43
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/gamma.jl#L27-L33
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/gamma.jl#L139-L143
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/special/gamma.jl#L151-L156

546 CHAPTER 47. MATHEMATICS

Base.ndigits – Function.

ndigits(n::Integer, b::Integer=10)

Compute the number of digits in integer nwritten in base b. The base bmust not be in [-1, 0, 1].

Examples

julia> ndigits(12345)

5

julia> ndigits(1022, 16)

3

julia> base(16, 1022)

"3fe"

source

Base.widemul – Function.

widemul(x, y)

Multiply x and y, giving the result as a larger type.

julia> widemul(Float32(3.), 4.)

1.2000e+01

source

Base.Math.@evalpoly –Macro.

@evalpoly(z, c...)

Evaluate the polynomial
∑

k c[k]z
k−1 for the coefficients c[1], c[2], ...; that is, the coefficients are given in as-

cending order by power of z. This macro expands to efficient inline code that uses either Horner's method or, for

complex z, a more efficient Goertzel-like algorithm.

julia> @evalpoly(3, 1, 0, 1)

10

julia> @evalpoly(2, 1, 0, 1)

5

julia> @evalpoly(2, 1, 1, 1)

7

source

47.3 Statistics

Base.mean – Function.

mean(f::Function, v)

Apply the function f to each element of v and take themean.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L481-L498
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/number.jl#L118-L127
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L89-L107

47.3. STATISTICS 547

julia> mean(√, [1, 2, 3])

1.3820881233139908

julia> mean([√1, √2, √3])

1.3820881233139908

source

mean(v[, region])

Compute themean of whole array v, or optionally along the dimensions in region.

Note

Julia does not ignoreNaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended.

source

Base.mean! – Function.

mean!(r, v)

Compute themean of v over the singleton dimensions of r, and write results to r.

source

Base.std – Function.

std(v[, region]; corrected::Bool=true, mean=nothing)

Compute the sample standard deviation of a vector or array v, optionally along dimensions in region. The algo-

rithm returns an estimator of the generative distribution's standard deviation under the assumption that each en-

tryofv is an IIDdrawnfromthatgenerativedistribution. Thiscomputation isequivalent tocalculatingsqrt(sum((v

- mean(v)).^2) / (length(v) - 1)). A pre-computed meanmay be provided. If corrected is true, then

the sum is scaled with n-1, whereas the sum is scaled with n if corrected is falsewhere n = length(x).

Note

Julia does not ignoreNaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended.

source

Base.stdm – Function.

stdm(v, m::Number; corrected::Bool=true)

Compute the sample standard deviation of a vector vwith knownmean m. If corrected is true, then the sum is

scaled with n-1, whereas the sum is scaled with n if corrected is falsewhere n = length(x).

Note

Julia does not ignoreNaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L5-L17
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L48-L56
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1736-L1740
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L249-L264
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L271-L283

548 CHAPTER 47. MATHEMATICS

Base.var – Function.

var(v[, region]; corrected::Bool=true, mean=nothing)

Compute the sample variance of a vector or array v, optionally along dimensions in region. The algorithmwill re-

turnanestimatorof thegenerativedistribution'svarianceunder theassumptionthateachentryofv is an IIDdrawn

from that generative distribution. This computation is equivalent to calculating sum(abs2, v - mean(v)) /

(length(v) - 1). If corrected is true, then the sum is scaled with n-1, whereas the sum is scaled with n if

corrected is falsewhere n = length(x). Themean mean over the regionmay be provided.

Note

Julia does not ignoreNaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended.

source

Base.varm – Function.

varm(v, m[, region]; corrected::Bool=true)

Compute thesamplevarianceofa collectionvwithknownmean(s)m, optionallyoverregion. mmaycontainmeans

for each dimension of v. If corrected is true, then the sum is scaledwith n-1, whereas the sum is scaledwith n if

corrected is falsewhere n = length(x).

Note

Julia does not ignoreNaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended.

source

Base.middle – Function.

middle(x)

Compute the middle of a scalar value, which is equivalent to x itself, but of the type of middle(x, x) for consis-

tency.

source

middle(x, y)

Compute the middle of two reals x and y, which is equivalent in both value and type to computing their mean ((x

+ y) / 2).

source

middle(range)

Compute the middle of a range, which consists of computing the mean of its extrema. Since a range is sorted, the

mean is performedwith the first and last element.

julia> middle(1:10)

5.5

source

middle(a)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L188-L203
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L167-L179
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L533-L537
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L543-L548
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L551-L561

47.3. STATISTICS 549

Compute themiddle of an array a, which consists of finding its extrema and then computing their mean.

julia> a = [1,2,3.6,10.9]

4-element Array{Float64,1}:

1.0

2.0

3.6

10.9

julia> middle(a)

5.95

source

Base.median – Function.

median(v[, region])

Compute the median of an entire array v, or, optionally, along the dimensions in region. For an even number of

elements no exact median element exists, so the result is equivalent to calculatingmean of twomedian elements.

Note

Julia does not ignoreNaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended.

source

Base.median! – Function.

median!(v)

Like median, but may overwrite the input vector.

source

Base.quantile – Function.

quantile(v, p; sorted=false)

Compute the quantile(s) of a vector v at a specified probability or vector p. The keyword argument sorted indi-

cates whether v can be assumed to be sorted.

The p should be on the interval [0,1], and v should not have any NaN values.

Quantiles are computed via linear interpolation between the points((k-1)/(n-1), v[k]), fork = 1:nwhere

n = length(v). This corresponds to Definition 7 of Hyndman and Fan (1996), and is the same as the R default.

Note

Julia does not ignoreNaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended. quantilewill throw an ArgumentError in the

presence of NaN values in the data array.

• Hyndman, R.J andFan, Y. (1996) "SampleQuantiles in Statistical Packages",TheAmerican Statistician, Vol. 50,

No. 4, pp. 361-365

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L564-L581
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L609-L620
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L584-L588
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L719-L738

550 CHAPTER 47. MATHEMATICS

Base.quantile! – Function.

quantile!([q,] v, p; sorted=false)

Compute the quantile(s) of a vector v at the probabilities p, with optional output into array q (if not provided, a

new output array is created). The keyword argument sorted indicates whether v can be assumed to be sorted; if

false (the default), then the elements of vmay be partially sorted.

The elements of p should be on the interval [0,1], and v should not have any NaN values.

Quantiles are computed via linear interpolation between the points((k-1)/(n-1), v[k]), fork = 1:nwhere

n = length(v). This corresponds to Definition 7 of Hyndman and Fan (1996), and is the same as the R default.

Note

Julia does not ignoreNaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended. quantile! will throw an ArgumentError in

the presence of NaN values in the data array.

• Hyndman, R.J andFan, Y. (1996) "SampleQuantiles in Statistical Packages",TheAmerican Statistician, Vol. 50,

No. 4, pp. 361-365

source

Base.cov – Function.

cov(x[, corrected=true])

Compute the variance of the vectorx. Ifcorrected istrue (the default) then the sum is scaledwithn-1, whereas

the sum is scaled with n if corrected is falsewhere n = length(x).

source

cov(X[, vardim=1, corrected=true])

Compute the covariance matrix of the matrix X along the dimension vardim. If corrected is true (the default)

then the sum is scaled with n-1, whereas the sum is scaled with n if corrected is false where n = size(X,

vardim).

source

cov(x, y[, corrected=true])

Computethecovariancebetweenthevectorsxandy. Ifcorrected istrue (thedefault), computes
1

n−1

∑n
i=1(xi−

x̄)(yi−ȳ)∗where∗denotes thecomplexconjugateandn = length(x) = length(y). Ifcorrected isfalse,

computes rac1nsumn
i=1(xi − x̄)(yi − ȳ)∗.

source

cov(X, Y[, vardim=1, corrected=true])

Compute the covariance between the vectors or matrices X and Y along the dimension vardim. If corrected is

true (the default) then the sum is scaledwith n-1, whereas the sum is scaledwith n if corrected is falsewhere

n = size(X, vardim) = size(Y, vardim).

source

Base.cor – Function.

cor(x)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L625-L647
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L342-L347
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L352-L358
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L364-L371
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L378-L384

47.4. SIGNAL PROCESSING 551

Return the number one.

source

cor(X[, vardim=1])

Compute the Pearson correlationmatrix of thematrix X along the dimension vardim.

source

cor(x, y)

Compute the Pearson correlation between the vectors x and y.

source

cor(X, Y[, vardim=1])

Compute the Pearson correlation between the vectors or matrices X and Y along the dimension vardim.

source

47.4 Signal Processing

Fast Fourier transform (FFT) functions in Julia are implemented by calling functions from FFTW.

Base.DFT.fft – Function.

fft(A [, dims])

Performs amultidimensional FFTof the arrayA. The optionaldims argument specifies an iterable subset of dimen-

sions (e.g. an integer, range, tuple, or array) to transformalong. Most efficient if the size ofA along the transformed

dimensions is a product of small primes; see nextprod(). See also plan_fft() for even greater efficiency.

A one-dimensional FFT computes the one-dimensional discrete Fourier transform (DFT) as defined by

DFT(A)[k] =

length(A)∑
n=1

exp
(
−i

2π(n− 1)(k − 1)

length(A)

)
A[n].

Amultidimensional FFT simply performs this operation along each transformed dimension of A.

Note

• Julia starts FFTWupwith 1 thread by default. Higher performance is usually possible by increas-

ingnumberof threads. UseFFTW.set_num_threads(Sys.CPU_CORES) touseasmanythreads

as cores on your system.

• This performs amultidimensional FFT by default. FFT libraries in other languages such as Python

and Octave perform a one-dimensional FFT along the first non-singleton dimension of the array.

This is worth noting while performing comparisons. For more details, refer to the Noteworthy

Differences from other Languages section of themanual.

source

Base.DFT.fft! – Function.

fft!(A [, dims])

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L494-L498
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L502-L506
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L511-L515
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/statistics.jl#L519-L523
http://www.fftw.org
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L401-L431

552 CHAPTER 47. MATHEMATICS

Same as fft, but operates in-place on A, whichmust be an array of complex floating-point numbers.

source

Base.DFT.ifft – Function.

ifft(A [, dims])

Multidimensional inverse FFT.

A one-dimensional inverse FFT computes

IDFT(A)[k] =
1

length(A)

length(A)∑
n=1

exp
(
+i

2π(n− 1)(k − 1)

length(A)

)
A[n].

Amultidimensional inverse FFT simply performs this operation along each transformed dimension of A.

source

Base.DFT.ifft! – Function.

ifft!(A [, dims])

Same as ifft, but operates in-place on A.

source

Base.DFT.bfft – Function.

bfft(A [, dims])

Similar to ifft, but computes an unnormalized inverse (backward) transform, whichmust be divided by the prod-

uct of the sizes of the transformed dimensions in order to obtain the inverse. (This is slightly more efficient than

ifft because it omits a scaling step, which in some applications can be combined with other computational steps

elsewhere.)

BDFT(A)[k] = length(A) IDFT(A)[k]

source

Base.DFT.bfft! – Function.

bfft!(A [, dims])

Same as bfft, but operates in-place on A.

source

Base.DFT.plan_fft – Function.

plan_fft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L169-L174
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L152-L166
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L145-L149
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L177-L189
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L192-L196

47.4. SIGNAL PROCESSING 553

Pre-plan anoptimizedFFTalong givendimensions (dims) of arraysmatching the shape and typeofA. (Thefirst two

arguments have the samemeaning as forfft.) Returns anobjectPwhich represents the linear operator computed

by the FFT, andwhich contains all of the information needed to compute fft(A, dims) quickly.

To apply P to an array A, use P * A; in general, the syntax for applying plans is much like that of matrices. (A plan

can only be applied to arrays of the same size as the A for which the plan was created.) You can also apply a plan

with a preallocated output array Â by calling A_mul_B!(Â, plan, A). (For A_mul_B!, however, the input array

Amust be a complexfloating-point array like theoutputÂ.) You can compute the inverse-transformplanbyinv(P)

and apply the inverse planwith P \ Â (the inverse plan is cached and reused for subsequent calls to inv or \), and

apply the inverse plan to a pre-allocated output array Awith A_ldiv_B!(A, P, Â).

Theflagsargument isabitwise-orofFFTWplannerflags, defaulting toFFTW.ESTIMATE. e.g. passingFFTW.MEASURE

or FFTW.PATIENT will instead spend several seconds (or more) benchmarking different possible FFT algorithms

and picking the fastest one; see the FFTWmanual formore information on planner flags. The optionaltimelimit

argument specifies a rough upper bound on the allowed planning time, in seconds. Passing FFTW.MEASURE or

FFTW.PATIENTmay cause the input array A to be overwritten with zeros during plan creation.

plan_fft! is the same as plan_fft but creates a plan that operates in-place on its argument (which must be an

array of complex floating-point numbers). plan_ifft and so on are similar but produce plans that perform the

equivalent of the inverse transforms ifft and so on.

source

Base.DFT.plan_ifft – Function.

plan_ifft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Same as plan_fft, but produces a plan that performs inverse transforms ifft.

source

Base.DFT.plan_bfft – Function.

plan_bfft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Same as plan_fft, but produces a plan that performs an unnormalized backwards transform bfft.

source

Base.DFT.plan_fft! – Function.

plan_fft!(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Same as plan_fft, but operates in-place on A.

source

Base.DFT.plan_ifft! – Function.

plan_ifft!(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Same as plan_ifft, but operates in-place on A.

source

Base.DFT.plan_bfft! – Function.

plan_bfft!(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L92-L121
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L62-L67
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L84-L89
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L124-L128
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L70-L74

554 CHAPTER 47. MATHEMATICS

Same as plan_bfft, but operates in-place on A.

source

Base.DFT.rfft – Function.

rfft(A [, dims])

Multidimensional FFT of a real array A, exploiting the fact that the transform has conjugate symmetry in order to

save roughly half the computational time and storage costs compared with fft. If A has size (n_1, ..., n_d),

the result has size (div(n_1,2)+1, ..., n_d).

The optional dims argument specifies an iterable subset of one or more dimensions of A to transform, similar to

fft. Instead of (roughly) halving the first dimension of A in the result, the dims[1] dimension is (roughly) halved

in the sameway.

source

Base.DFT.irfft – Function.

irfft(A, d [, dims])

Inverse of rfft: for a complex array A, gives the corresponding real array whose FFT yields A in the first half. As

for rfft, dims is an optional subset of dimensions to transform, defaulting to 1:ndims(A).

d is the length of the transformed real array along the dims[1] dimension, which must satisfy div(d,2)+1 ==

size(A,dims[1]). (This parameter cannot be inferred from size(A) since both 2*size(A,dims[1])-2 as

well as 2*size(A,dims[1])-1 are valid sizes for the transformed real array.)

source

Base.DFT.brfft – Function.

brfft(A, d [, dims])

Similar to irfft but computes an unnormalized inverse transform (similar to bfft), which must be divided by

the product of the sizes of the transformed dimensions (of the real output array) in order to obtain the inverse

transform.

source

Base.DFT.plan_rfft – Function.

plan_rfft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Pre-plananoptimized real-inputFFT, similar toplan_fftexcept forrfft insteadoffft. Thefirst twoarguments,

and the size of the transformed result, are the same as for rfft.

source

Base.DFT.plan_brfft – Function.

plan_brfft(A, d [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Pre-plananoptimized real-inputunnormalized transform, similar toplan_rfftexcept forbrfft insteadofrfft.

The first two arguments and the size of the transformed result, are the same as for brfft.

source

Base.DFT.plan_irfft – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L77-L81
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L131-L142
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L302-L313
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L316-L322
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L434-L440
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L443-L450

47.4. SIGNAL PROCESSING 555

plan_irfft(A, d [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Pre-plan anoptimized inverse real-input FFT, similar toplan_rfftexcept forirfft andbrfft, respectively. The

first three arguments have the samemeaning as for irfft.

source

Base.DFT.FFTW.dct – Function.

dct(A [, dims])

Performsamultidimensional type-II discretecosine transform(DCT)of thearrayA, using theunitarynormalization

of theDCT. The optional dims argument specifies an iterable subset of dimensions (e.g. an integer, range, tuple, or

array) to transform along. Most efficient if the size of A along the transformed dimensions is a product of small

primes; see nextprod. See also plan_dct for even greater efficiency.

source

Base.DFT.FFTW.dct! – Function.

dct!(A [, dims])

Sameasdct!, except that it operates in-placeonA, whichmust be anarrayof real or complexfloating-point values.

source

Base.DFT.FFTW.idct – Function.

idct(A [, dims])

Computes themultidimensional inverse discrete cosine transform (DCT) of the array A (technically, a type-III DCT

with the unitary normalization). The optional dims argument specifies an iterable subset of dimensions (e.g. an

integer, range, tuple, or array) to transform along. Most efficient if the size of A along the transformed dimensions

is a product of small primes; see nextprod. See also plan_idct for even greater efficiency.

source

Base.DFT.FFTW.idct! – Function.

idct!(A [, dims])

Same as idct!, but operates in-place on A.

source

Base.DFT.FFTW.plan_dct – Function.

plan_dct(A [, dims [, flags [, timelimit]]])

Pre-plananoptimizeddiscrete cosine transform (DCT), similar toplan_fftexceptproducinga function that com-

putes dct. The first two arguments have the samemeaning as for dct.

source

Base.DFT.FFTW.plan_dct! – Function.

plan_dct!(A [, dims [, flags [, timelimit]]])

Same as plan_dct, but operates in-place on A.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L344-L350
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L494-L503
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L518-L523
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L506-L515
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L526-L530
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L477-L484
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L460-L464

556 CHAPTER 47. MATHEMATICS

Base.DFT.FFTW.plan_idct – Function.

plan_idct(A [, dims [, flags [, timelimit]]])

Pre-plan an optimized inverse discrete cosine transform (DCT), similar to plan_fft except producing a function

that computes idct. The first two arguments have the samemeaning as for idct.

source

Base.DFT.FFTW.plan_idct! – Function.

plan_idct!(A [, dims [, flags [, timelimit]]])

Same as plan_idct, but operates in-place on A.

source

Base.DFT.fftshift –Method.

fftshift(x)

Swap the first and second halves of each dimension of x.

source

Base.DFT.fftshift –Method.

fftshift(x,dim)

Swap the first and second halves of the given dimension or iterable of dimensions of array x.

source

Base.DFT.ifftshift – Function.

ifftshift(x, [dim])

Undoes the effect of fftshift.

source

Base.DSP.filt – Function.

filt(b, a, x, [si])

Applyfilter describedbyvectorsa andb to vectorx, with anoptional initial filter state vectorsi (defaults to zeros).

source

Base.DSP.filt! – Function.

filt!(out, b, a, x, [si])

Same as filt but writes the result into the out argument, whichmay alias the input x to modify it in-place.

source

Base.DSP.deconv – Function.

deconv(b,a) -> c

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L467-L474
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L487-L491
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L359-L363
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L374-L378
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L383-L387
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dsp.jl#L11-L16
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dsp.jl#L25-L30

47.4. SIGNAL PROCESSING 557

Construct vector c such that b = conv(a,c) + r. Equivalent to polynomial division.

source

Base.DSP.conv – Function.

conv(u,v)

Convolution of two vectors. Uses FFT algorithm.

source

Base.DSP.conv2 – Function.

conv2(u,v,A)

2-D convolution of the matrix A with the 2-D separable kernel generated by the vectors u and v. Uses 2-D FFT

algorithm.

source

conv2(B,A)

2-D convolution of thematrix Bwith thematrix A. Uses 2-D FFT algorithm.

source

Base.DSP.xcorr – Function.

xcorr(u,v)

Compute the cross-correlation of two vectors.

source

The following functions are definedwithin the Base.FFTWmodule.

Base.DFT.FFTW.r2r – Function.

r2r(A, kind [, dims])

Performs a multidimensional real-input/real-output (r2r) transform of type kind of the array A, as defined in the

FFTWmanual. kindspecifieseitheradiscretecosinetransformofvarious types (FFTW.REDFT00,FFTW.REDFT01,

FFTW.REDFT10, or FFTW.REDFT11), a discrete sine transform of various types (FFTW.RODFT00, FFTW.RODFT01,

FFTW.RODFT10, orFFTW.RODFT11), a real-inputDFTwithhalfcomplex-formatoutput (FFTW.R2HCand its inverse

FFTW.HC2R), or a discreteHartley transform (FFTW.DHT). The kind argumentmay be an array or tuple in order to

specify different transform types along the different dimensions of A; kind[end] is used for any unspecified di-

mensions. See the FFTWmanual for precise definitions of these transform types, at http://www.fftw.org/doc.

The optional dims argument specifies an iterable subset of dimensions (e.g. an integer, range, tuple, or array) to

transformalong. kind[i] is thenthetransformtypefordims[i],withkind[end]beingusedfori > length(kind).

See also plan_r2r to pre-plan optimized r2r transforms.

source

Base.DFT.FFTW.r2r! – Function.

r2r!(A, kind [, dims])

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dsp.jl#L105-L110
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dsp.jl#L123-L127
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dsp.jl#L148-L154
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dsp.jl#L169-L173
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dsp.jl#L192-L196
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L533-L556

558 CHAPTER 47. MATHEMATICS

Same as r2r, but operates in-place on A, whichmust be an array of real or complex floating-point numbers.

source

Base.DFT.FFTW.plan_r2r – Function.

plan_r2r(A, kind [, dims [, flags [, timelimit]]])

Pre-plan an optimized r2r transform, similar to plan_fft except that the transforms (and the first three argu-

ments) correspond to r2r and r2r!, respectively.

source

Base.DFT.FFTW.plan_r2r! – Function.

plan_r2r!(A, kind [, dims [, flags [, timelimit]]])

Similar to plan_fft, but corresponds to r2r!.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L559-L564
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L574-L580
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dft.jl#L567-L571

Chapter 48

Numbers

48.1 Standard Numeric Types

Abstract number types

Core.Number – Type.

Number

Abstract supertype for all number types.

source

Core.Real – Type.

Real <: Number

Abstract supertype for all real numbers.

source

Core.AbstractFloat – Type.

AbstractFloat <: Real

Abstract supertype for all floating point numbers.

source

Core.Integer – Type.

Integer <: Real

Abstract supertype for all integers.

source

Core.Signed – Type.

Signed <: Integer

Abstract supertype for all signed integers.

source

559

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2668-L2672
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2675-L2679
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2682-L2686
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2689-L2693
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2696-L2700

560 CHAPTER 48. NUMBERS

Core.Unsigned – Type.

Unsigned <: Integer

Abstract supertype for all unsigned integers.

source

Concrete number types

Core.Float16 – Type.

Float16 <: AbstractFloat

16-bit floating point number type.

source

Core.Float32 – Type.

Float32 <: AbstractFloat

32-bit floating point number type.

source

Core.Float64 – Type.

Float64 <: AbstractFloat

64-bit floating point number type.

source

Base.MPFR.BigFloat – Type.

BigFloat <: AbstractFloat

Arbitrary precision floating point number type.

source

Core.Bool – Type.

Bool <: Integer

Boolean type.

source

Core.Int8 – Type.

Int8 <: Signed

8-bit signed integer type.

source

Core.UInt8 – Type.

UInt8 <: Unsigned

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2703-L2707
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2719-L2723
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2719-L2723
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2719-L2723
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/mpfr.jl#L43-L47
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2710-L2714
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2730-L2734

48.1. STANDARDNUMERIC TYPES 561

8-bit unsigned integer type.

source

Core.Int16 – Type.

Int16 <: Signed

16-bit signed integer type.

source

Core.UInt16 – Type.

UInt16 <: Unsigned

16-bit unsigned integer type.

source

Core.Int32 – Type.

Int32 <: Signed

32-bit signed integer type.

source

Core.UInt32 – Type.

UInt32 <: Unsigned

32-bit unsigned integer type.

source

Core.Int64 – Type.

Int64 <: Signed

64-bit signed integer type.

source

Core.UInt64 – Type.

UInt64 <: Unsigned

64-bit unsigned integer type.

source

Core.Int128 – Type.

Int128 <: Signed

128-bit signed integer type.

source

Core.UInt128 – Type.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2737-L2741
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2730-L2734
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2737-L2741
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2730-L2734
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2737-L2741
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2730-L2734
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2737-L2741
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2730-L2734

562 CHAPTER 48. NUMBERS

UInt128 <: Unsigned

128-bit unsigned integer type.

source

Base.GMP.BigInt – Type.

BigInt <: Integer

Arbitrary precision integer type.

source

Base.Complex – Type.

Complex{T<:Real} <: Number

Complex number type with real and imaginary part of type T.

Complex32,Complex64andComplex128arealiases forComplex{Float16},Complex{Float32}andComplex{Float64}

respectively.

source

Base.Rational – Type.

Rational{T<:Integer} <: Real

Rational number type, with numerator and denominator of type T.

source

Base.Irrational – Type.

Irrational <: Real

Irrational number type.

source

48.2 Data Formats

Base.bin – Function.

bin(n, pad::Int=1)

Convert an integer to a binary string, optionally specifying a number of digits to pad to.

julia> bin(10,2)

"1010"

julia> bin(10,8)

"00001010"

source

Base.hex – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2737-L2741
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/gmp.jl#L40-L44
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/complex.jl#L3-L10
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rational.jl#L3-L7
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/irrationals.jl#L5-L9
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L601-L613

48.2. DATA FORMATS 563

hex(n, pad::Int=1)

Convert an integer to a hexadecimal string, optionally specifying a number of digits to pad to.

julia> hex(20)

"14"

julia> hex(20, 3)

"014"

source

Base.dec – Function.

dec(n, pad::Int=1)

Convert an integer to a decimal string, optionally specifying a number of digits to pad to.

Examples

julia> dec(20)

"20"

julia> dec(20, 3)

"020"

source

Base.oct – Function.

oct(n, pad::Int=1)

Convert an integer to an octal string, optionally specifying a number of digits to pad to.

julia> oct(20)

"24"

julia> oct(20, 3)

"024"

source

Base.base – Function.

base(base::Integer, n::Integer, pad::Integer=1)

Convert an integer n to a string in the given base, optionally specifying a number of digits to pad to.

julia> base(13,5,4)

"0005"

julia> base(5,13,4)

"0023"

source

Base.digits – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L616-L629
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L648-L662
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L632-L645
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L574-L587

564 CHAPTER 48. NUMBERS

digits([T<:Integer], n::Integer, base::T=10, pad::Integer=1)

Returns an arraywith element typeT (defaultInt) of the digits ofn in the given base, optionally paddedwith zeros

to a specified size. More significant digits are at higher indexes, such that n == sum([digits[k]*base^(k-1)

for k=1:length(digits)]).

Examples

julia> digits(10, 10)

2-element Array{Int64,1}:

0

1

julia> digits(10, 2)

4-element Array{Int64,1}:

0

1

0

1

julia> digits(10, 2, 6)

6-element Array{Int64,1}:

0

1

0

1

0

0

source

Base.digits! – Function.

digits!(array, n::Integer, base::Integer=10)

Fills an array of the digits of n in the given base. More significant digits are at higher indexes. If the array length is

insufficient, the least significant digits are filled up to the array length. If the array length is excessive, the excess

portion is filled with zeros.

Examples

julia> digits!([2,2,2,2], 10, 2)

4-element Array{Int64,1}:

0

1

0

1

julia> digits!([2,2,2,2,2,2], 10, 2)

6-element Array{Int64,1}:

0

1

0

1

0

0

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L671-L701

48.2. DATA FORMATS 565

source

Base.bits – Function.

bits(n)

A string giving the literal bit representation of a number.

Example

julia> bits(4)

"000100"

julia> bits(2.2)

"0100000000000001100110011001100110011001100110011001100110011010"

source

Base.parse –Method.

parse(type, str, [base])

Parse a string as a number. If the type is an integer type, then a base can be specified (the default is 10). If the type

is a floating point type, the string is parsed as a decimal floating point number. If the string does not contain a valid

number, an error is raised.

julia> parse(Int, "1234")

1234

julia> parse(Int, "1234", 5)

194

julia> parse(Int, "afc", 16)

2812

julia> parse(Float64, "1.2e-3")

0.0012

source

Base.tryparse – Function.

tryparse(type, str, [base])

Like parse, but returns a Nullable of the requested type. The result will be null if the string does not contain a

valid number.

source

Base.big – Function.

big(x)

Convert a number to a maximum precision representation (typically BigInt or BigFloat). See BigFloat for

information about some pitfalls with floating-point numbers.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/intfuncs.jl#L709-L734
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L80-L93
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1201-L1221
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2478-L2483
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1373-L1378

566 CHAPTER 48. NUMBERS

Base.signed – Function.

signed(x)

Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as signed without checking

for overflow.

source

Base.unsigned – Function.

unsigned(x) -> Unsigned

Convertanumber toanunsigned integer. If theargument is signed, it is reinterpretedasunsignedwithoutchecking

for negative values.

Examples

julia> unsigned(-2)

0xfffffffffffffffe

julia> unsigned(2)

0x0000000000000002

julia> signed(unsigned(-2))

-2

source

Base.float –Method.

float(x)

Convertanumberorarraytoafloatingpointdata type. Whenpassedastring, this function isequivalent toparse(Float64,

x).

source

Base.Math.significand – Function.

significand(x)

Extract the significand(s) (a.k.a. mantissa), in binary representation, of a floating-point number. If x is a non-

zerofinite number, then the resultwill be anumberof the same typeon the interval [1, 2). Otherwisex is returned.

Examples

julia> significand(15.2)/15.2

0.125

julia> significand(15.2)*8

15.2

source

Base.Math.exponent – Function.

exponent(x) -> Int

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2566-L2571
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2420-L2437
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L252-L257
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L584-L599

48.2. DATA FORMATS 567

Get the exponent of a normalized floating-point number.

source

Base.complex –Method.

complex(r, [i])

Convert real numbers or arrays to complex. i defaults to zero.

source

Base.bswap – Function.

bswap(n)

Byte-swap an integer. Flip the bits of its binary representation.

Examples

julia> a = bswap(4)

288230376151711744

julia> bswap(a)

4

julia> bin(1)

"1"

julia> bin(bswap(1))

"100"

source

Base.num2hex – Function.

num2hex(f)

Get a hexadecimal string of the binary representation of a floating point number.

Example

julia> num2hex(2.2)

"400199999999999a"

source

Base.hex2num – Function.

hex2num(str)

Convert a hexadecimal string to the floating point number it represents.

source

Base.hex2bytes – Function.

hex2bytes(s::AbstractString)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/math.jl#L567-L571
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/complex.jl#L122-L126
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1294-L1313
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L602-L612
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1602-L1606

568 CHAPTER 48. NUMBERS

Convert an arbitrarily long hexadecimal string to its binary representation. Returns an Array{UInt8,1}, i.e. an

array of bytes.

julia> a = hex(12345)

"3039"

julia> hex2bytes(a)

2-element Array{UInt8,1}:

0x30

0x39

source

Base.bytes2hex – Function.

bytes2hex(bin_arr::Array{UInt8, 1}) -> String

Convert an array of bytes to its hexadecimal representation. All characters are in lower-case.

julia> a = hex(12345)

"3039"

julia> b = hex2bytes(a)

2-element Array{UInt8,1}:

0x30

0x39

julia> bytes2hex(b)

"3039"

source

48.3 General Number Functions and Constants

Base.one – Function.

one(x)

one(T::type)

Return a multiplicative identity for x: a value such that one(x)*x == x*one(x) == x. Alternatively one(T)

can take a type T, in which case one returns amultiplicative identity for any x of type T.

If possible, one(x) returns a value of the same type as x, and one(T) returns a value of type T. However, this may

not be the case for types representing dimensionful quantities (e.g. time in days), since the multiplicative identity

must be dimensionless. In that case, one(x) should return an identity value of the same precision (and shape, for

matrices) as x.

If you want a quantity that is of the same type as x, or of type T, even if x is dimensionful, use oneunit instead.

julia> one(3.7)

1.0

julia> one(Int)

1

julia> one(Dates.Day(1))

1

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L408-L423
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L446-L464

48.3. GENERAL NUMBER FUNCTIONS AND CONSTANTS 569

source

Base.oneunit – Function.

oneunit(x::T)

oneunit(T::Type)

Returns T(one(x)), where T is either the type of the argument or (if a type is passed) the argument. This differs

fromone for dimensionful quantities: one is dimensionless (amultiplicative identity)whileoneunit is dimension-

ful (of the same type as x, or of type T).

julia> oneunit(3.7)

1.0

julia> oneunit(Dates.Day)

1 day

source

Base.zero – Function.

zero(x)

Get the additive identity element for the type of x (x can also specify the type itself).

julia> zero(1)

0

julia> zero(big"2.0")

0.00

julia> zero(rand(2,2))

2×2 Array{Float64,2}:

0.0 0.0

0.0 0.0

source

Base.pi – Constant.

piπ

The constant pi.

julia> pi

π = 3.1415926535897...

source

Base.im – Constant.

im

The imaginary unit.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/number.jl#L159-L188
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/number.jl#L194-L210
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/number.jl#L138-L155
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/irrationals.jl#L149-L159
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/complex.jl#L18-L22

570 CHAPTER 48. NUMBERS

Base.eu – Constant.

e

eu

The constant e.

julia> e

e = 2.7182818284590...

source

Base.catalan – Constant.

catalan

Catalan's constant.

julia> catalan

catalan = 0.9159655941772...

source

Base.eulergamma – Constant.

γ

eulergamma

Euler's constant.

julia> eulergamma

γ = 0.5772156649015...

source

Base.golden – Constant.

φ

golden

The golden ratio.

julia> golden

φ = 1.6180339887498...

source

Base.Inf – Constant.

Inf

Positive infinity of type Float64.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/irrationals.jl#L162-L172
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/irrationals.jl#L201-L210
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/irrationals.jl#L175-L185
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/irrationals.jl#L188-L198
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L32-L36

48.3. GENERAL NUMBER FUNCTIONS AND CONSTANTS 571

Base.Inf32 – Constant.

Inf32

Positive infinity of type Float32.

source

Base.Inf16 – Constant.

Inf16

Positive infinity of type Float16.

source

Base.NaN – Constant.

NaN

A not-a-number value of type Float64.

source

Base.NaN32 – Constant.

NaN32

A not-a-number value of type Float32.

source

Base.NaN16 – Constant.

NaN16

A not-a-number value of type Float16.

source

Base.issubnormal – Function.

issubnormal(f) -> Bool

Test whether a floating point number is subnormal.

source

Base.isfinite – Function.

isfinite(f) -> Bool

Test whether a number is finite.

julia> isfinite(5)

true

julia> isfinite(NaN32)

false

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L17-L21
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L5-L9
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L38-L42
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L23-L27
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L11-L15
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2055-L2059

572 CHAPTER 48. NUMBERS

source

Base.isinf – Function.

isinf(f) -> Bool

Test whether a number is infinite.

source

Base.isnan – Function.

isnan(f) -> Bool

Test whether a floating point number is not a number (NaN).

source

Base.iszero – Function.

iszero(x)

Return true if x == zero(x); if x is an array, this checks whether all of the elements of x are zero.

source

Base.nextfloat – Function.

nextfloat(x::AbstractFloat, n::Integer)

The result of n iterative applications of nextfloat to x if n >= 0, or -n applications of prevfloat if n < 0.

source

nextfloat(x::AbstractFloat)

Returns the smallest floating point number y of the same type as x such x < y. If no such y exists (e.g. if x is Inf

or NaN), then returns x.

source

Base.prevfloat – Function.

prevfloat(x::AbstractFloat)

Returns the largest floating point number y of the same type as x such y < x. If no such y exists (e.g. if x is -Inf

or NaN), then returns x.

source

Base.isinteger – Function.

isinteger(x) -> Bool

Test whether x is numerically equal to some integer.

julia> isinteger(4.0)

true

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L525-L537
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L543-L547
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L516-L520
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/number.jl#L16-L21
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L580-L585
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L624-L629
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/float.jl#L632-L637
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/number.jl#L4-L13

48.3. GENERAL NUMBER FUNCTIONS AND CONSTANTS 573

Base.isreal – Function.

isreal(x) -> Bool

Test whether x or all its elements are numerically equal to some real number.

julia> isreal(5.)

true

julia> isreal([4.; complex(0,1)])

false

source

Core.Float32 –Method.

Float32(x [, mode::RoundingMode])

Create a Float32 from x. If x is not exactly representable then mode determines how x is rounded.

Examples

julia> Float32(1/3, RoundDown)

0.3333333f0

julia> Float32(1/3, RoundUp)

0.33333334f0

See RoundingMode for available roundingmodes.

source

Core.Float64 –Method.

Float64(x [, mode::RoundingMode])

Create a Float64 from x. If x is not exactly representable then mode determines how x is rounded.

Examples

julia> Float64(pi, RoundDown)

3.141592653589793

julia> Float64(pi, RoundUp)

3.1415926535897936

See RoundingMode for available roundingmodes.

source

Base.GMP.BigInt –Method.

BigInt(x)

Create an arbitrary precision integer. xmay be an Int (or anything that can be converted to an Int). The usual

mathematical operators are defined for this type, and results are promoted to a BigInt.

Instances can be constructed from strings via parse, or using the big string literal.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/complex.jl#L101-L113
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L221-L237
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L925-L941

574 CHAPTER 48. NUMBERS

julia> parse(BigInt, "42")

42

julia> big"313"

313

source

Base.MPFR.BigFloat –Method.

BigFloat(x)

Create an arbitrary precision floating point number. x may be an Integer, a Float64 or a BigInt. The usual

mathematical operators are defined for this type, and results are promoted to a BigFloat.

Note that because decimal literals are converted to floating point numbers when parsed, BigFloat(2.1) may

not yield what you expect. You may instead prefer to initialize constants from strings via parse, or using the big

string literal.

julia> BigFloat(2.1)

2.100000000000000088817841970012523233890533447265625000000000000000000000000000

julia> big"2.1"

2.099986

source

Base.Rounding.rounding – Function.

rounding(T)

Get the current floating point rounding mode for type T, controlling the rounding of basic arithmetic functions (+,

-, *, / and sqrt) and type conversion.

See RoundingMode for available modes.

source

Base.Rounding.setrounding –Method.

setrounding(T, mode)

Set the roundingmode of floating point type T, controlling the rounding of basic arithmetic functions (+, -, *, / and

sqrt) and type conversion. Other numerical functions may give incorrect or invalid values when using rounding

modes other than the default RoundNearest.

Note that thismay affect other types, for instance changing the roundingmode ofFloat64will change the round-

ingmode of Float32. See RoundingMode for available modes.

Warning

This feature is still experimental, andmay give unexpected or incorrect values.

source

Base.Rounding.setrounding –Method.

setrounding(f::Function, T, mode)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/gmp.jl#L61-L78
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/mpfr.jl#L68-L86
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rounding.jl#L131-L139
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rounding.jl#L112-L128

48.3. GENERAL NUMBER FUNCTIONS AND CONSTANTS 575

Change the roundingmode of floating point type T for the duration of f. It is logically equivalent to:

old = rounding(T)

setrounding(T, mode)

f()

setrounding(T, old)

See RoundingMode for available roundingmodes.

Warning

This feature is still experimental, andmaygive unexpectedor incorrect values. A knownproblem is the

interaction with compiler optimisations, e.g.

julia> setrounding(Float64,RoundDown) do

1.1 + 0.1

end

1.2000000000000002

Here the compiler is constant folding, that is evaluating a known constant expression at compile time,

however the rounding mode is only changed at runtime, so this is not reflected in the function result.

This can be avoided bymoving constants outside the expression, e.g.

julia> x = 1.1; y = 0.1;

julia> setrounding(Float64,RoundDown) do

x + y

end

1.2

source

Base.Rounding.get_zero_subnormals – Function.

get_zero_subnormals() -> Bool

Returns false if operations on subnormal floating-point values ("denormals") obey rules for IEEE arithmetic, and

true if theymight be converted to zeros.

source

Base.Rounding.set_zero_subnormals – Function.

set_zero_subnormals(yes::Bool) -> Bool

If yes is false, subsequent floating-point operations follow rules for IEEE arithmetic on subnormal values ("de-

normals"). Otherwise, floating-point operations are permitted (but not required) to convert subnormal inputs or

outputs to zero. Returns true unless yes==true but the hardware does not support zeroing of subnormal num-

bers.

set_zero_subnormals(true) canspeedupsomecomputationsonsomehardware. However, it canbreak iden-

tities such as (x-y==0) == (x==y).

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rounding.jl#L148-L182
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rounding.jl#L235-L240
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/rounding.jl#L222-L232

576 CHAPTER 48. NUMBERS

Integers

Base.count_ones – Function.

count_ones(x::Integer) -> Integer

Number of ones in the binary representation of x.

julia> count_ones(7)

3

source

Base.count_zeros – Function.

count_zeros(x::Integer) -> Integer

Number of zeros in the binary representation of x.

julia> count_zeros(Int32(2 ^ 16 - 1))

16

source

Base.leading_zeros – Function.

leading_zeros(x::Integer) -> Integer

Number of zeros leading the binary representation of x.

julia> leading_zeros(Int32(1))

31

source

Base.leading_ones – Function.

leading_ones(x::Integer) -> Integer

Number of ones leading the binary representation of x.

julia> leading_ones(UInt32(2 ^ 32 - 2))

31

source

Base.trailing_zeros – Function.

trailing_zeros(x::Integer) -> Integer

Number of zeros trailing the binary representation of x.

julia> trailing_zeros(2)

1

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/int.jl#L216-L225
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/int.jl#L252-L261
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/int.jl#L228-L237
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/int.jl#L264-L273
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/int.jl#L240-L249

48.4. BIGFLOATS 577

Base.trailing_ones – Function.

trailing_ones(x::Integer) -> Integer

Number of ones trailing the binary representation of x.

julia> trailing_ones(3)

2

source

Base.isodd – Function.

isodd(x::Integer) -> Bool

Returns true if x is odd (that is, not divisible by 2), and false otherwise.

julia> isodd(9)

true

julia> isodd(10)

false

source

Base.iseven – Function.

iseven(x::Integer) -> Bool

Returns true is x is even (that is, divisible by 2), and false otherwise.

julia> iseven(9)

false

julia> iseven(10)

true

source

48.4 BigFloats

The BigFloat type implements arbitrary-precision floating-point arithmetic using the GNUMPFR library.

Base.precision – Function.

precision(num::AbstractFloat)

Get the precision of a floating point number, as defined by the effective number of bits in themantissa.

source

Base.precision –Method.

precision(BigFloat)

Get the precision (in bits) currently used for BigFloat arithmetic.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/int.jl#L276-L285
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/int.jl#L40-L52
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/int.jl#L55-L67
http://www.mpfr.org/
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L58-L63
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/mpfr.jl#L715-L719

578 CHAPTER 48. NUMBERS

Base.MPFR.setprecision – Function.

setprecision([T=BigFloat,] precision::Int)

Set the precision (in bits) to be used for T arithmetic.

source

setprecision(f::Function, [T=BigFloat,] precision::Integer)

Change the T arithmetic precision (in bits) for the duration of f. It is logically equivalent to:

old = precision(BigFloat)

setprecision(BigFloat, precision)

f()

setprecision(BigFloat, old)

Often used as setprecision(T, precision) do ... end

source

Base.MPFR.BigFloat –Method.

BigFloat(x, prec::Int)

Create a representation of x as a BigFloatwith precision prec.

source

Base.MPFR.BigFloat –Method.

BigFloat(x, rounding::RoundingMode)

Create a representation of x as a BigFloatwith the current global precision and roundingmode rounding.

source

Base.MPFR.BigFloat –Method.

BigFloat(x, prec::Int, rounding::RoundingMode)

Create a representation of x as a BigFloatwith precision prec and roundingmode rounding.

source

Base.MPFR.BigFloat –Method.

BigFloat(x::String)

Create a representation of the string x as a BigFloat.

source

48.5 RandomNumbers

Randomnumbergeneration in Juliauses theMersenneTwister libraryviaMersenneTwisterobjects. Juliahasaglobal

RNG,which isusedbydefault. OtherRNGtypescanbeplugged inby inheriting theAbstractRNG type; theycanthenbe

used tohavemultiple streamsof randomnumbers. BesidesMersenneTwister, Julia alsoprovides theRandomDevice

RNG type, which is a wrapper over theOS provided entropy.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/mpfr.jl#L722-L726
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/mpfr.jl#L859-L871
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/mpfr.jl#L129-L133
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/mpfr.jl#L152-L157
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/mpfr.jl#L140-L145
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/mpfr.jl#L162-L166
http://www.math.sci.hiroshima-u.ac.jp/{~}m-mat/MT/SFMT/#dSFMT

48.5. RANDOMNUMBERS 579

Most functions related to random generation accept an optional AbstractRNG as the first argument, rng , which de-

faults to the global one if not provided. Morever, some of them accept optionally dimension specifications dims...

(which can be given as a tuple) to generate arrays of random values.

AMersenneTwisterorRandomDeviceRNGcangeneraterandomnumbersof the followingtypes: Float16,Float32,

Float64, Bool, Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128, BigInt (or com-

plex numbers of those types). Randomfloating point numbers are generated uniformly in [0, 1). AsBigInt represents
unbounded integers, the interval must be specified (e.g. rand(big(1:6))).

Base.Random.srand – Function.

srand([rng=GLOBAL_RNG], [seed]) -> rng

srand([rng=GLOBAL_RNG], filename, n=4) -> rng

Reseedtherandomnumbergenerator. If aseed isprovided, theRNGwill givea reproducible sequenceofnumbers,

otherwise Juliawill get entropy from the system. ForMersenneTwister, theseedmaybe anon-negative integer,

a vector of UInt32 integers or a filename, inwhich case the seed is read from a file (4n bytes are read from the file,

where n is an optional argument). RandomDevice does not support seeding.

source

Base.Random.MersenneTwister – Type.

MersenneTwister(seed)

Create a MersenneTwister RNG object. Different RNG objects can have their own seeds, which may be useful

for generating different streams of random numbers.

Example

julia> rng = MersenneTwister(1234);

source

Base.Random.RandomDevice – Type.

RandomDevice()

CreateaRandomDeviceRNGobject. Twosuchobjectswill alwaysgeneratedifferent streamsof randomnumbers.

source

Base.Random.rand – Function.

rand([rng=GLOBAL_RNG], [S], [dims...])

Pick a random element or array of random elements from the set of values specified by S; S can be

• an indexable collection (for example 1:n or ['x','y','z']), or

• a type: the set of values to pick from is then equivalent totypemin(S):typemax(S) for integers (this is not

applicable to BigInt), and to [0, 1) for floating point numbers;

S defaults to Float64.

source

Base.Random.rand! – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L227-L236
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L91-L101
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L58-L62
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L270-L281

580 CHAPTER 48. NUMBERS

rand!([rng=GLOBAL_RNG], A, [coll])

Populate the array A with random values. If the indexable collection coll is specified, the values are picked ran-

domly from coll. This is equivalent to copy!(A, rand(rng, coll, size(A))) or copy!(A, rand(rng,

eltype(A), size(A))) but without allocating a new array.

Example

julia> rng = MersenneTwister(1234);

julia> rand!(rng, zeros(5))

5-element Array{Float64,1}:

0.590845

0.766797

0.566237

0.460085

0.794026

source

Base.Random.bitrand – Function.

bitrand([rng=GLOBAL_RNG], [dims...])

Generate a BitArray of random boolean values.

Example

julia> rng = MersenneTwister(1234);

julia> bitrand(rng, 10)

10-element BitArray{1}:

true

true

true

false

true

false

false

true

false

true

source

Base.Random.randn – Function.

randn([rng=GLOBAL_RNG], [T=Float64], [dims...])

Generate a normally-distributed randomnumber of type Twithmean 0 and standard deviation 1. Optionally gen-

erate an array of normally-distributed random numbers. The Basemodule currently provides an implementation

for the types Float16, Float32, and Float64 (the default).

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L292-L312
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L710-L733

48.5. RANDOMNUMBERS 581

julia> rng = MersenneTwister(1234);

julia> randn(rng, Float64)

0.8673472019512456

julia> randn(rng, Float32, (2, 4))

2×4 Array{Float32,2}:

-0.901744 -0.902914 2.21188 -0.271735

-0.494479 0.864401 0.532813 0.502334

source

Base.Random.randn! – Function.

randn!([rng=GLOBAL_RNG], A::AbstractArray) -> A

Fill the arrayAwith normally-distributed (mean 0, standard deviation 1) randomnumbers. Also see therand func-

tion.

Example

julia> rng = MersenneTwister(1234);

julia> randn!(rng, zeros(5))

5-element Array{Float64,1}:

0.867347

-0.901744

-0.494479

-0.902914

0.864401

source

Base.Random.randexp – Function.

randexp([rng=GLOBAL_RNG], [T=Float64], [dims...])

Generate a random number of type T according to the exponential distribution with scale 1. Optionally generate

an array of such randomnumbers. TheBasemodule currently provides an implementation for the typesFloat16,

Float32, and Float64 (the default).

Examples

julia> rng = MersenneTwister(1234);

julia> randexp(rng, Float32)

2.4835055f0

julia> randexp(rng, 3, 3)

3×3 Array{Float64,2}:

1.5167 1.30652 0.344435

0.604436 2.78029 0.418516

0.695867 0.693292 0.643644

source

Base.Random.randexp! – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L1234-L1255
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L1325-L1344
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L1282-L1304

582 CHAPTER 48. NUMBERS

randexp!([rng=GLOBAL_RNG], A::AbstractArray) -> A

Fill the array Awith random numbers following the exponential distribution (with scale 1).

Example

julia> rng = MersenneTwister(1234);

julia> randexp!(rng, zeros(5))

5-element Array{Float64,1}:

2.48351

1.5167

0.604436

0.695867

1.30652

source

Base.Random.randjump – Function.

randjump(r::MersenneTwister, jumps::Integer, [jumppoly::AbstractString=dSFMT.JPOLY1e21]) ->

Vector{MersenneTwister}

Create an array of the size jumps of initialized MersenneTwister RNG objects. The first RNG object given as a

parameter and following MersenneTwister RNGs in the array are initialized such that a state of the RNG object

in the array would bemoved forward (without generating numbers) from a previous RNG object array element on

a particular number of steps encoded by the jump polynomial jumppoly.

Default jump polynomial moves forward MersenneTwisterRNG state by 10^20 steps.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L1347-L1365
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L158-L168

Chapter 49

Strings

Base.length –Method.

length(s::AbstractString)

The number of characters in string s.

Example

julia> length("jμΛIα")

5

source

Base.sizeof –Method.

sizeof(s::AbstractString)

The number of bytes in string s.

Example

julia> sizeof("")

3

source

Base.:* –Method.

*(x, y...)

Multiplication operator. x*y*z*... calls this function with all arguments, i.e. *(x, y, z, ...).

source

Base.:^ –Method.

^(s::AbstractString, n::Integer)

Repeat n times the string s. The repeat function is an alias to this operator.

julia> "Test "^3

"Test Test Test "

583

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L80-L91
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L44-L55
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1917-L1923

584 CHAPTER 49. STRINGS

source

Base.string – Function.

string(xs...)

Create a string from any values using the print function.

julia> string("a", 1, true)

"a1true"

source

Base.repr – Function.

repr(x)

Create a string from any value using the showall function.

source

Core.String –Method.

String(s::AbstractString)

Convert a string to a contiguous byte array representation encoded as UTF-8 bytes. This representation is often

appropriate for passing strings to C.

source

Base.transcode – Function.

transcode(T, src)

Convert string data between Unicode encodings. src is either a String or a Vector{UIntXX} of UTF-XX code

units, where XX is 8, 16, or 32. T indicates the encoding of the return value: String to return a (UTF-8 encoded)

String or UIntXX to return a Vector{UIntXX} of UTF-XX data. (The alias Cwchar_t can also be used as the

integer type, for converting wchar_t* strings used by external C libraries.)

The transcode function succeeds as long as the input data can be reasonably represented in the target encoding;

it always succeeds for conversions between UTF-XX encodings, even for invalid Unicode data.

Only conversion to/fromUTF-8 is currently supported.

source

Base.unsafe_string – Function.

unsafe_string(p::Ptr{UInt8}, [length::Integer])

Copy a string from the address of a C-style (NUL-terminated) string encoded as UTF-8. (The pointer can be safely

freed afterwards.) If length is specified (the length of the data in bytes), the string does not have to be NUL-

terminated.

This function is labelled "unsafe" because it will crash if p is not a valid memory address to data of the requested

length.

source

Base.codeunit –Method.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/types.jl#L143-L153
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/io.jl#L110-L119
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/io.jl#L139-L143
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L13-L18
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/c.jl#L159-L175
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/string.jl#L24-L33

585

codeunit(s::AbstractString, i::Integer)

Get the ith code unit of an encoded string. For example, returns the ith byte of the representation of a UTF-8

string.

source

Base.ascii – Function.

ascii(s::AbstractString)

Convertastring toString typeandcheckthat it containsonlyASCIIdata, otherwise throwinganArgumentError

indicating the position of the first non-ASCII byte.

julia> ascii("abcdeγfgh")

ERROR: ArgumentError: invalid ASCII at index 6 in "abcdeγfgh"

Stacktrace:

[1] ascii(::String) at ./strings/util.jl:479

julia> ascii("abcdefgh")

"abcdefgh"

source

Base.@r_str –Macro.

@r_str -> Regex

Construct a regex, such as r"^[a-z]*$". The regex also accepts one or more flags, listed after the ending quote,

to change its behaviour:

• i enables case-insensitivematching

• m treats the ^ and $ tokens as matching the start and end of individual lines, as opposed to the whole string.

• s allows the . modifier tomatch newlines.

• x enables "comment mode": whitespace is enabled except when escaped with \, and # is treated as starting

a comment.

For example, this regex has all three flags enabled:

julia> match(r"a+.*b+.*?d$"ism, "Goodbye,\nOh, angry,\nBad world\n")

RegexMatch("angry,\nBad world")

source

Base.Docs.@html_str –Macro.

@html_str -> Docs.HTML

Create an HTML object from a literal string.

source

Base.Docs.@text_str –Macro.

@text_str -> Docs.Text

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/string.jl#L56-L61
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L484-L499
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/regex.jl#L63-L82
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/utils.jl#L37-L41

586 CHAPTER 49. STRINGS

Create a Text object from a literal string.

source

Base.UTF8proc.normalize_string – Function.

normalize_string(s::AbstractString, normalform::Symbol)

Normalize the string s according to one of the four "normal forms" of the Unicode standard: normalform can be

:NFC, :NFD, :NFKC, or :NFKD. Normal forms C (canonical composition) and D (canonical decomposition) convert

different visually identical representations of the same abstract string into a single canonical form, with form C

beingmore compact. Normal formsKCandKDadditionally canonicalize "compatibility equivalents": they convert

characters that are abstractly similar but visually distinct into a single canonical choice (e.g. they expand ligatures

into the individual characters), with formKC beingmore compact.

Alternatively, finer control and additional transformationsmay be be obtained by callingnormalize_string(s;

keywords...), where any number of the following boolean keywords options (which all default to false except

for compose) are specified:

• compose=false: do not perform canonical composition

• decompose=true: docanonicaldecomposition insteadofcanonical composition (compose=true is ignored

if present)

• compat=true: compatibility equivalents are canonicalized

• casefold=true: performUnicode case folding, e.g. for case-insensitive string comparison

• newline2lf=true, newline2ls=true, or newline2ps=true: convert various newline sequences (LF,

CRLF, CR,NEL) into a linefeed (LF), line-separation (LS), or paragraph-separation (PS) character, respectively

• stripmark=true: strip diacritical marks (e.g. accents)

• stripignore=true: stripUnicode's "default ignorable" characters (e.g. the soft hyphenor the left-to-right

marker)

• stripcc=true: strip control characters; horizontal tabs and form feeds are converted to spaces; newlines

are also converted to spaces unless a newline-conversion flag was specified

• rejectna=true: throw an error if unassigned code points are found

• stable=true: enforce Unicode Versioning Stability

For example, NFKC corresponds to the options compose=true, compat=true, stable=true.

source

Base.UTF8proc.graphemes – Function.

graphemes(s::AbstractString) -> GraphemeIterator

Returnsan iteratorover substringsofs that correspond to theextendedgraphemes in thestring, asdefinedbyUni-

code UAX #29. (Roughly, these are what users would perceive as single characters, even though theymay contain

more than one codepoint; for example a letter combinedwith an accent mark is a single grapheme.)

source

Base.isvalid –Method.

isvalid(value) -> Bool

Returns true if the given value is valid for its type, which currently can be either Char or String.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/utils.jl#L78-L82
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L146-L180
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L346-L353
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2403-L2408

587

Base.isvalid –Method.

isvalid(T, value) -> Bool

Returns true if the given value is valid for that type. Types currently can be either Char or String. Values for

Char can be of type Char or UInt32. Values for String can be of that type, or Vector{UInt8}.

source

Base.isvalid –Method.

isvalid(str::AbstractString, i::Integer)

Tells whether index i is valid for the given string.

Examples

julia> str = "αβγdef";

julia> isvalid(str, 1)

true

julia> str[1]

'α': Unicode U+03b1 (category Ll: Letter, lowercase)

julia> isvalid(str, 2)

false

julia> str[2]

ERROR: UnicodeError: invalid character index

[...]

source

Base.UTF8proc.is_assigned_char – Function.

is_assigned_char(c) -> Bool

Returns true if the given char or integer is an assigned Unicode code point.

source

Base.ismatch – Function.

ismatch(r::Regex, s::AbstractString) -> Bool

Test whether a string contains amatch of the given regular expression.

source

Base.match – Function.

match(r::Regex, s::AbstractString[, idx::Integer[, addopts]])

Search for the first match of the regular expression r in s and return a RegexMatch object containing the match,

or nothing if the match failed. The matching substring can be retrieved by accessing m.match and the captured

sequences can be retrieved by accessing m.captures The optional idx argument specifies an index at which to

start the search.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2411-L2417
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L142-L165
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L213-L217
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1933-L1937
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2102-L2109

588 CHAPTER 49. STRINGS

Base.eachmatch – Function.

eachmatch(r::Regex, s::AbstractString[, overlap::Bool=false])

Search for all matches of a the regular expression r in s and return a iterator over thematches. If overlap is true,

the matching sequences are allowed to overlap indices in the original string, otherwise theymust be from distinct

character ranges.

source

Base.matchall – Function.

matchall(r::Regex, s::AbstractString[, overlap::Bool=false]) -> Vector{AbstractString}

Return a vector of thematching substrings from eachmatch.

source

Base.lpad – Function.

lpad(s, n::Integer, p::AbstractString=" ")

Make a string at least n columns wide when printed by padding s on the left with copies of p.

julia> lpad("March",10)

" March"

source

Base.rpad – Function.

rpad(s, n::Integer, p::AbstractString=" ")

Make a string at least n columns wide when printed by padding s on the right with copies of p.

julia> rpad("March",20)

"March "

source

Base.search – Function.

search(string::AbstractString, chars::Chars, [start::Integer])

Search for thefirstoccurrenceof thegivencharacterswithin thegiven string. The secondargumentmaybea single

character, a vector or a set of characters, a string, or a regular expression (though regular expressions are only

allowed on contiguous strings, such as ASCII or UTF-8 strings). The third argument optionally specifies a starting

index. The return value is a range of indexes where the matching sequence is found, such that s[search(s,x)]

== x:

search(string, "substring")=start:end such thatstring[start:end] == "substring", or0:-1 if

unmatched.

search(string, 'c') = index such that string[index] == 'c', or 0 if unmatched.

julia> search("Hello to the world", "z")

0:-1

julia> search("JuliaLang","Julia")

1:5

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L593-L599
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1940-L1944
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L224-L234
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L237-L247

589

source

Base.rsearch – Function.

rsearch(s::AbstractString, chars::Chars, [start::Integer])

Similar to search, but returning the last occurrence of the given characters within the given string, searching in

reverse from start.

julia> rsearch("aaabbb","b")

6:6

source

Base.searchindex – Function.

searchindex(s::AbstractString, substring, [start::Integer])

Similar to search, but return only the start index at which the substring is found, or 0 if it is not.

julia> searchindex("Hello to the world", "z")

0

julia> searchindex("JuliaLang","Julia")

1

julia> searchindex("JuliaLang","Lang")

6

source

Base.rsearchindex – Function.

rsearchindex(s::AbstractString, substring, [start::Integer])

Similar to rsearch, but return only the start index at which the substring is found, or 0 if it is not.

julia> rsearchindex("aaabbb","b")

6

julia> rsearchindex("aaabbb","a")

3

source

Base.contains –Method.

contains(haystack::AbstractString, needle::AbstractString)

Determine whether the second argument is a substring of the first.

julia> contains("JuliaLang is pretty cool!", "Julia")

true

source

Base.reverse –Method.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/search.jl#L5-L26
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/search.jl#L199-L209
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/search.jl#L149-L165
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/search.jl#L314-L326
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/search.jl#L368-L377

590 CHAPTER 49. STRINGS

reverse(s::AbstractString) -> AbstractString

Reverses a string.

julia> reverse("JuliaLang")

"gnaLailuJ"

source

Base.replace – Function.

replace(string::AbstractString, pat, r[, n::Integer=0])

Search for the given pattern pat, and replace each occurrence with r. If n is provided, replace at most n occur-

rences. As with search, the second argument may be a single character, a vector or a set of characters, a string, or

a regular expression. If r is a function, each occurrence is replaced with r(s)where s is thematched substring. If

pat is a regular expression andr is aSubstitutionString, then capture group references inr are replacedwith

the correspondingmatched text.

source

Base.split – Function.

split(s::AbstractString, [chars]; limit::Integer=0, keep::Bool=true)

Return an array of substrings by splitting the given string on occurrences of the given character delimiters, which

may be specified in any of the formats allowed by search's second argument (i.e. a single character, collection of

characters, string, or regular expression). Ifchars is omitted, it defaults to the set of all space characters, andkeep

is taken to be false. The two keyword arguments are optional: they are a maximum size for the result and a flag

determining whether empty fields should be kept in the result.

julia> a = "Ma.rch"

"Ma.rch"

julia> split(a,".")

2-element Array{SubString{String},1}:

"Ma"

"rch"

source

Base.rsplit – Function.

rsplit(s::AbstractString, [chars]; limit::Integer=0, keep::Bool=true)

Similar to split, but starting from the end of the string.

julia> a = "M.a.r.c.h"

"M.a.r.c.h"

julia> rsplit(a,".")

5-element Array{SubString{String},1}:

"M"

"a"

"r"

"c"

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/types.jl#L116-L124
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L393-L402
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L256-L276

591

"h"

julia> rsplit(a,".";limit=1)

1-element Array{SubString{String},1}:

"M.a.r.c.h"

julia> rsplit(a,".";limit=2)

2-element Array{SubString{String},1}:

"M.a.r.c"

"h"

source

Base.strip – Function.

strip(s::AbstractString, [chars::Chars])

Return swith any leading and trailingwhitespace removed. If chars (a character, or vector or set of characters) is

provided, instead remove characters contained in it.

julia> strip("{3, 5}\n", ['{', '}', '\n'])

"3, 5"

source

Base.lstrip – Function.

lstrip(s::AbstractString[, chars::Chars])

Returnswithany leadingwhitespaceanddelimiters removed. Thedefaultdelimiters to removeare' ',\t,\n,\v,

\f, and \r. If chars (a character, or vector or set of characters) is provided, instead remove characters contained

in it.

julia> a = lpad("March", 20)

" March"

julia> lstrip(a)

"March"

source

Base.rstrip – Function.

rstrip(s::AbstractString[, chars::Chars])

Returnswithany trailingwhitespaceanddelimiters removed. Thedefault delimiters to removeare' ',\t,\n,\v,

\f, and \r. If chars (a character, or vector or set of characters) is provided, instead remove characters contained

in it.

julia> a = rpad("March", 20)

"March "

julia> rstrip(a)

"March"

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L307-L333
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L181-L192
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L122-L138
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L151-L167

592 CHAPTER 49. STRINGS

Base.startswith – Function.

startswith(s::AbstractString, prefix::AbstractString)

Returns true if s starts with prefix. If prefix is a vector or set of characters, tests whether the first character

of s belongs to that set.

See also endswith.

julia> startswith("JuliaLang", "Julia")

true

source

Base.endswith – Function.

endswith(s::AbstractString, suffix::AbstractString)

Returns true if s ends with suffix. If suffix is a vector or set of characters, tests whether the last character of

s belongs to that set.

See also startswith.

julia> endswith("Sunday", "day")

true

source

Base.uppercase – Function.

uppercase(s::AbstractString)

Returns swith all characters converted to uppercase.

Example

julia> uppercase("Julia")

"JULIA"

source

Base.lowercase – Function.

lowercase(s::AbstractString)

Returns swith all characters converted to lowercase.

Example

julia> lowercase("STRINGS AND THINGS")

"strings and things"

source

Base.titlecase – Function.

titlecase(s::AbstractString)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L5-L17
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L30-L42
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L389-L400
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L403-L414

593

Capitalizes the first character of each word in s.

Example

julia> titlecase("the julia programming language")

"The Julia Programming Language"

source

Base.ucfirst – Function.

ucfirst(s::AbstractString)

Returns stringwith the first character converted to uppercase.

Example

julia> ucfirst("python")

"Python"

source

Base.lcfirst – Function.

lcfirst(s::AbstractString)

Returns stringwith the first character converted to lowercase.

Example

julia> lcfirst("Julia")

"julia"

source

Base.join – Function.

join(io::IO, strings, delim, [last])

Join an array of strings into a single string, inserting the given delimiter between adjacent strings. If last is

given, it will be used instead of delim between the last two strings. For example,

julia> join(["apples", "bananas", "pineapples"], ", ", " and ")

"apples, bananas and pineapples"

strings can be any iterable over elements x which are convertible to strings via print(io::IOBuffer, x).

stringswill be printed to io.

source

Base.chop – Function.

chop(s::AbstractString)

Remove the last character from s.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L417-L428
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L444-L455
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L460-L471
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/io.jl#L172-L186

594 CHAPTER 49. STRINGS

julia> a = "March"

"March"

julia> chop(a)

"Marc"

source

Base.chomp – Function.

chomp(s::AbstractString)

Remove a single trailing newline from a string.

julia> chomp("Hello\n")

"Hello"

source

Base.ind2chr – Function.

ind2chr(s::AbstractString, i::Integer)

Convert a byte index i to a character index with respect to string s.

See also chr2ind.

Example

julia> str = "αβγdef";

julia> ind2chr(str, 3)

2

julia> chr2ind(str, 2)

3

source

Base.chr2ind – Function.

chr2ind(s::AbstractString, i::Integer)

Convert a character index i to a byte index.

See also ind2chr.

Example

julia> str = "αβγdef";

julia> chr2ind(str, 2)

3

julia> ind2chr(str, 3)

2

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L66-L78
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/util.jl#L81-L90
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L262-L281
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L296-L314

595

Base.nextind – Function.

nextind(str::AbstractString, i::Integer)

Get the next valid string index after i. Returns a value greater than endof(str) at or after the end of the string.

Examples

julia> str = "αβγdef";

julia> nextind(str, 1)

3

julia> endof(str)

9

julia> nextind(str, 9)

10

source

Base.prevind – Function.

prevind(str::AbstractString, i::Integer)

Get the previous valid string index before i. Returns a value less than 1 at the beginning of the string.

Examples

julia> prevind("αβγdef", 3)

1

julia> prevind("αβγdef", 1)

0

source

Base.Random.randstring – Function.

randstring([rng,] len=8)

Create a random ASCII string of length len, consisting of upper- and lower-case letters and the digits 0-9. The

optional rng argument specifies a random number generator, see RandomNumbers.

Example

julia> rng = MersenneTwister(1234);

julia> randstring(rng, 4)

"mbDd"

source

Base.UTF8proc.charwidth – Function.

charwidth(c)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L215-L235
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L184-L199
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L907-L922

596 CHAPTER 49. STRINGS

Gives the number of columns needed to print a character.

source

Base.strwidth – Function.

strwidth(s::AbstractString)

Gives the number of columns needed to print a string.

Example

julia> strwidth("March")

5

source

Base.UTF8proc.isalnum – Function.

isalnum(c::Char) -> Bool

Tests whether a character is alphanumeric. A character is classified as alphabetic if it belongs to the Unicode gen-

eral category Letter or Number, i.e. a character whose category code begins with 'L' or 'N'.

source

Base.UTF8proc.isalpha – Function.

isalpha(c::Char) -> Bool

Tests whether a character is alphabetic. A character is classified as alphabetic if it belongs to the Unicode general

category Letter, i.e. a character whose category code begins with 'L'.

source

Base.isascii – Function.

isascii(c::Union{Char,AbstractString}) -> Bool

Tests whether a character belongs to the ASCII character set, or whether this is true for all elements of a string.

source

Base.UTF8proc.iscntrl – Function.

iscntrl(c::Char) -> Bool

Tests whether a character is a control character. Control characters are the non-printing characters of the Latin-1

subset of Unicode.

source

Base.UTF8proc.isdigit – Function.

isdigit(c::Char) -> Bool

Tests whether a character is a numeric digit (0-9).

source

Base.UTF8proc.isgraph – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L193-L197
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L342-L353
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L270-L276
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L252-L258
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L356-L361
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L285-L290
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L245-L249

597

isgraph(c::Char) -> Bool

Tests whether a character is printable, and not a space. Any character that would cause a printer to use ink should

be classifiedwith isgraph(c)==true.

source

Base.UTF8proc.islower – Function.

islower(c::Char) -> Bool

Tests whether a character is a lowercase letter. A character is classified as lowercase if it belongs to Unicode cate-

gory Ll, Letter: Lowercase.

source

Base.UTF8proc.isnumber – Function.

isnumber(c::Char) -> Bool

Tests whether a character is numeric. A character is classified as numeric if it belongs to theUnicode general cate-

gory Number, i.e. a character whose category code begins with 'N'.

source

Base.UTF8proc.isprint – Function.

isprint(c::Char) -> Bool

Tests whether a character is printable, including spaces, but not a control character.

source

Base.UTF8proc.ispunct – Function.

ispunct(c::Char) -> Bool

Tests whether a character belongs to the Unicode general category Punctuation, i.e. a character whose category

code begins with 'P'.

source

Base.UTF8proc.isspace – Function.

isspace(c::Char) -> Bool

Testswhether a character is anywhitespace character. IncludesASCII characters '\t', '\n', '\v', '\f', '\r', and ' ', Latin-1

character U+0085, and characters in Unicode category Zs.

source

Base.UTF8proc.isupper – Function.

isupper(c::Char) -> Bool

Tests whether a character is an uppercase letter. A character is classified as uppercase if it belongs to Unicode

category Lu, Letter: Uppercase, or Lt, Letter: Titlecase.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L321-L327
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L222-L228
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L261-L267
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L312-L316
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L293-L298
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L303-L309
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/utf8proc.jl#L233-L239

598 CHAPTER 49. STRINGS

Base.isxdigit – Function.

isxdigit(c::Char) -> Bool

Tests whether a character is a valid hexadecimal digit. Note that this does not include x (as in the standard 0x

prefix).

Example

julia> isxdigit('a')

true

julia> isxdigit('x')

false

source

Core.Symbol – Type.

Symbol(x...) -> Symbol

Create a Symbol by concatenating the string representations of the arguments together.

source

Base.escape_string – Function.

escape_string([io,] str::AbstractString[, esc::AbstractString]) -> AbstractString

General escaping of traditional C and Unicode escape sequences. Any characters in esc are also escaped (with a

backslash). See also unescape_string.

source

Base.unescape_string – Function.

unescape_string([io,] s::AbstractString) -> AbstractString

General unescaping of traditional C and Unicode escape sequences. Reverse of escape_string.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/basic.jl#L369-L384
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2396-L2400
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/io.jl#L225-L231
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/io.jl#L278-L283

Chapter 50

Arrays

50.1 Constructors and Types

Core.AbstractArray – Type.

AbstractArray{T, N}

Abstract array supertype which arrays inherit from.

source

Core.Array – Type.

Array{T}(dims)

Array{T,N}(dims)

Construct an uninitialized N-dimensional dense array with element type T, where N is determined from the length

or number of dims. dims may be a tuple or a series of integer arguments corresponding to the lengths in each

dimension. If the rank N is supplied explicitly as in Array{T,N}(dims), then it must match the length or number

of dims.

Example

julia> A = Array{Float64, 2}(2, 2);

julia> ndims(A)

2

julia> eltype(A)

Float64

source

Base.getindex –Method.

getindex(type[, elements...])

Construct a 1-d array of the specified type. This is usually called with the syntax Type[]. Element values can be

specified using Type[a,b,c,...].

Example

599

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L5-L9
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L51-L72

600 CHAPTER 50. ARRAYS

julia> Int8[1, 2, 3]

3-element Array{Int8,1}:

1

2

3

julia> getindex(Int8, 1, 2, 3)

3-element Array{Int8,1}:

1

2

3

source

Base.zeros – Function.

zeros([A::AbstractArray,] [T=eltype(A)::Type,] [dims=size(A)::Tuple])

Createanarrayof all zeroswith the same layoutasA, element typeTandsizedims. TheAargument canbeskipped,

whichbehaves likeArray{Float64,0}()waspassed. For conveniencedimsmayalsobepassed in variadic form.

Examples

julia> zeros(1)

1-element Array{Float64,1}:

0.0

julia> zeros(Int8, 2, 3)

2×3 Array{Int8,2}:

0 0 0

0 0 0

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> zeros(A)

2×2 Array{Int64,2}:

0 0

0 0

julia> zeros(A, Float64)

2×2 Array{Float64,2}:

0.0 0.0

0.0 0.0

julia> zeros(A, Bool, (3,))

3-element Array{Bool,1}:

false

false

false

See also ones, similar.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L96-L116
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2353-L2393

50.1. CONSTRUCTORS AND TYPES 601

Base.ones – Function.

ones([A::AbstractArray,] [T=eltype(A)::Type,] [dims=size(A)::Tuple])

Create an array of all oneswith the same layout asA, element typeT and sizedims. TheA argument canbe skipped,

whichbehaves likeArray{Float64,0}()waspassed. For conveniencedimsmayalsobepassed in variadic form.

Examples

julia> ones(Complex128, 2, 3)

2×3 Array{Complex{Float64},2}:

1.0+0.0im 1.0+0.0im 1.0+0.0im

1.0+0.0im 1.0+0.0im 1.0+0.0im

julia> ones(1,2)

1×2 Array{Float64,2}:

1.0 1.0

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> ones(A)

2×2 Array{Int64,2}:

1 1

1 1

julia> ones(A, Float64)

2×2 Array{Float64,2}:

1.0 1.0

1.0 1.0

julia> ones(A, Bool, (3,))

3-element Array{Bool,1}:

true

true

true

See also zeros, similar.

source

Base.BitArray – Type.

BitArray(dims::Integer...)

BitArray{N}(dims::NTuple{N,Int})

Construct an uninitialized BitArraywith the given dimensions. Behaves identically to the Array constructor.

julia> BitArray(2, 2)

2×2 BitArray{2}:

false false

false true

julia> BitArray((3, 1))

3×1 BitArray{2}:

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L429-L469

602 CHAPTER 50. ARRAYS

false

true

false

source

BitArray(itr)

Construct a BitArray generated by the given iterable object. The shape is inferred from the itr object.

julia> BitArray([1 0; 0 1])

2×2 BitArray{2}:

true false

false true

julia> BitArray(x+y == 3 for x = 1:2, y = 1:3)

2×3 BitArray{2}:

false true false

true false false

julia> BitArray(x+y == 3 for x = 1:2 for y = 1:3)

6-element BitArray{1}:

false

true

false

true

false

false

source

Base.trues – Function.

trues(dims)

Create a BitArraywith all values set to true.

julia> trues(2,3)

2×3 BitArray{2}:

true true true

true true true

source

trues(A)

Create a BitArraywith all values set to true of the same shape as A.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> trues(A)

2×2 BitArray{2}:

true true

true true

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L31-L50
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L548-L574
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L393-L404

50.1. CONSTRUCTORS AND TYPES 603

source

Base.falses – Function.

falses(dims)

Create a BitArraywith all values set to false.

julia> falses(2,3)

2×3 BitArray{2}:

false false false

false false false

source

falses(A)

Create a BitArraywith all values set to false of the same shape as A.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> falses(A)

2×2 BitArray{2}:

false false

false false

source

Base.fill – Function.

fill(x, dims)

Create an array filled with the value x. For example, fill(1.0, (5,5)) returns a 5×5 array of floats, with each

element initialized to 1.0.

julia> fill(1.0, (5,5))

5×5 Array{Float64,2}:

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0

If x is an object reference, all elements will refer to the same object. fill(Foo(), dims) will return an array

filled with the result of evaluating Foo() once.

source

Base.fill! – Function.

fill!(A, x)

Fill arrayAwiththevaluex. Ifx is anobject reference, all elementswill refer to thesameobject. fill!(A, Foo())

will return A filled with the result of evaluating Foo() once.

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L407-L423
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L360-L371
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L374-L390
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L234-L252

604 CHAPTER 50. ARRAYS

julia> A = zeros(2,3)

2×3 Array{Float64,2}:

0.0 0.0 0.0

0.0 0.0 0.0

julia> fill!(A, 2.)

2×3 Array{Float64,2}:

2.0 2.0 2.0

2.0 2.0 2.0

julia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(3), a); a[1] = 2; A

3-element Array{Array{Int64,1},1}:

[2, 1, 1]

[2, 1, 1]

[2, 1, 1]

julia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(3), f())

3-element Array{Int64,1}:

1

1

1

source

Base.similar –Method.

similar(array, [element_type=eltype(array)], [dims=size(array)])

Create an uninitializedmutable arraywith the given element type and size, based upon the given source array. The

second and third arguments are both optional, defaulting to the given array's eltype and size. The dimensions

may be specified either as a single tuple argument or as a series of integer arguments.

CustomAbstractArraysubtypesmaychoosewhichspecificarray type isbest-suited to return for thegivenelement

typeanddimensionality. If theydonotspecialize thismethod, thedefault isanArray{element_type}(dims...).

For example, similar(1:10, 1, 4) returns an uninitialized Array{Int,2} since ranges are neither mutable

nor support 2 dimensions:

julia> similar(1:10, 1, 4)

1×4 Array{Int64,2}:

4419743872 4374413872 4419743888 0

Conversely,similar(trues(10,10), 2) returnsanuninitializedBitVectorwithtwoelementssinceBitArrays

are bothmutable and can support 1-dimensional arrays:

julia> similar(trues(10,10), 2)

2-element BitArray{1}:

false

false

Since BitArrays can only store elements of type Bool, however, if you request a different element type it will

create a regular Array instead:

julia> similar(falses(10), Float64, 2, 4)

2×4 Array{Float64,2}:

2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314

2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L5-L36

50.1. CONSTRUCTORS AND TYPES 605

source

Base.similar –Method.

similar(storagetype, indices)

Create an uninitializedmutable array analogous to that specified bystoragetype, butwithindices specified by

the last argument. storagetypemight be a type or a function.

Examples:

similar(Array{Int}, indices(A))

creates an array that "acts like" an Array{Int} (andmight indeed be backed by one), but which is indexed identi-

cally to A. If A has conventional indexing, this will be identical to Array{Int}(size(A)), but if A has unconven-

tional indexing then the indices of the result will match A.

similar(BitArray, (indices(A, 2),))

would create a 1-dimensional logical array whose indices match those of the columns of A.

similar(dims->zeros(Int, dims), indices(A))

would create an array of Int, initialized to zero, matching the indices of A.

source

Base.eye – Function.

eye([T::Type=Float64,] m::Integer, n::Integer)

m-by-n identity matrix. The default element type is Float64.

Examples

julia> eye(3, 4)

3×4 Array{Float64,2}:

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

julia> eye(2, 2)

2×2 Array{Float64,2}:

1.0 0.0

0.0 1.0

julia> eye(Int, 2, 2)

2×2 Array{Int64,2}:

1 0

0 1

source

eye(m, n)

m-by-n identity matrix.

source

eye([T::Type=Float64,] n::Integer)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L478-L519
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L538-L564
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L270-L295
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L304-L308

606 CHAPTER 50. ARRAYS

n-by-n identity matrix. The default element type is Float64.

Examples

julia> eye(Int, 2)

2×2 Array{Int64,2}:

1 0

0 1

julia> eye(2)

2×2 Array{Float64,2}:

1.0 0.0

0.0 1.0

source

eye(A)

Constructs an identity matrix of the same dimensions and type as A.

julia> A = [1 2 3; 4 5 6; 7 8 9]

3×3 Array{Int64,2}:

1 2 3

4 5 6

7 8 9

julia> eye(A)

3×3 Array{Int64,2}:

1 0 0

0 1 0

0 0 1

Note the difference from ones.

source

Base.linspace – Function.

linspace(start, stop, n=50)

Construct a range of n linearly spaced elements from start to stop.

julia> linspace(1.3,2.9,9)

1.3:0.2:2.9

source

Base.logspace – Function.

logspace(start::Real, stop::Real, n::Integer=50)

Construct a vector of n logarithmically spaced numbers from 10^start to 10^stop.

julia> logspace(1.,10.,5)

5-element Array{Float64,1}:

10.0

1778.28

3.16228e5

5.62341e7

1.0e10

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L311-L329
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L332-L352
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/range.jl#L230-L239

50.2. BASIC FUNCTIONS 607

source

Base.Random.randsubseq – Function.

randsubseq(A, p) -> Vector

Return a vector consisting of a random subsequence of the given array A, where each element of A is included (in

order) with independent probability p. (Complexity is linear in p*length(A), so this function is efficient even if p

is small and A is large.) Technically, this process is known as "Bernoulli sampling" of A.

source

Base.Random.randsubseq! – Function.

randsubseq!(S, A, p)

Like randsubseq, but the results are stored in S (which is resized as needed).

source

50.2 Basic functions

Base.ndims – Function.

ndims(A::AbstractArray) -> Integer

Returns the number of dimensions of A.

julia> A = ones(3,4,5);

julia> ndims(A)

3

source

Base.size – Function.

size(A::AbstractArray, [dim...])

Returns a tuple containing the dimensions ofA. Optionally you can specify the dimension(s) youwant the length of,

and get the length of that dimension, or a tuple of the lengths of dimensions you asked for.

julia> A = ones(2,3,4);

julia> size(A, 2)

3

julia> size(A,3,2)

(4, 3)

source

Base.indices –Method.

indices(A)

Returns the tuple of valid indices for array A.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/range.jl#L316-L330
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L1571-L1578
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L472-L477
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L103-L114
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L12-L28

608 CHAPTER 50. ARRAYS

julia> A = ones(5,6,7);

julia> indices(A)

(Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))

source

Base.indices –Method.

indices(A, d)

Returns the valid range of indices for array A along dimension d.

julia> A = ones(5,6,7);

julia> indices(A,2)

Base.OneTo(6)

source

Base.length –Method.

length(A::AbstractArray) -> Integer

Returns the number of elements in A.

julia> A = ones(3,4,5);

julia> length(A)

60

source

Base.eachindex – Function.

eachindex(A...)

Creates an iterable object for visiting each index of an AbstractArray A in an efficientmanner. For array types that

have opted into fast linear indexing (like Array), this is simply the range 1:length(A). For other array types, this

returns a specialized Cartesian range to efficiently index into the array with indices specified for every dimension.

For other iterables, including strings and dictionaries, this returns an iterator object supporting arbitrary index

types (e.g. unevenly spaced or non-integer indices).

Example for a sparse 2-d array:

julia> A = sparse([1, 1, 2], [1, 3, 1], [1, 2, -5])

2×3 SparseMatrixCSC{Int64,Int64} with 3 stored entries:

[1, 1] = 1

[2, 1] = -5

[1, 3] = 2

julia> for iter in eachindex(A)

@show iter.I[1], iter.I[2]

@show A[iter]

end

(iter.I[1], iter.I[2]) = (1, 1)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L50-L61
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L33-L44
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L119-L130

50.2. BASIC FUNCTIONS 609

A[iter] = 1

(iter.I[1], iter.I[2]) = (2, 1)

A[iter] = -5

(iter.I[1], iter.I[2]) = (1, 2)

A[iter] = 0

(iter.I[1], iter.I[2]) = (2, 2)

A[iter] = 0

(iter.I[1], iter.I[2]) = (1, 3)

A[iter] = 2

(iter.I[1], iter.I[2]) = (2, 3)

A[iter] = 0

If you supply more than one AbstractArray argument, eachindexwill create an iterable object that is fast for

all arguments (a UnitRange if all inputs have fast linear indexing, a CartesianRange otherwise). If the arrays

havedifferent sizesand/ordimensionalities,eachindex returnsan iterable that spans the largest rangealongeach

dimension.

source

Base.linearindices – Function.

linearindices(A)

ReturnsaUnitRange specifying thevalid rangeof indices forA[i]wherei is anInt. For arrayswith conventional

indexing (indices start at 1), or any multidimensional array, this is 1:length(A); however, for one-dimensional

arrays with unconventional indices, this is indices(A, 1).

Calling this function is the "safe" way to write algorithms that exploit linear indexing.

julia> A = ones(5,6,7);

julia> b = linearindices(A);

julia> extrema(b)

(1, 210)

source

Base.IndexStyle – Type.

IndexStyle(A)

IndexStyle(typeof(A))

IndexStyle specifies the "native indexing style" for array A. When you define a new AbstractArray type, you

can choose to implement either linear indexing or cartesian indexing. If you decide to implement linear indexing,

then youmust set this trait for your array type:

Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()

The default is IndexCartesian().

Julia's internal indexing machinery will automatically (and invisibly) convert all indexing operations into the pre-

ferred style using sub2ind or ind2sub. This allows users to access elements of your array using any indexing

style, evenwhen explicit methods have not been provided.

If you define both styles of indexing for your AbstractArray, this trait can be used to select themost performant

indexing style. Some methods check this trait on their inputs, and dispatch to different algorithms depending on

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L766-L809
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L77-L97

610 CHAPTER 50. ARRAYS

themost efficient access pattern. In particular, eachindex creates an iterator whose type depends on the setting

of this trait.

source

Base.countnz – Function.

countnz(A) -> Integer

Counts the number of nonzero values in array A (dense or sparse). Note that this is not a constant-time operation.

For sparsematrices, one should usually use nnz, which returns the number of stored values.

julia> A = [1 2 4; 0 0 1; 1 1 0]

3×3 Array{Int64,2}:

1 2 4

0 0 1

1 1 0

julia> countnz(A)

6

source

Base.conj! – Function.

conj!(A)

Transform an array to its complex conjugate in-place.

See also conj.

Example

julia> A = [1+im 2-im; 2+2im 3+im]

2×2 Array{Complex{Int64},2}:

1+1im 2-1im

2+2im 3+1im

julia> conj!(A);

julia> A

2×2 Array{Complex{Int64},2}:

1-1im 2+1im

2-2im 3-1im

source

Base.stride – Function.

stride(A, k::Integer)

Returns the distance inmemory (in number of elements) between adjacent elements in dimension k.

julia> A = ones(3,4,5);

julia> stride(A,2)

3

julia> stride(A,3)

12

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L260-L286
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L705-L721
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/arraymath.jl#L5-L26

50.2. BASIC FUNCTIONS 611

source

Base.strides – Function.

strides(A)

Returns a tuple of thememory strides in each dimension.

julia> A = ones(3,4,5);

julia> strides(A)

(1, 3, 12)

source

Base.ind2sub – Function.

ind2sub(a, index) -> subscripts

Returns a tuple of subscripts into array a corresponding to the linear index index.

julia> A = ones(5,6,7);

julia> ind2sub(A,35)

(5, 1, 2)

julia> ind2sub(A,70)

(5, 2, 3)

source

ind2sub(dims, index) -> subscripts

Returns a tuple of subscripts into an array with dimensions dims, corresponding to the linear index index.

Example:

i, j, ... = ind2sub(size(A), indmax(A))

provides the indices of themaximum element.

julia> ind2sub((3,4),2)

(2, 1)

julia> ind2sub((3,4),3)

(3, 1)

julia> ind2sub((3,4),4)

(1, 2)

source

Base.sub2ind – Function.

sub2ind(dims, i, j, k...) -> index

The inverse of ind2sub, returns the linear index corresponding to the provided subscripts.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L174-L188
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L200-L211
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L1542-L1556
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L1609-L1633

612 CHAPTER 50. ARRAYS

julia> sub2ind((5,6,7),1,2,3)

66

julia> sub2ind((5,6,7),1,6,3)

86

source

Base.LinAlg.checksquare – Function.

LinAlg.checksquare(A)

Check that amatrix is square, then return its common dimension. For multiple arguments, return a vector.

Example

julia> A = ones(4,4); B = zeros(5,5);

julia> LinAlg.checksquare(A, B)

2-element Array{Int64,1}:

4

5

source

50.3 Broadcast and vectorization

Seealso thedotsyntax forvectorizing functions; forexample,f.(args...) implicitlycallsbroadcast(f, args...).

Rather than relying on "vectorized"methods of functions likesin to operate on arrays, you should usesin.(a) to vec-

torize via broadcast.

Base.broadcast – Function.

broadcast(f, As...)

Broadcasts the arrays, tuples, Refs, nullables, and/or scalars As to a container of the appropriate type and dimen-

sions. In this context, anything that isnotasubtypeofAbstractArray,Ref (except forPtrs),Tuple, orNullable

is considered a scalar. The resulting container is established by the following rules:

• If all the arguments are scalars, it returns a scalar.

• If the arguments are tuples and zero ormore scalars, it returns a tuple.

• If the arguments contain at least one array or Ref, it returns an array (expanding singleton dimensions), and

treats Refs as 0-dimensional arrays, and tuples as 1-dimensional arrays.

The following additional rule applies to Nullable arguments: If there is at least one Nullable, and all the argu-

ments are scalars or Nullable, it returns a Nullable treating Nullables as "containers".

A special syntax exists for broadcasting: f.(args...) is equivalent to broadcast(f, args...), and nested

f.(g.(args...)) calls are fused into a single broadcast loop.

julia> A = [1, 2, 3, 4, 5]

5-element Array{Int64,1}:

1

2

3

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L1569-L1581
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/linalg.jl#L198-L214

50.3. BROADCAST ANDVECTORIZATION 613

4

5

julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]

5×2 Array{Int64,2}:

1 2

3 4

5 6

7 8

9 10

julia> broadcast(+, A, B)

5×2 Array{Int64,2}:

2 3

5 6

8 9

11 12

14 15

julia> parse.(Int, ["1", "2"])

2-element Array{Int64,1}:

1

2

julia> abs.((1, -2))

(1, 2)

julia> broadcast(+, 1.0, (0, -2.0))

(1.0, -1.0)

julia> broadcast(+, 1.0, (0, -2.0), Ref(1))

2-element Array{Float64,1}:

2.0

0.0

julia> (+).([[0,2], [1,3]], Ref{Vector{Int}}([1,-1]))

2-element Array{Array{Int64,1},1}:

[1, 1]

[2, 2]

julia> string.(("one","two","three","four"), ": ", 1:4)

4-element Array{String,1}:

"one: 1"

"two: 2"

"three: 3"

"four: 4"

julia> Nullable("X") .* "Y"

Nullable{String}("XY")

julia> broadcast(/, 1.0, Nullable(2.0))

Nullable{Float64}(0.5)

julia> (1 + im) ./ Nullable{Int}()

Nullable{Complex{Float64}}()

614 CHAPTER 50. ARRAYS

source

Base.broadcast! – Function.

broadcast!(f, dest, As...)

Like broadcast, but store the result of broadcast(f, As...) in the dest array. Note that dest is only used

to store the result, and does not supply arguments to f unless it is also listed in the As, as in broadcast!(f, A,

A, B) to perform A[:] = broadcast(f, A, B).

source

Base.Broadcast.@__dot__ –Macro.

@. expr

Convert every function call or operator in expr into a "dot call" (e.g. convert f(x) to f.(x)), and convert every

assignment in expr to a "dot assignment" (e.g. convert += to .+=).

If youwant toavoidaddingdots for selected functioncalls inexpr, splice those functioncalls inwith$. Forexample,

@. sqrt(abs($sort(x))) is equivalent to sqrt.(abs.(sort(x))) (no dot for sort).

(@. is equivalent to a call to @__dot__.)

julia> x = 1.0:3.0; y = similar(x);

julia> @. y = x + 3 * sin(x)

3-element Array{Float64,1}:

3.52441

4.72789

3.42336

source

Base.Broadcast.broadcast_getindex – Function.

broadcast_getindex(A, inds...)

Broadcasts theinds arrays to a commonsize likebroadcast and returns anarrayof the resultsA[ks...], where

ks goes over the positions in the broadcast result A.

julia> A = [1, 2, 3, 4, 5]

5-element Array{Int64,1}:

1

2

3

4

5

julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]

5×2 Array{Int64,2}:

1 2

3 4

5 6

7 8

9 10

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/broadcast.jl#L369-L454
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/broadcast.jl#L197-L205
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/broadcast.jl#L603-L626

50.4. INDEXING ANDASSIGNMENT 615

julia> C = broadcast(+,A,B)

5×2 Array{Int64,2}:

2 3

5 6

8 9

11 12

14 15

julia> broadcast_getindex(C,[1,2,10])

3-element Array{Int64,1}:

2

5

15

source

Base.Broadcast.broadcast_setindex! – Function.

broadcast_setindex!(A, X, inds...)

Broadcasts the X and inds arrays to a common size and stores the value from each position in X at the indices in A

given by the same positions in inds.

source

50.4 Indexing and assignment

Base.getindex –Method.

getindex(A, inds...)

Returns a subset of array A as specified by inds, where each indmay be an Int, a Range, or a Vector. See the

manual section on array indexing for details.

Examples

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> getindex(A, 1)

1

julia> getindex(A, [2, 1])

2-element Array{Int64,1}:

3

1

julia> getindex(A, 2:4)

3-element Array{Int64,1}:

3

2

4

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/broadcast.jl#L457-L495
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/broadcast.jl#L513-L518
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L119-L147

616 CHAPTER 50. ARRAYS

Base.setindex! –Method.

setindex!(A, X, inds...)

Store values from array Xwithin some subset of A as specified by inds.

source

Base.copy! –Method.

copy!(dest, Rdest::CartesianRange, src, Rsrc::CartesianRange) -> dest

Copy the block of src in the range of Rsrc to the block of dest in the range of Rdest. The sizes of the two regions

must match.

source

Base.isassigned – Function.

isassigned(array, i) -> Bool

Tests whether the given array has a value associated with index i. Returns false if the index is out of bounds, or

has an undefined reference.

julia> isassigned(rand(3, 3), 5)

true

julia> isassigned(rand(3, 3), 3 * 3 + 1)

false

julia> mutable struct Foo end

julia> v = similar(rand(3), Foo)

3-element Array{Foo,1}:

#undef

#undef

#undef

julia> isassigned(v, 1)

false

source

Base.Colon – Type.

Colon()

Colons (:) are used to signify indexing entire objects or dimensions at once.

Very fewoperations are defined onColons directly; instead they are converted byto_indices to an internal vec-

tor type (Base.Slice) to represent the collection of indices they span before being used.

source

Base.IteratorsMD.CartesianIndex – Type.

CartesianIndex(i, j, k...) -> I

CartesianIndex((i, j, k...)) -> I

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2288-L2292
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L887-L892
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/essentials.jl#L278-L302
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/essentials.jl#L311-L319

50.4. INDEXING ANDASSIGNMENT 617

Create amultidimensional indexI, which can be used for indexing amultidimensional arrayA. In particular,A[I] is

equivalent toA[i,j,k...]. One can freelymix integer andCartesianIndex indices; for example,A[Ipre, i,

Ipost] (where Ipre and Ipost are CartesianIndex indices and i is an Int) can be a useful expression when

writing algorithms that work along a single dimension of an array of arbitrary dimensionality.

ACartesianIndex is sometimesproducedbyeachindex, andalwayswhen iteratingwithanexplicitCartesianRange.

Example

julia> A = reshape(collect(1:16), (2, 2, 2, 2))

2×2×2×2 Array{Int64,4}:

[:, :, 1, 1] =

1 3

2 4

[:, :, 2, 1] =

5 7

6 8

[:, :, 1, 2] =

9 11

10 12

[:, :, 2, 2] =

13 15

14 16

julia> A[CartesianIndex((1, 1, 1, 1))]

1

julia> A[CartesianIndex((1, 1, 1, 2))]

9

julia> A[CartesianIndex((1, 1, 2, 1))]

5

source

Base.IteratorsMD.CartesianRange – Type.

CartesianRange(Istart::CartesianIndex, Istop::CartesianIndex) -> R

CartesianRange(sz::Dims) -> R

CartesianRange(istart:istop, jstart:jstop, ...) -> R

Define a region R spanning amultidimensional rectangular range of integer indices. These aremost commonly en-

countered in the context of iteration,wherefor I in R ... endwill returnCartesianIndex indicesIequiv-

alent to the nested loops

for j = jstart:jstop

for i = istart:istop

...

end

end

Consequently these can be useful for writing algorithms that work in arbitrary dimensions.

julia> foreach(println, CartesianRange((2, 2, 2)))

CartesianIndex{3}((1, 1, 1))

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L15-L61

618 CHAPTER 50. ARRAYS

CartesianIndex{3}((2, 1, 1))

CartesianIndex{3}((1, 2, 1))

CartesianIndex{3}((2, 2, 1))

CartesianIndex{3}((1, 1, 2))

CartesianIndex{3}((2, 1, 2))

CartesianIndex{3}((1, 2, 2))

CartesianIndex{3}((2, 2, 2))

source

Base.to_indices – Function.

to_indices(A, I::Tuple)

Convert the tuple I to a tuple of indices for use in indexing into array A.

The returned tuplemustonly containeitherIntsorAbstractArraysof scalar indices that are supportedbyarray

A. It will error upon encountering a novel index type that it does not know how to process.

For simple index types, it defers to the unexported Base.to_index(A, i) to process each index i. While this

internal function is not intended to be called directly, Base.to_indexmay be extended by custom array or index

types to provide custom indexing behaviors.

More complicated index types may require more context about the dimension into which they index. To support

thosecases,to_indices(A, I)callsto_indices(A, indices(A), I),whichthenrecursivelywalks through

both the given tuple of indices and the dimensional indices of A in tandem. As such, not all index types are guaran-

teed to propagate to Base.to_index.

source

Base.checkbounds – Function.

checkbounds(Bool, A, I...)

Return true if the specified indices I are in bounds for the given array A. Subtypes of AbstractArray should

specialize this method if they need to provide custom bounds checking behaviors; however, inmany cases one can

rely on A's indices and checkindex.

See also checkindex.

julia> A = rand(3, 3);

julia> checkbounds(Bool, A, 2)

true

julia> checkbounds(Bool, A, 3, 4)

false

julia> checkbounds(Bool, A, 1:3)

true

julia> checkbounds(Bool, A, 1:3, 2:4)

false

source

checkbounds(A, I...)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L137-L167
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/indices.jl#L193-L212
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L314-L339

50.5. VIEWS (SUBARRAYS ANDOTHER VIEW TYPES) 619

Throw an error if the specified indices I are not in bounds for the given array A.

source

Base.checkindex – Function.

checkindex(Bool, inds::AbstractUnitRange, index)

Return true if the given index is within the bounds of inds. Custom types that would like to behave as indices

for all arrays can extend this method in order to provide a specialized bounds checking implementation.

julia> checkindex(Bool,1:20,8)

true

julia> checkindex(Bool,1:20,21)

false

source

50.5 Views (SubArrays and other view types)

Base.view – Function.

view(A, inds...)

Like getindex, but returns a view into the parent array Awith the given indices instead of making a copy. Calling

getindex or setindex! on the returned SubArray computes the indices to the parent array on the fly without

checking bounds.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> b = view(A, :, 1)

2-element SubArray{Int64,1,Array{Int64,2},Tuple{Base.Slice{Base.OneTo{Int64}},Int64},true}:

1

3

julia> fill!(b, 0)

2-element SubArray{Int64,1,Array{Int64,2},Tuple{Base.Slice{Base.OneTo{Int64}},Int64},true}:

0

0

julia> A # Note A has changed even though we modified b

2×2 Array{Int64,2}:

0 2

0 4

source

Base.@view –Macro.

@view A[inds...]

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L355-L359
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L437-L452
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/subarray.jl#L80-L109

620 CHAPTER 50. ARRAYS

Creates a SubArray from an indexing expression. This can only be applied directly to a reference expression (e.g.

@view A[1,2:end]), and should not be used as the target of an assignment (e.g. @view(A[1,2:end]) = ...).

See also @views to switch an entire block of code to use views for slicing.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> b = @view A[:, 1]

2-element SubArray{Int64,1,Array{Int64,2},Tuple{Base.Slice{Base.OneTo{Int64}},Int64},true}:

1

3

julia> fill!(b, 0)

2-element SubArray{Int64,1,Array{Int64,2},Tuple{Base.Slice{Base.OneTo{Int64}},Int64},true}:

0

0

julia> A

2×2 Array{Int64,2}:

0 2

0 4

source

Base.@views –Macro.

@views expression

Convert every array-slicing operation in the given expression (which may be a begin/end block, loop, function,

etc.) to return a view. Scalar indices, non-array types, and explicit getindex calls (as opposed to array[...])

are unaffected.

Note that the@viewsmacroonlyaffectsarray[...] expressions thatappearexplicitly in thegivenexpression,

not array slicing that occurs in functions called by that code.

source

Base.parent – Function.

parent(A)

Returns the "parent array" of an array view type (e.g., SubArray), or the array itself if it is not a view.

source

Base.parentindexes – Function.

parentindexes(A)

From an array view A, returns the corresponding indexes in the parent.

source

Base.slicedim – Function.

slicedim(A, d::Integer, i)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/subarray.jl#L418-L447
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/subarray.jl#L527-L539
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1798-L1803
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/subarray.jl#L64-L68

50.5. VIEWS (SUBARRAYS ANDOTHER VIEW TYPES) 621

Return all the data of Awhere the index for dimension d equals i. Equivalent to A[:,:,...,i,:,:,...] where

i is in position d.

Example

julia> A = [1 2 3 4; 5 6 7 8]

2×4 Array{Int64,2}:

1 2 3 4

5 6 7 8

julia> slicedim(A,2,3)

2-element Array{Int64,1}:

3

7

source

Base.reinterpret – Function.

reinterpret(type, A)

Change the type-interpretation of a block of memory. For arrays, this constructs an array with the same binary

dataas thegivenarray, butwith the specifiedelement type. Forexample,reinterpret(Float32, UInt32(7))

interprets the 4 bytes corresponding to UInt32(7) as a Float32.

Warning

It is not allowed to reinterpret an array to an element type with a larger alignment then the align-

ment of the array. For a normalArray, this is the alignment of its element type. For a reinterpreted ar-

ray, this is thealignmentof theArray itwasreinterpreted from. Forexample,reinterpret(UInt32,

UInt8[0, 0, 0, 0]) isnotallowedbutreinterpret(UInt32, reinterpret(UInt8, Float32[1.0]))

is allowed.

Examples

julia> reinterpret(Float32, UInt32(7))

1.0f-44

julia> reinterpret(Float32, UInt32[1 2 3 4 5])

1×5 Array{Float32,2}:

1.4013f-45 2.8026f-45 4.2039f-45 5.60519f-45 7.00649f-45

source

Base.reshape – Function.

reshape(A, dims...) -> R

reshape(A, dims) -> R

Return an array R with the same data as A, but with different dimension sizes or number of dimensions. The two

arrays share the same underlying data, so that setting elements of R alters the values of A and vice versa.

The new dimensionsmay be specified either as a list of arguments or as a shape tuple. Atmost one dimensionmay

be specified with a :, in which case its length is computed such that its product with all the specified dimensions is

equal to the length of the original array A. The total number of elements must not change.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarraymath.jl#L100-L118
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1245-L1272

622 CHAPTER 50. ARRAYS

julia> A = collect(1:16)

16-element Array{Int64,1}:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

julia> reshape(A, (4, 4))

4×4 Array{Int64,2}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> reshape(A, 2, :)

2×8 Array{Int64,2}:

1 3 5 7 9 11 13 15

2 4 6 8 10 12 14 16

source

Base.squeeze – Function.

squeeze(A, dims)

Remove the dimensions specified by dims from array A. Elements of dims must be unique and within the range

1:ndims(A). size(A,i)must equal 1 for all i in dims.

Example

julia> a = reshape(collect(1:4),(2,2,1,1))

2×2×1×1 Array{Int64,4}:

[:, :, 1, 1] =

1 3

2 4

julia> squeeze(a,3)

2×2×1 Array{Int64,3}:

[:, :, 1] =

1 3

2 4

source

Base.vec – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reshapedarray.jl#L39-L87
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarraymath.jl#L45-L66

50.6. CONCATENATION AND PERMUTATION 623

vec(a::AbstractArray) -> Vector

Reshape the array a as a one-dimensional column vector. The resulting array shares the same underlying data as

a, so modifying onewill alsomodify the other.

Example

julia> a = [1 2 3; 4 5 6]

2×3 Array{Int64,2}:

1 2 3

4 5 6

julia> vec(a)

6-element Array{Int64,1}:

1

4

2

5

3

6

See also reshape.

source

50.6 Concatenation and permutation

Base.cat – Function.

cat(dims, A...)

Concatenate the inputarraysalong thespecifieddimensions in the iterabledims. Fordimensionsnot indims, all in-

putarraysshouldhavethesamesize,whichwill alsobethesizeof theoutputarrayalongthatdimension. Fordimen-

sions in dims, the size of the output array is the sumof the sizes of the input arrays along that dimension. If dims is

a single number, the different arrays are tightly stacked along that dimension. If dims is an iterable containing sev-

eral dimensions, this allows one to construct block diagonal matrices and their higher-dimensional analogues by

simultaneously increasing several dimensions for every new input array and putting zero blocks elsewhere. For

example, cat([1,2], matrices...) builds a block diagonal matrix, i.e. a block matrix with matrices[1],

matrices[2], ... as diagonal blocks andmatching zero blocks away from the diagonal.

source

Base.vcat – Function.

vcat(A...)

Concatenate along dimension 1.

julia> a = [1 2 3 4 5]

1×5 Array{Int64,2}:

1 2 3 4 5

julia> b = [6 7 8 9 10; 11 12 13 14 15]

2×5 Array{Int64,2}:

6 7 8 9 10

11 12 13 14 15

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarraymath.jl#L12-L37
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1836-L1850

624 CHAPTER 50. ARRAYS

julia> vcat(a,b)

3×5 Array{Int64,2}:

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

julia> c = ([1 2 3], [4 5 6])

([1 2 3], [4 5 6])

julia> vcat(c...)

2×3 Array{Int64,2}:

1 2 3

4 5 6

source

Base.hcat – Function.

hcat(A...)

Concatenate along dimension 2.

julia> a = [1; 2; 3; 4; 5]

5-element Array{Int64,1}:

1

2

3

4

5

julia> b = [6 7; 8 9; 10 11; 12 13; 14 15]

5×2 Array{Int64,2}:

6 7

8 9

10 11

12 13

14 15

julia> hcat(a,b)

5×3 Array{Int64,2}:

1 6 7

2 8 9

3 10 11

4 12 13

5 14 15

julia> c = ([1; 2; 3], [4; 5; 6])

([1, 2, 3], [4, 5, 6])

julia> hcat(c...)

3×2 Array{Int64,2}:

1 4

2 5

3 6

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L1230-L1259
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L1261-L1300

50.6. CONCATENATION AND PERMUTATION 625

Base.hvcat – Function.

hvcat(rows::Tuple{Vararg{Int}}, values...)

Horizontal and vertical concatenation in one call. This function is called for blockmatrix syntax. Thefirst argument

specifies the number of arguments to concatenate in each block row.

julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6

(1, 2, 3, 4, 5, 6)

julia> [a b c; d e f]

2×3 Array{Int64,2}:

1 2 3

4 5 6

julia> hvcat((3,3), a,b,c,d,e,f)

2×3 Array{Int64,2}:

1 2 3

4 5 6

julia> [a b;c d; e f]

3×2 Array{Int64,2}:

1 2

3 4

5 6

julia> hvcat((2,2,2), a,b,c,d,e,f)

3×2 Array{Int64,2}:

1 2

3 4

5 6

If the first argument is a single integer n, then all block rows are assumed to have n block columns.

source

Base.flipdim – Function.

flipdim(A, d::Integer)

Reverse A in dimension d.

Example

julia> b = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> flipdim(b,2)

2×2 Array{Int64,2}:

2 1

4 3

source

Base.circshift – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L1335-L1371
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarraymath.jl#L126-L143

626 CHAPTER 50. ARRAYS

circshift(A, shifts)

Circularly shift the data in an array. The second argument is a vector giving the amount to shift in each dimension.

Example

julia> b = reshape(collect(1:16), (4,4))

4×4 Array{Int64,2}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> circshift(b, (0,2))

4×4 Array{Int64,2}:

9 13 1 5

10 14 2 6

11 15 3 7

12 16 4 8

julia> circshift(b, (-1,0))

4×4 Array{Int64,2}:

2 6 10 14

3 7 11 15

4 8 12 16

1 5 9 13

See also circshift!.

source

Base.circshift! – Function.

circshift!(dest, src, shifts)

Circularly shift the data in src, storing the result in dest. shifts specifies the amount to shift in each dimension.

The dest arraymust be distinct from the src array (they cannot alias each other).

See also circshift.

source

Base.circcopy! – Function.

circcopy!(dest, src)

Copy src to dest, indexing each dimension modulo its length. src and destmust have the same size, but can be

offset in their indices; any offset results in a (circular) wraparound. If the arrays have overlapping indices, then on

the domain of the overlap dest agrees with src.

Example

julia> src = reshape(collect(1:16), (4,4))

4×4 Array{Int64,2}:

1 5 9 13

2 6 10 14

3 7 11 15

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarraymath.jl#L178-L209
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L897-L907

50.6. CONCATENATION AND PERMUTATION 627

4 8 12 16

julia> dest = OffsetArray{Int}((0:3,2:5))

julia> circcopy!(dest, src)

OffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5:

8 12 16 4

5 9 13 1

6 10 14 2

7 11 15 3

julia> dest[1:3,2:4] == src[1:3,2:4]

true

source

Base.contains –Method.

contains(fun, itr, x) -> Bool

Returns true if there is at least one element y in itr such that fun(y,x) is true.

julia> vec = [10, 100, 200]

3-element Array{Int64,1}:

10

100

200

julia> contains(==, vec, 200)

true

julia> contains(==, vec, 300)

false

julia> contains(>, vec, 100)

true

julia> contains(>, vec, 200)

false

source

Base.find –Method.

find(A)

Return a vector of the linear indexes of the non-zeros in A (determined by A[i]!=0). A common use of this is to

convert a boolean array to an array of indexes of the true elements. If there are no non-zero elements of A, find

returns an empty array.

Examples

julia> A = [true false; false true]

2×2 Array{Bool,2}:

true false

false true

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L950-L980
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L638-L662

628 CHAPTER 50. ARRAYS

julia> find(A)

2-element Array{Int64,1}:

1

4

julia> find(zeros(3))

0-element Array{Int64,1}

source

Base.find –Method.

find(f::Function, A)

Return a vector I of the linear indexes of Awhere f(A[I]) returns true. If there are no such elements of A, find

returns an empty array.

Examples

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> find(isodd,A)

2-element Array{Int64,1}:

1

2

julia> find(isodd, [2, 4])

0-element Array{Int64,1}

source

Base.findn – Function.

findn(A)

Return a vector of indexes for each dimension giving the locations of the non-zeros in A (determined by A[i]!=0).

If there are no non-zero elements of A, findn returns a 2-tuple of empty arrays.

Examples

julia> A = [1 2 0; 0 0 3; 0 4 0]

3×3 Array{Int64,2}:

1 2 0

0 0 3

0 4 0

julia> findn(A)

([1, 1, 3, 2], [1, 2, 2, 3])

julia> A = zeros(2,2)

2×2 Array{Float64,2}:

0.0 0.0

0.0 0.0

julia> findn(A)

(Int64[], Int64[])

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1532-L1554
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1493-L1514

50.6. CONCATENATION AND PERMUTATION 629

source

Base.findnz – Function.

findnz(A)

Return a tuple (I, J, V)where I and J are the row and column indexes of the non-zero values in matrix A, and

V is a vector of the non-zero values.

Example

julia> A = [1 2 0; 0 0 3; 0 4 0]

3×3 Array{Int64,2}:

1 2 0

0 0 3

0 4 0

julia> findnz(A)

([1, 1, 3, 2], [1, 2, 2, 3], [1, 2, 4, 3])

source

Base.findfirst –Method.

findfirst(A)

Return the linear indexof thefirstnon-zerovalue inA (determinedbyA[i]!=0). Returns0 if no suchvalue is found.

Examples

julia> A = [0 0; 1 0]

2×2 Array{Int64,2}:

0 0

1 0

julia> findfirst(A)

2

julia> findfirst(zeros(3))

0

source

Base.findfirst –Method.

findfirst(A, v)

Return the linear index of the first element equal to v in A. Returns 0 if v is not found.

Examples

julia> A = [4 6; 2 2]

2×2 Array{Int64,2}:

4 6

2 2

julia> findfirst(A,2)

2

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1574-L1600
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1616-L1633
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1219-L1238

630 CHAPTER 50. ARRAYS

julia> findfirst(A,3)

0

source

Base.findfirst –Method.

findfirst(predicate::Function, A)

Return the linear index of the first element of A for which predicate returns true. Returns 0 if there is no such

element.

Examples

julia> A = [1 4; 2 2]

2×2 Array{Int64,2}:

1 4

2 2

julia> findfirst(iseven, A)

2

julia> findfirst(x -> x>10, A)

0

source

Base.findlast –Method.

findlast(A)

Return the linear index of the last non-zero value in A (determined by A[i]!=0). Returns 0 if there is no non-zero

value in A.

Examples

julia> A = [1 0; 1 0]

2×2 Array{Int64,2}:

1 0

1 0

julia> findlast(A)

2

julia> A = zeros(2,2)

2×2 Array{Float64,2}:

0.0 0.0

0.0 0.0

julia> findlast(A)

0

source

Base.findlast –Method.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1268-L1287
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1318-L1337
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1366-L1390

50.6. CONCATENATION AND PERMUTATION 631

findlast(A, v)

Return the linear index of the last element equal to v in A. Returns 0 if there is no element of A equal to v.

Examples

julia> A = [1 2; 2 1]

2×2 Array{Int64,2}:

1 2

2 1

julia> findlast(A,1)

4

julia> findlast(A,2)

3

julia> findlast(A,3)

0

source

Base.findlast –Method.

findlast(predicate::Function, A)

Return the linear index of the last element of A for which predicate returns true. Returns 0 if there is no such

element.

Examples

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> findlast(isodd, A)

2

julia> findlast(x -> x > 5, A)

0

source

Base.findnext –Method.

findnext(A, i::Integer)

Find the next linear index >= i of a non-zero element of A, or 0 if not found.

Examples

julia> A = [0 0; 1 0]

2×2 Array{Int64,2}:

0 0

1 0

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1419-L1441
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1471-L1490

632 CHAPTER 50. ARRAYS

julia> findnext(A,1)

2

julia> findnext(A,3)

0

source

Base.findnext –Method.

findnext(predicate::Function, A, i::Integer)

Find the next linear index >= i of an element of A for which predicate returns true, or 0 if not found.

Examples

julia> A = [1 4; 2 2]

2×2 Array{Int64,2}:

1 4

2 2

julia> findnext(isodd, A, 1)

1

julia> findnext(isodd, A, 2)

0

source

Base.findnext –Method.

findnext(A, v, i::Integer)

Find the next linear index >= i of an element of A equal to v (using ==), or 0 if not found.

Examples

julia> A = [1 4; 2 2]

2×2 Array{Int64,2}:

1 4

2 2

julia> findnext(A,4,4)

0

julia> findnext(A,4,3)

3

source

Base.findprev –Method.

findprev(A, i::Integer)

Find the previous linear index <= i of a non-zero element of A, or 0 if not found.

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1191-L1209
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1290-L1308
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1241-L1259

50.6. CONCATENATION AND PERMUTATION 633

julia> A = [0 0; 1 2]

2×2 Array{Int64,2}:

0 0

1 2

julia> findprev(A,2)

2

julia> findprev(A,1)

0

source

Base.findprev –Method.

findprev(predicate::Function, A, i::Integer)

Find the previous linear index <= i of an element of A for which predicate returns true, or 0 if not found.

Examples

julia> A = [4 6; 1 2]

2×2 Array{Int64,2}:

4 6

1 2

julia> findprev(isodd, A, 1)

0

julia> findprev(isodd, A, 3)

2

source

Base.findprev –Method.

findprev(A, v, i::Integer)

Find the previous linear index <= i of an element of A equal to v (using ==), or 0 if not found.

Examples

julia> A = [0 0; 1 2]

2×2 Array{Int64,2}:

0 0

1 2

julia> findprev(A, 1, 4)

2

julia> findprev(A, 1, 1)

0

source

Base.permutedims – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1340-L1358
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1444-L1463
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/array.jl#L1393-L1411

634 CHAPTER 50. ARRAYS

permutedims(A, perm)

Permute the dimensions of array A. perm is a vector specifying a permutation of length ndims(A). This is a gener-

alization of transpose for multi-dimensional arrays. Transpose is equivalent to permutedims(A, [2,1]).

See also: PermutedDimsArray.

Example

julia> A = reshape(collect(1:8), (2,2,2))

2×2×2 Array{Int64,3}:

[:, :, 1] =

1 3

2 4

[:, :, 2] =

5 7

6 8

julia> permutedims(A, [3, 2, 1])

2×2×2 Array{Int64,3}:

[:, :, 1] =

1 3

5 7

[:, :, 2] =

2 4

6 8

source

Base.permutedims! – Function.

permutedims!(dest, src, perm)

Permute the dimensions of arraysrc and store the result in the arraydest. perm is a vector specifying a permuta-

tion of length ndims(src). The preallocated array dest should have size(dest) == size(src)[perm] and

is completely overwritten. No in-place permutation is supported and unexpected results will happen if src and

dest have overlappingmemory regions.

See also permutedims.

source

Base.PermutedDimsArrays.PermutedDimsArray – Type.

PermutedDimsArray(A, perm) -> B

GivenanAbstractArrayA, createaviewBsuchthat thedimensionsappear tobepermuted. Similar topermutedims,

except that no copying occurs (B shares storage with A).

See also: permutedims.

Example

julia> A = rand(3,5,4);

julia> B = PermutedDimsArray(A, (3,1,2));

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/permuteddimsarray.jl#L83-L114
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/permuteddimsarray.jl#L120-L130

50.7. ARRAY FUNCTIONS 635

julia> size(B)

(4, 3, 5)

julia> B[3,1,2] == A[1,2,3]

true

source

Base.promote_shape – Function.

promote_shape(s1, s2)

Check two array shapes for compatibility, allowing trailing singleton dimensions, and return whichever shape has

more dimensions.

julia> a = ones(3,4,1,1,1);

julia> b = ones(3,4);

julia> promote_shape(a,b)

(Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1))

julia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1))

(2, 3, 1, 4, 1)

source

50.7 Array functions

Base.accumulate –Method.

accumulate(op, A, dim=1)

Cumulative operation op along a dimension dim (defaults to 1). See also accumulate! to use a preallocated out-

put array, both for performance and to control the precision of the output (e.g. to avoid overflow). For common

operations there are specialized variants of accumulate, see: cumsum, cumprod

julia> accumulate(+, [1,2,3])

3-element Array{Int64,1}:

1

3

6

julia> accumulate(*, [1,2,3])

3-element Array{Int64,1}:

1

2

6

source

accumulate(op, v0, A)

Like accumulate, but using a starting element v0. The first entry of the result will be op(v0, first(A)). For

example:

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/permuteddimsarray.jl#L19-L41
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/indices.jl#L34-L51
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L710-L732

636 CHAPTER 50. ARRAYS

julia> accumulate(+, 100, [1,2,3])

3-element Array{Int64,1}:

101

103

106

julia> accumulate(min, 0, [1,2,-1])

3-element Array{Int64,1}:

0

0

-1

source

Base.accumulate! – Function.

accumulate!(op, B, A, dim=1)

Cumulative operation op on A along a dimension, storing the result in B. The dimension defaults to 1. See also

accumulate.

source

Base.cumprod – Function.

cumprod(A, dim=1)

Cumulative product along a dimension dim (defaults to 1). See also cumprod! to use a preallocated output array,

both for performance and to control the precision of the output (e.g. to avoid overflow).

julia> a = [1 2 3; 4 5 6]

2×3 Array{Int64,2}:

1 2 3

4 5 6

julia> cumprod(a,1)

2×3 Array{Int64,2}:

1 2 3

4 10 18

julia> cumprod(a,2)

2×3 Array{Int64,2}:

1 2 6

4 20 120

source

Base.cumprod! – Function.

cumprod!(B, A, dim::Integer=1)

Cumulative product of A along a dimension, storing the result in B. The dimension defaults to 1. See also cumprod.

source

Base.cumsum – Function.

cumsum(A, dim=1)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L739-L758
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L793-L798
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L676-L699
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L702-L707

50.7. ARRAY FUNCTIONS 637

Cumulative sum along a dimension dim (defaults to 1). See also cumsum! to use a preallocated output array, both

for performance and to control the precision of the output (e.g. to avoid overflow).

julia> a = [1 2 3; 4 5 6]

2×3 Array{Int64,2}:

1 2 3

4 5 6

julia> cumsum(a,1)

2×3 Array{Int64,2}:

1 2 3

5 7 9

julia> cumsum(a,2)

2×3 Array{Int64,2}:

1 3 6

4 9 15

source

Base.cumsum! – Function.

cumsum!(B, A, dim::Integer=1)

Cumulative sum of A along a dimension, storing the result in B. The dimension defaults to 1. See also cumsum.

source

Base.cumsum_kbn – Function.

cumsum_kbn(A, [dim::Integer=1])

Cumulative sum along a dimension, using the Kahan-Babuska-Neumaier compensated summation algorithm for

additional accuracy. The dimension defaults to 1.

source

Base.LinAlg.diff – Function.

diff(A, [dim::Integer=1])

Finite difference operator ofmatrix or vectorA. IfA is amatrix, compute the finite difference over a dimensiondim

(default 1).

Example

julia> a = [2 4; 6 16]

2×2 Array{Int64,2}:

2 4

6 16

julia> diff(a,2)

2×1 Array{Int64,2}:

2

10

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L639-L662
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L668-L673
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarraymath.jl#L240-L245
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L251-L270

638 CHAPTER 50. ARRAYS

Base.LinAlg.gradient – Function.

gradient(F::AbstractVector, [h::Real])

Compute differences along vector F, using h as the spacing between points. The default spacing is one.

Example

julia> a = [2,4,6,8];

julia> gradient(a)

4-element Array{Float64,1}:

2.0

2.0

2.0

2.0

source

Base.rot180 – Function.

rot180(A)

Rotatematrix A 180 degrees.

Example

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> rot180(a)

2×2 Array{Int64,2}:

4 3

2 1

source

rot180(A, k)

Rotatematrix A 180 degrees an integer k number of times. If k is even, this is equivalent to a copy.

Examples

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> rot180(a,1)

2×2 Array{Int64,2}:

4 3

2 1

julia> rot180(a,2)

2×2 Array{Int64,2}:

1 2

3 4

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L284-L302
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/arraymath.jl#L170-L187

50.7. ARRAY FUNCTIONS 639

source

Base.rotl90 – Function.

rotl90(A)

Rotatematrix A left 90 degrees.

Example

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> rotl90(a)

2×2 Array{Int64,2}:

2 4

1 3

source

rotl90(A, k)

Rotate matrix A left 90 degrees an integer k number of times. If k is zero or a multiple of four, this is equivalent to

a copy.

Examples

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> rotl90(a,1)

2×2 Array{Int64,2}:

2 4

1 3

julia> rotl90(a,2)

2×2 Array{Int64,2}:

4 3

2 1

julia> rotl90(a,3)

2×2 Array{Int64,2}:

3 1

4 2

julia> rotl90(a,4)

2×2 Array{Int64,2}:

1 2

3 4

source

Base.rotr90 – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/arraymath.jl#L272-L295
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/arraymath.jl#L115-L132
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/arraymath.jl#L197-L230

640 CHAPTER 50. ARRAYS

rotr90(A)

Rotatematrix A right 90 degrees.

Example

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> rotr90(a)

2×2 Array{Int64,2}:

3 1

4 2

source

rotr90(A, k)

Rotatematrix A right 90 degrees an integer k number of times. If k is zero or amultiple of four, this is equivalent to

a copy.

Examples

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> rotr90(a,1)

2×2 Array{Int64,2}:

3 1

4 2

julia> rotr90(a,2)

2×2 Array{Int64,2}:

4 3

2 1

julia> rotr90(a,3)

2×2 Array{Int64,2}:

2 4

1 3

julia> rotr90(a,4)

2×2 Array{Int64,2}:

1 2

3 4

source

Base.reducedim – Function.

reducedim(f, A, region[, v0])

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/arraymath.jl#L143-L160
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/arraymath.jl#L237-L270

50.7. ARRAY FUNCTIONS 641

Reduce 2-argument function f along dimensions of A. region is a vector specifying the dimensions to reduce, and

v0 is the initial value to use in the reductions. For +, *, max and min the v0 argument is optional.

The associativity of the reduction is implementation-dependent; if you need a particular associativity, e.g. left-to-

right, you should write your own loop. See documentation for reduce.

Examples

julia> a = reshape(collect(1:16), (4,4))

4×4 Array{Int64,2}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> reducedim(max, a, 2)

4×1 Array{Int64,2}:

13

14

15

16

julia> reducedim(max, a, 1)

1×4 Array{Int64,2}:

4 8 12 16

source

Base.mapreducedim – Function.

mapreducedim(f, op, A, region[, v0])

Evaluates to the same as reducedim(op, map(f, A), region, f(v0)), but is generally faster because the

intermediate array is avoided.

Examples

julia> a = reshape(collect(1:16), (4,4))

4×4 Array{Int64,2}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> mapreducedim(isodd, *, a, 1)

1×4 Array{Bool,2}:

false false false false

julia> mapreducedim(isodd, |, a, 1, true)

1×4 Array{Bool,2}:

true true true true

source

Base.mapslices – Function.

mapslices(f, A, dims)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L245-L276
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reducedim.jl#L216-L239

642 CHAPTER 50. ARRAYS

TransformthegivendimensionsofarrayAusing functionf. f is calledoneachsliceofAof the formA[...,:,...,:,...].

dims is an integer vector specifyingwhere the colons go in this expression. The results are concatenated along the

remaining dimensions. For example, if dims is [1,2] and A is 4-dimensional, f is called on A[:,:,i,j] for all i

and j.

Examples

julia> a = reshape(collect(1:16),(2,2,2,2))

2×2×2×2 Array{Int64,4}:

[:, :, 1, 1] =

1 3

2 4

[:, :, 2, 1] =

5 7

6 8

[:, :, 1, 2] =

9 11

10 12

[:, :, 2, 2] =

13 15

14 16

julia> mapslices(sum, a, [1,2])

1×1×2×2 Array{Int64,4}:

[:, :, 1, 1] =

10

[:, :, 2, 1] =

26

[:, :, 1, 2] =

42

[:, :, 2, 2] =

58

source

Base.sum_kbn – Function.

sum_kbn(A)

Returns the sum of all elements of A, using the Kahan-Babuska-Neumaier compensated summation algorithm for

additional accuracy.

source

50.8 Combinatorics

Base.Random.randperm – Function.

randperm([rng=GLOBAL_RNG,] n::Integer)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarray.jl#L1741-L1784
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/reduce.jl#L366-L371

50.8. COMBINATORICS 643

Construct a random permutation of length n. The optional rng argument specifies a random number generator

(see RandomNumbers). To randomly permute a arbitrary vector, see shuffle or shuffle!.

Example

julia> rng = MersenneTwister(1234);

julia> randperm(rng, 4)

4-element Array{Int64,1}:

2

1

4

3

source

Base.invperm – Function.

invperm(v)

Return the inverse permutation of v. If B = A[v], then A == B[invperm(v)].

Example

julia> v = [2; 4; 3; 1];

julia> invperm(v)

4-element Array{Int64,1}:

4

1

3

2

julia> A = ['a','b','c','d'];

julia> B = A[v]

4-element Array{Char,1}:

'b'

'd'

'c'

'a'

julia> B[invperm(v)]

4-element Array{Char,1}:

'a'

'b'

'c'

'd'

source

Base.isperm – Function.

isperm(v) -> Bool

Returns true if v is a valid permutation.

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L1666-L1686
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/combinatorics.jl#L182-L215

644 CHAPTER 50. ARRAYS

julia> isperm([1; 2])

true

julia> isperm([1; 3])

false

source

Base.permute! –Method.

permute!(v, p)

Permute vector v in-place, according to permutation p. No checking is done to verify that p is a permutation.

To return a new permutation, use v[p]. Note that this is generally faster than permute!(v,p) for large vectors.

See also ipermute!.

Example

julia> A = [1, 1, 3, 4];

julia> perm = [2, 4, 3, 1];

julia> permute!(A, perm);

julia> A

4-element Array{Int64,1}:

1

4

3

1

source

Base.ipermute! – Function.

ipermute!(v, p)

Like permute!, but the inverse of the given permutation is applied.

Example

julia> A = [1, 1, 3, 4];

julia> perm = [2, 4, 3, 1];

julia> ipermute!(A, perm);

julia> A

4-element Array{Int64,1}:

4

1

3

1

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/combinatorics.jl#L59-L72
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/combinatorics.jl#L107-L133
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/combinatorics.jl#L159-L179

50.8. COMBINATORICS 645

Base.Random.randcycle – Function.

randcycle([rng=GLOBAL_RNG,] n::Integer)

Construct a random cyclic permutation of length n. The optional rng argument specifies a random number gener-

ator, see RandomNumbers.

Example

julia> rng = MersenneTwister(1234);

julia> randcycle(rng, 6)

6-element Array{Int64,1}:

3

5

4

6

1

2

source

Base.Random.shuffle – Function.

shuffle([rng=GLOBAL_RNG,] v)

Return a randomly permuted copy of v. The optional rng argument specifies a random number generator (see

RandomNumbers). To permute v in-place, see shuffle!. To obtain randomly permuted indices, see randperm.

Example

julia> rng = MersenneTwister(1234);

julia> shuffle(rng, collect(1:10))

10-element Array{Int64,1}:

6

1

10

2

3

9

5

7

4

8

source

Base.Random.shuffle! – Function.

shuffle!([rng=GLOBAL_RNG,] v)

In-place version of shuffle: randomly permute the array v in-place, optionally supplying the random-number

generator rng.

Example

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L1707-L1727
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L1636-L1662

646 CHAPTER 50. ARRAYS

julia> rng = MersenneTwister(1234);

julia> shuffle!(rng, collect(1:16))

16-element Array{Int64,1}:

2

15

5

14

1

9

10

6

11

3

16

7

4

12

8

13

source

Base.reverse – Function.

reverse(v [, start=1 [, stop=length(v)]])

Return a copy of v reversed from start to stop.

Examples

julia> A = collect(1:5)

5-element Array{Int64,1}:

1

2

3

4

5

julia> reverse(A)

5-element Array{Int64,1}:

5

4

3

2

1

julia> reverse(A, 1, 4)

5-element Array{Int64,1}:

4

3

2

1

5

julia> reverse(A, 3, 5)

5-element Array{Int64,1}:

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/random.jl#L1591-L1621

50.9. BITARRAYS 647

1

2

5

4

3

source

Base.reverseind – Function.

reverseind(v, i)

Givenan indexi inreverse(v), returnthecorresponding index invsothatv[reverseind(v,i)] == reverse(v)[i].

(This can be nontrivial in the case where v is a Unicode string.)

source

Base.reverse! – Function.

reverse!(v [, start=1 [, stop=length(v)]]) -> v

In-place version of reverse.

source

50.9 BitArrays

BitArrays are space-efficient "packed" boolean arrays, which store one bit per boolean value. They can be used sim-

ilarly to Array{Bool} arrays (which store one byte per boolean value), and can be converted to/from the latter via

Array(bitarray) and BitArray(array), respectively.

Base.flipbits! – Function.

flipbits!(B::BitArray{N}) -> BitArray{N}

Performs a bitwise not operation on B. See ~.

Example

julia> A = trues(2,2)

2×2 BitArray{2}:

true true

true true

julia> flipbits!(A)

2×2 BitArray{2}:

false false

false false

source

Base.rol! – Function.

rol!(dest::BitVector, src::BitVector, i::Integer) -> BitVector

Performs a left rotation operation on src and puts the result into dest. i controls how far to rotate the bits.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L700-L739
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2440-L2446
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L742-L746
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L1143-L1160
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L1468-L1473

648 CHAPTER 50. ARRAYS

rol!(B::BitVector, i::Integer) -> BitVector

Performs a left rotation operation in-place on B. i controls how far to rotate the bits.

source

Base.rol – Function.

rol(B::BitVector, i::Integer) -> BitVector

Performs a left rotation operation, returning a new BitVector. i controls how far to rotate the bits. See also

rol!.

Examples

julia> A = BitArray([true, true, false, false, true])

5-element BitArray{1}:

true

true

false

false

true

julia> rol(A,1)

5-element BitArray{1}:

true

false

false

true

true

julia> rol(A,2)

5-element BitArray{1}:

false

false

true

true

true

julia> rol(A,5)

5-element BitArray{1}:

true

true

false

false

true

source

Base.ror! – Function.

ror!(dest::BitVector, src::BitVector, i::Integer) -> BitVector

Performs a right rotation operation on src and puts the result into dest. i controls how far to rotate the bits.

source

ror!(B::BitVector, i::Integer) -> BitVector

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L1486-L1491
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L1494-L1535
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L1538-L1543

50.10. SPARSE VECTORS ANDMATRICES 649

Performs a right rotation operation in-place on B. i controls how far to rotate the bits.

source

Base.ror – Function.

ror(B::BitVector, i::Integer) -> BitVector

Performs a right rotation operation on B, returning a new BitVector. i controls how far to rotate the bits. See

also ror!.

Examples

julia> A = BitArray([true, true, false, false, true])

5-element BitArray{1}:

true

true

false

false

true

julia> ror(A,1)

5-element BitArray{1}:

true

true

true

false

false

julia> ror(A,2)

5-element BitArray{1}:

false

true

true

true

false

julia> ror(A,5)

5-element BitArray{1}:

true

true

false

false

true

source

50.10 Sparse Vectors andMatrices

Sparse vectors andmatrices largely support the sameset of operations as their dense counterparts. The following func-

tions are specific to sparse arrays.

Base.SparseArrays.SparseVector – Type.

SparseVector{Tv,Ti<:Integer} <: AbstractSparseVector{Tv,Ti}

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L1556-L1561
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/bitarray.jl#L1564-L1605

650 CHAPTER 50. ARRAYS

Vector type for storing sparse vectors.

source

Base.SparseArrays.SparseMatrixCSC – Type.

SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrix{Tv,Ti}

Matrix type for storing sparsematrices in the Compressed Sparse Column format.

source

Base.SparseArrays.sparse – Function.

sparse(A)

Convert an AbstractMatrix A into a sparsematrix.

Example

julia> A = eye(3)

3×3 Array{Float64,2}:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

julia> sparse(A)

3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

source

sparse(I, J, V,[m, n, combine])

Create a sparsematrix S of dimensions m x n such that S[I[k], J[k]] = V[k]. The combine function is used

to combine duplicates. If m and n are not specified, they are set to maximum(I) and maximum(J) respectively.

If the combine function is not supplied, combine defaults to + unless the elements of V are Booleans in which

case combine defaults to |. All elements of Imust satisfy 1 <= I[k] <= m, and all elements of Jmust satisfy

1 <= J[k] <= n. Numerical zeros in (I, J, V) are retained as structural nonzeros; to drop numerical zeros, use

dropzeros!.

For additional documentation and an expert driver, see Base.SparseArrays.sparse!.

Example

julia> Is = [1; 2; 3];

julia> Js = [1; 2; 3];

julia> Vs = [1; 2; 3];

julia> sparse(Is, Js, Vs)

3×3 SparseMatrixCSC{Int64,Int64} with 3 stored entries:

[1, 1] = 1

[2, 2] = 2

[3, 3] = 3

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsevector.jl#L12-L16
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L8-L13
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L386-L405

50.10. SPARSE VECTORS ANDMATRICES 651

source

Base.SparseArrays.sparsevec – Function.

sparsevec(I, V, [m, combine])

Create a sparse vector S of length m such that S[I[k]] = V[k]. Duplicates are combined using the combine

function, which defaults to + if no combine argument is provided, unless the elements of V are Booleans in which

case combine defaults to |.

julia> II = [1, 3, 3, 5]; V = [0.1, 0.2, 0.3, 0.2];

julia> sparsevec(II, V)

5-element SparseVector{Float64,Int64} with 3 stored entries:

[1] = 0.1

[3] = 0.5

[5] = 0.2

julia> sparsevec(II, V, 8, -)

8-element SparseVector{Float64,Int64} with 3 stored entries:

[1] = 0.1

[3] = -0.1

[5] = 0.2

julia> sparsevec([1, 3, 1, 2, 2], [true, true, false, false, false])

3-element SparseVector{Bool,Int64} with 3 stored entries:

[1] = true

[2] = false

[3] = true

source

sparsevec(d::Dict, [m])

Create a sparse vector of length mwhere the nonzero indices are keys from the dictionary, and the nonzero values

are the values from the dictionary.

julia> sparsevec(Dict(1 => 3, 2 => 2))

2-element SparseVector{Int64,Int64} with 2 stored entries:

[1] = 3

[2] = 2

source

sparsevec(A)

Convert a vector A into a sparse vector of length m.

Example

julia> sparsevec([1.0, 2.0, 0.0, 0.0, 3.0, 0.0])

6-element SparseVector{Float64,Int64} with 3 stored entries:

[1] = 1.0

[2] = 2.0

[5] = 3.0

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L459-L486
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsevector.jl#L103-L132
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsevector.jl#L178-L190
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsevector.jl#L309-L322

652 CHAPTER 50. ARRAYS

Base.SparseArrays.issparse – Function.

issparse(S)

Returns true if S is sparse, and false otherwise.

source

Base.full – Function.

full(S)

Convert a sparsematrix or vector S into a densematrix or vector.

Example

julia> A = speye(3)

3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

julia> full(A)

3×3 Array{Float64,2}:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

source

Base.SparseArrays.nnz – Function.

nnz(A)

Returns the number of stored (filled) elements in a sparse array.

Example

julia> A = speye(3)

3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

julia> nnz(A)

3

source

Base.SparseArrays.spzeros – Function.

spzeros([type,]m[,n])

Create a sparse vector of length m or sparse matrix of size m x n. This sparse array will not contain any nonzero

values. No storage will be allocated for nonzero values during construction. The type defaults to Float64 if not

specified.

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/abstractsparse.jl#L8-L12
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L355-L374
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L36-L52

50.10. SPARSE VECTORS ANDMATRICES 653

julia> spzeros(3, 3)

3×3 SparseMatrixCSC{Float64,Int64} with 0 stored entries

julia> spzeros(Float32, 4)

4-element SparseVector{Float32,Int64} with 0 stored entries

source

Base.SparseArrays.spones – Function.

spones(S)

Create a sparse array with the same structure as that of S, but with every nonzero element having the value 1.0.

Example

julia> A = sparse([1,2,3,4],[2,4,3,1],[5.,4.,3.,2.])

4×4 SparseMatrixCSC{Float64,Int64} with 4 stored entries:

[4, 1] = 2.0

[1, 2] = 5.0

[3, 3] = 3.0

[2, 4] = 4.0

julia> spones(A)

4×4 SparseMatrixCSC{Float64,Int64} with 4 stored entries:

[4, 1] = 1.0

[1, 2] = 1.0

[3, 3] = 1.0

[2, 4] = 1.0

Note the difference from speye.

source

Base.SparseArrays.speye –Method.

speye([type,]m[,n])

Create a sparse identity matrix of size m x m. When n is supplied, create a sparse identity matrix of size m x n.

The type defaults to Float64 if not specified.

sparse(I, m, n) is equivalent to speye(Int, m, n), and sparse(α*I, m, n) can be used to efficiently

create a sparsemultiple α of the identity matrix.

source

Base.SparseArrays.speye –Method.

speye(S)

Create a sparse identity matrix with the same size as S.

Example

julia> A = sparse([1,2,3,4],[2,4,3,1],[5.,4.,3.,2.])

4×4 SparseMatrixCSC{Float64,Int64} with 4 stored entries:

[4, 1] = 2.0

[1, 2] = 5.0

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L1435-L1451
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L1407-L1431
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L1494-L1504

654 CHAPTER 50. ARRAYS

[3, 3] = 3.0

[2, 4] = 4.0

julia> speye(A)

4×4 SparseMatrixCSC{Float64,Int64} with 4 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

[4, 4] = 1.0

Note the difference from spones.

source

speye([type,]m[,n])

Create a sparse identity matrix of size m x m. When n is supplied, create a sparse identity matrix of size m x n.

The type defaults to Float64 if not specified.

sparse(I, m, n) is equivalent to speye(Int, m, n), and sparse(α*I, m, n) can be used to efficiently

create a sparsemultiple α of the identity matrix.

source

Base.SparseArrays.spdiagm – Function.

spdiagm(B, d[, m, n])

Construct a sparse diagonal matrix. B is a tuple of vectors containing the diagonals and d is a tuple containing the

positions of the diagonals. In the case the input contains only one diagonal, B can be a vector (instead of a tuple)

andd canbe the diagonal position (instead of a tuple), defaulting to 0 (diagonal). Optionally,m andn specify the size

of the resulting sparsematrix.

Example

julia> spdiagm(([1,2,3,4],[4,3,2,1]),(-1,1))

5×5 SparseMatrixCSC{Int64,Int64} with 8 stored entries:

[2, 1] = 1

[1, 2] = 4

[3, 2] = 2

[2, 3] = 3

[4, 3] = 3

[3, 4] = 2

[5, 4] = 4

[4, 5] = 1

source

Base.SparseArrays.sprand – Function.

sprand([rng],[type],m,[n],p::AbstractFloat,[rfn])

Create a random length m sparse vector or m by n sparse matrix, in which the probability of any element being

nonzero is independently given by p (and hence the mean density of nonzeros is also exactly p). Nonzero values

are sampled fromthedistribution specifiedbyrfn andhave the typetype. Theuniformdistribution is used in case

rfn is not specified. The optional rng argument specifies a random number generator, see RandomNumbers.

Example

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L1467-L1490
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L1494-L1504
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L3288-L3310

50.10. SPARSE VECTORS ANDMATRICES 655

julia> rng = MersenneTwister(1234);

julia> sprand(rng, Bool, 2, 2, 0.5)

2×2 SparseMatrixCSC{Bool,Int64} with 2 stored entries:

[1, 1] = true

[2, 1] = true

julia> sprand(rng, Float64, 3, 0.75)

3-element SparseVector{Float64,Int64} with 1 stored entry:

[3] = 0.298614

source

Base.SparseArrays.sprandn – Function.

sprandn([rng], m[,n],p::AbstractFloat)

Create a random sparse vector of length m or sparse matrix of size m by nwith the specified (independent) proba-

bility p of any entry being nonzero, where nonzero values are sampled from the normal distribution. The optional

rng argument specifies a random number generator, see RandomNumbers.

Example

julia> rng = MersenneTwister(1234);

julia> sprandn(rng, 2, 2, 0.75)

2×2 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 0.532813

[2, 1] = -0.271735

[2, 2] = 0.502334

source

Base.SparseArrays.nonzeros – Function.

nonzeros(A)

Return a vector of the structural nonzero values in sparse array A. This includes zeros that are explicitly stored in

the sparse array. The returned vector points directly to the internal nonzero storage of A, and anymodifications to

the returned vector will mutate A as well. See rowvals and nzrange.

Example

julia> A = speye(3)

3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

julia> nonzeros(A)

3-element Array{Float64,1}:

1.0

1.0

1.0

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L1330-L1353
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L1384-L1402
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L57-L80

656 CHAPTER 50. ARRAYS

Base.SparseArrays.rowvals – Function.

rowvals(A::SparseMatrixCSC)

Return a vector of the row indices of A. Any modifications to the returned vector will mutate A as well. Provid-

ing access to how the row indices are stored internally can be useful in conjunction with iterating over structural

nonzero values. See also nonzeros and nzrange.

Example

julia> A = speye(3)

3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

julia> rowvals(A)

3-element Array{Int64,1}:

1

2

3

source

Base.SparseArrays.nzrange – Function.

nzrange(A::SparseMatrixCSC, col::Integer)

Returntherangeof indices to thestructuralnonzerovaluesofasparsematrixcolumn. Inconjunctionwithnonzeros

and rowvals, this allows for convenient iterating over a sparsematrix :

A = sparse(I,J,V)

rows = rowvals(A)

vals = nonzeros(A)

m, n = size(A)

for i = 1:n

for j in nzrange(A, i)

row = rows[j]

val = vals[j]

perform sparse wizardry...

end

end

source

Base.SparseArrays.dropzeros! –Method.

dropzeros!(A::SparseMatrixCSC, trim::Bool = true)

Removes stored numerical zeros from A, optionally trimming resulting excess space from A.rowval and A.nzval

when trim is true.

For an out-of-place version, see dropzeros. For algorithmic information, see fkeep!.

source

Base.SparseArrays.dropzeros –Method.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L83-L105
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L108-L126
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L1199-L1207

50.10. SPARSE VECTORS ANDMATRICES 657

dropzeros(A::SparseMatrixCSC, trim::Bool = true)

Generates a copy of A and removes stored numerical zeros from that copy, optionally trimming excess space from

the result's rowval and nzval arrays when trim is true.

For an in-place version and algorithmic information, see dropzeros!.

Example

julia> A = sparse([1, 2, 3], [1, 2, 3], [1.0, 0.0, 1.0])

3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 1.0

[2, 2] = 0.0

[3, 3] = 1.0

julia> dropzeros(A)

3×3 SparseMatrixCSC{Float64,Int64} with 2 stored entries:

[1, 1] = 1.0

[3, 3] = 1.0

source

Base.SparseArrays.dropzeros! –Method.

dropzeros!(x::SparseVector, trim::Bool = true)

Removes stored numerical zeros from x, optionally trimming resulting excess space from x.nzind and x.nzval

when trim is true.

For an out-of-place version, see dropzeros. For algorithmic information, see fkeep!.

source

Base.SparseArrays.dropzeros –Method.

dropzeros(x::SparseVector, trim::Bool = true)

Generates a copy of x and removes numerical zeros from that copy, optionally trimming excess space from the

result's nzind and nzval arrays when trim is true.

For an in-place version and algorithmic information, see dropzeros!.

Example

julia> A = sparsevec([1, 2, 3], [1.0, 0.0, 1.0])

3-element SparseVector{Float64,Int64} with 3 stored entries:

[1] = 1.0

[2] = 0.0

[3] = 1.0

julia> dropzeros(A)

3-element SparseVector{Float64,Int64} with 2 stored entries:

[1] = 1.0

[3] = 1.0

source

Base.SparseArrays.permute – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L1209-L1230
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsevector.jl#L1921-L1929
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsevector.jl#L1931-L1952

658 CHAPTER 50. ARRAYS

permute{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, p::AbstractVector{<:Integer},

q::AbstractVector{<:Integer})

BilaterallypermuteA, returningPAQ (A[p,q]). Column-permutationq's lengthmustmatchA's columncount (length(q)

== A.n). Row-permutation p's lengthmust match A's row count (length(p) == A.m).

For expert drivers and additional information, see permute!.

Example

julia> A = spdiagm([1, 2, 3, 4], 0, 4, 4) + spdiagm([5, 6, 7], 1, 4, 4)

4×4 SparseMatrixCSC{Int64,Int64} with 7 stored entries:

[1, 1] = 1

[1, 2] = 5

[2, 2] = 2

[2, 3] = 6

[3, 3] = 3

[3, 4] = 7

[4, 4] = 4

julia> permute(A, [4, 3, 2, 1], [1, 2, 3, 4])

4×4 SparseMatrixCSC{Int64,Int64} with 7 stored entries:

[4, 1] = 1

[3, 2] = 2

[4, 2] = 5

[2, 3] = 3

[3, 3] = 6

[1, 4] = 4

[2, 4] = 7

julia> permute(A, [1, 2, 3, 4], [4, 3, 2, 1])

4×4 SparseMatrixCSC{Int64,Int64} with 7 stored entries:

[3, 1] = 7

[4, 1] = 4

[2, 2] = 6

[3, 2] = 3

[1, 3] = 5

[2, 3] = 2

[1, 4] = 1

source

Base.permute! –Method.

permute!{Tv,Ti}(X::SparseMatrixCSC{Tv,Ti}, A::SparseMatrixCSC{Tv,Ti},

p::AbstractVector{<:Integer}, q::AbstractVector{<:Integer}[, C::SparseMatrixCSC{Tv,Ti}])

Bilaterally permuteA, storing resultPAQ (A[p,q]) inX. Stores intermediate result(AQ)^T (transpose(A[:,q]))

in optional argument C if present. Requires that none of X, A, and, if present, C alias each other; to store result PAQ

back into A, use the followingmethod lacking X:

permute!{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, p::AbstractVector{<:Integer},

q::AbstractVector{<:Integer}[, C::SparseMatrixCSC{Tv,Ti}[, workcolptr::Vector{Ti}]])

X's dimensions must match those of A (X.m == A.m and X.n == A.n), and X must have enough storage to ac-

commodate all allocated entries in A (length(X.rowval) >= nnz(A) and length(X.nzval) >= nnz(A)).

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L1060-L1102

50.10. SPARSE VECTORS ANDMATRICES 659

Column-permutationq's lengthmustmatchA's column count (length(q) == A.n). Row-permutationp's length

must match A's row count (length(p) == A.m).

C's dimensions must match those of transpose(A) (C.m == A.n and C.n == A.m), and C must have enough

storage to accommodate all allocated entries in A (length(C.rowval) >= nnz(A) and length(C.nzval) >=

nnz(A)).

For additional (algorithmic) information, and for versions of thesemethods that forgo argument checking, see (un-

exported) parent methods unchecked_noalias_permute! and unchecked_aliasing_permute!.

See also: permute.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L990-L1017

Chapter 51

Tasks and Parallel Computing

51.1 Tasks

Core.Task – Type.

Task(func)

Create a Task (i.e. coroutine) to execute the given function (which must be callable with no arguments). The task

exits when this function returns.

Example

julia> a() = det(rand(1000, 1000));

julia> b = Task(a);

In this example, b is a runnable Task that hasn't started yet.

source

Base.current_task – Function.

current_task()

Get the currently running Task.

source

Base.istaskdone – Function.

istaskdone(t::Task) -> Bool

Determine whether a task has exited.

julia> a2() = det(rand(1000, 1000));

julia> b = Task(a2);

julia> istaskdone(b)

false

julia> schedule(b);

661

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1640-L1654
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/task.jl#L83-L87

662 CHAPTER 51. TASKS AND PARALLEL COMPUTING

julia> yield();

julia> istaskdone(b)

true

source

Base.istaskstarted – Function.

istaskstarted(t::Task) -> Bool

Determine whether a task has started executing.

julia> a3() = det(rand(1000, 1000));

julia> b = Task(a3);

julia> istaskstarted(b)

false

source

Base.yield – Function.

yield()

Switch to the scheduler to allow another scheduled task to run. A task that calls this function is still runnable, and

will be restarted immediately if there are no other runnable tasks.

source

yield(t::Task, arg = nothing)

A fast, unfair-scheduling version of schedule(t, arg); yield()which immediately yields to t before calling

the scheduler.

source

Base.yieldto – Function.

yieldto(t::Task, arg = nothing)

Switch to the given task. The first time a task is switched to, the task's function is called with no arguments. On

subsequent switches,arg is returned from the task's last call toyieldto. This is a low-level call that only switches

tasks, not considering states or scheduling in any way. Its use is discouraged.

source

Base.task_local_storage –Method.

task_local_storage(key)

Look up the value of a key in the current task's task-local storage.

source

Base.task_local_storage –Method.

task_local_storage(key, value)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/task.jl#L90-L110
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/task.jl#L113-L126
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/event.jl#L143-L149
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/event.jl#L152-L157
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/event.jl#L165-L172
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/task.jl#L141-L145

51.1. TASKS 663

Assign a value to a key in the current task's task-local storage.

source

Base.task_local_storage –Method.

task_local_storage(body, key, value)

Call the function bodywith amodified task-local storage, in which value is assigned to key; the previous value of

key, or lack thereof, is restored afterwards. Useful for emulating dynamic scoping.

source

Base.Condition – Type.

Condition()

Create an edge-triggered event source that tasks canwait for. Tasks that callwaiton aCondition are suspended

and queued. Tasks are woken up when notify is later called on the Condition. Edge triggering means that only

tasks waiting at the time notify is called can be woken up. For level-triggered notifications, you must keep extra

state to keep track of whether a notification has happened. The Channel type does this, and so can be used for

level-triggered events.

source

Base.notify – Function.

notify(condition, val=nothing; all=true, error=false)

Wake up tasks waiting for a condition, passing them val. If all is true (the default), all waiting tasks are woken,

otherwise only one is. If error is true, the passed value is raised as an exception in the woken tasks.

Returns the count of tasks woken up. Returns 0 if no tasks are waiting on condition.

source

Base.schedule – Function.

schedule(t::Task, [val]; error=false)

Add a Task to the scheduler's queue. This causes the task to run constantly when the system is otherwise idle,

unless the task performs a blocking operation such as wait.

If a second argument val is provided, it will be passed to the task (via the return value of yieldto) when it runs

again. If error is true, the value is raised as an exception in the woken task.

julia> a5() = det(rand(1000, 1000));

julia> b = Task(a5);

julia> istaskstarted(b)

false

julia> schedule(b);

julia> yield();

julia> istaskstarted(b)

true

julia> istaskdone(b)

true

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/task.jl#L148-L152
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/task.jl#L155-L161
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/event.jl#L5-L14
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/event.jl#L34-L42

664 CHAPTER 51. TASKS AND PARALLEL COMPUTING

source

Base.@schedule –Macro.

@schedule

Wrap an expression in a Task and add it to the local machine's scheduler queue. Similar to @async except that an

enclosing @sync does NOTwait for tasks started with an @schedule.

source

Base.@task –Macro.

@task

Wrap an expression in a Taskwithout executing it, and return the Task. This only creates a task, and does not run

it.

julia> a1() = det(rand(1000, 1000));

julia> b = @task a1();

julia> istaskstarted(b)

false

julia> schedule(b);

julia> yield();

julia> istaskdone(b)

true

source

Base.sleep – Function.

sleep(seconds)

Block the current task for a specified number of seconds. The minimum sleep time is 1 millisecond or input of

0.001.

source

Base.Channel – Type.

Channel{T}(sz::Int)

Constructs a Channelwith an internal buffer that can hold amaximumof sz objects of type T. put! calls on a full

channel block until an object is removedwith take!.

Channel(0) constructs an unbuffered channel. put! blocks until a matching take! is called. And vice-versa.

Other constructors:

• Channel(Inf): equivalent to Channel{Any}(typemax(Int))

• Channel(sz): equivalent to Channel{Any}(sz)

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/event.jl#L91-L119
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/event.jl#L65-L71
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/task.jl#L57-L78
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/event.jl#L403-L408
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/channels.jl#L5-L19

51.1. TASKS 665

Base.put! –Method.

put!(c::Channel, v)

Appends an item v to the channel c. Blocks if the channel is full.

For unbuffered channels, blocks until a take! is performed by a different task.

source

Base.take! –Method.

take!(c::Channel)

Removes and returns a value from a Channel. Blocks until data is available.

For unbuffered channels, blocks until a put! is performed by a different task.

source

Base.isready –Method.

isready(c::Channel)

Determine whether a Channel has a value stored to it. Returns immediately, does not block.

For unbuffered channels returns true if there are tasks waiting on a put!.

source

Base.fetch –Method.

fetch(c::Channel)

Waits for and gets the first available item from the channel. Does not remove the item. fetch is unsupported on

an unbuffered (0-size) channel.

source

Base.close –Method.

close(c::Channel)

Closes a channel. An exception is thrown by:

• put! on a closed channel.

• take! and fetch on an empty, closed channel.

source

Base.bind –Method.

bind(chnl::Channel, task::Task)

Associates the lifetime of chnlwith a task. Channel chnl is automatically closed when the task terminates. Any

uncaught exception in the task is propagated to all waiters on chnl.

The chnl object can be explicitly closed independent of task termination. Terminating tasks have no effect on

already closed Channel objects.

When a channel is bound to multiple tasks, the first task to terminate will close the channel. Whenmultiple chan-

nels are bound to the same task, termination of the task will close all of the bound channels.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/channels.jl#L252-L259
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/channels.jl#L309-L316
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/channels.jl#L348-L356
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/channels.jl#L295-L300
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/channels.jl#L135-L142

666 CHAPTER 51. TASKS AND PARALLEL COMPUTING

julia> c = Channel(0);

julia> task = @schedule foreach(i->put!(c, i), 1:4);

julia> bind(c,task);

julia> for i in c

@show i

end;

i = 1

i = 2

i = 3

i = 4

julia> isopen(c)

false

julia> c = Channel(0);

julia> task = @schedule (put!(c,1);error("foo"));

julia> bind(c,task);

julia> take!(c)

1

julia> put!(c,1);

ERROR: foo

Stacktrace:

[1] check_channel_state(::Channel{Any}) at ./channels.jl:131

[2] put!(::Channel{Any}, ::Int64) at ./channels.jl:261

source

Base.asyncmap – Function.

asyncmap(f, c...; ntasks=0, batch_size=nothing)

Uses multiple concurrent tasks to map f over a collection (or multiple equal length collections). For multiple col-

lection arguments, f is applied elementwise.

ntasks specifies the number of tasks to run concurrently. Depending on the length of the collections, if ntasks is

unspecified, up to 100 tasks will be used for concurrent mapping.

ntasks can also be specified as a zero-arg function. In this case, the number of tasks to run in parallel is checked

before processing every element and a new task started if the value of ntasks_func() is less than the current

number of tasks.

Ifbatch_size is specified, the collection is processed in batchmode. fmust then be a function thatmust accept a

Vectorof argument tuples andmust return a vector of results. The input vectorwill have a length ofbatch_size

or less.

The following examples highlight execution in different tasks by returning theobject_idof the tasks inwhich the

mapping function is executed.

First, with ntasks undefined, each element is processed in a different task.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/channels.jl#L151-L200

51.1. TASKS 667

julia> tskoid() = object_id(current_task());

julia> asyncmap(x->tskoid(), 1:5)

5-element Array{UInt64,1}:

0x6e15e66c75c75853

0x440f8819a1baa682

0x9fb3eeadd0c83985

0xebd3e35fe90d4050

0x29efc93edce2b961

julia> length(unique(asyncmap(x->tskoid(), 1:5)))

5

With ntasks=2 all elements are processed in 2 tasks.

julia> asyncmap(x->tskoid(), 1:5; ntasks=2)

5-element Array{UInt64,1}:

0x027ab1680df7ae94

0xa23d2f80cd7cf157

0x027ab1680df7ae94

0xa23d2f80cd7cf157

0x027ab1680df7ae94

julia> length(unique(asyncmap(x->tskoid(), 1:5; ntasks=2)))

2

With batch_size defined, the mapping function needs to be changed to accept an array of argument tuples and

return an array of results. map is used in themodifiedmapping function to achieve this.

julia> batch_func(input) = map(x->string("args_tuple: ", x, ", element_val: ", x[1], ", task:

", tskoid()), input)

batch_func (generic function with 1 method)

julia> asyncmap(batch_func, 1:5; ntasks=2, batch_size=2)

5-element Array{String,1}:

"args_tuple: (1,), element_val: 1, task: 9118321258196414413"

"args_tuple: (2,), element_val: 2, task: 4904288162898683522"

"args_tuple: (3,), element_val: 3, task: 9118321258196414413"

"args_tuple: (4,), element_val: 4, task: 4904288162898683522"

"args_tuple: (5,), element_val: 5, task: 9118321258196414413"

Note

Currently, all tasks in Julia areexecuted ina singleOSthreadco-operatively. Consequently,ayncmap is

beneficial onlywhen themapping function involves any I/O - disk, network, remoteworker invocation,

etc.

source

Base.asyncmap! – Function.

asyncmap!(f, results, c...; ntasks=0, batch_size=nothing)

Like asyncmap(), but stores output in results rather than returning a collection.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/asyncmap.jl#L5-L79
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/asyncmap.jl#L415-L420

668 CHAPTER 51. TASKS AND PARALLEL COMPUTING

51.2 General Parallel Computing Support

Base.Distributed.addprocs – Function.

addprocs(manager::ClusterManager; kwargs...) -> List of process identifiers

Launches worker processes via the specified cluster manager.

Forexample,Beowulf clustersaresupportedviaacustomclustermanager implemented in thepackageClusterManagers.jl.

Thenumberof seconds anewly launchedworkerwaits for connection establishment from themaster canbe speci-

fiedvia variableJULIA_WORKER_TIMEOUT in theworker process's environment. Relevant onlywhenusingTCP/IP

as transport.

source

addprocs(machines; tunnel=false, sshflags=``, max_parallel=10, kwargs...) -> List of process

identifiers

Add processes on remote machines via SSH. Requires julia to be installed in the same location on each node, or

to be available via a shared file system.

machines is a vector of machine specifications. Workers are started for each specification.

Amachine specification is either a string machine_spec or a tuple - (machine_spec, count).

machine_spec is a string of the form [user@]host[:port] [bind_addr[:port]]. user defaults to current

user, port to the standard ssh port. If [bind_addr[:port]] is specified, other workers will connect to this

worker at the specified bind_addr and port.

count is the number of workers to be launched on the specified host. If specified as :auto it will launch as many

workers as the number of cores on the specific host.

Keyword arguments:

• tunnel: if true then SSH tunneling will be used to connect to theworker from themaster process. Default

is false.

• sshflags: specifies additional ssh options, e.g. sshflags=`-i /home/foo/bar.pem‘

• max_parallel: specifies the maximum number of workers connected to in parallel at a host. Defaults to

10.

• dir: specifies the working directory on the workers. Defaults to the host's current directory (as found by

pwd())

• enable_threaded_blas: if true then BLAS will run on multiple threads in added processes. Default is

false.

• exename: nameof thejuliaexecutable. Defaults to"$JULIA_HOME/julia"or"$JULIA_HOME/julia-debug"

as the casemay be.

• exeflags: additional flags passed to the worker processes.

• topology: Specifies how the workers connect to each other. Sending a message between unconnected

workers results in an error.

– topology=:all_to_all: All processes are connected to each other. The default.

– topology=:master_slave: Only the driver process, i.e. pid 1 connects to theworkers. Theworkers

do not connect to each other.

– topology=:custom: The launch method of the cluster manager specifies the connection topology

via fields ident and connect_idents in WorkerConfig. A worker with a cluster manager identity

identwill connect to all workers specified in connect_idents.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L302-L313

51.2. GENERAL PARALLEL COMPUTING SUPPORT 669

Environment variables :

If themaster process fails to establish a connectionwith a newly launchedworkerwithin 60.0 seconds, theworker

treats itasa fatal situationandterminates. This timeoutcanbecontrolledviaenvironmentvariableJULIA_WORKER_TIMEOUT.

The value of JULIA_WORKER_TIMEOUT on the master process specifies the number of seconds a newly launched

worker waits for connection establishment.

source

addprocs(; kwargs...) -> List of process identifiers

Equivalent to addprocs(Sys.CPU_CORES; kwargs...)

Note that workers do not run a .juliarc.jl startup script, nor do they synchronize their global state (such as

global variables, newmethod definitions, and loadedmodules) with any of the other running processes.

source

addprocs(np::Integer; restrict=true, kwargs...) -> List of process identifiers

Launches workers using the in-built LocalManager which only launches workers on the local host. This can be

used to take advantage ofmultiple cores. addprocs(4)will add 4 processes on the local machine. If restrict is

true, binding is restrictedto127.0.0.1. Keywordargsdir,exename,exeflags,topology, andenable_threaded_blas

have the same effect as documented for addprocs(machines).

source

Base.Distributed.nprocs – Function.

nprocs()

Get the number of available processes.

source

Base.Distributed.nworkers – Function.

nworkers()

Get the number of available worker processes. This is one less than nprocs(). Equal to nprocs() if nprocs()

== 1.

source

Base.Distributed.procs –Method.

procs()

Returns a list of all process identifiers.

source

Base.Distributed.procs –Method.

procs(pid::Integer)

Returns a list of all process identifiers on the same physical node. Specifically all workers bound to the same ip-

address as pid are returned.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/managers.jl#L51-L111
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/managers.jl#L289-L297
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/managers.jl#L300-L308
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L649-L653
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L669-L674
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L680-L684
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L711-L716

670 CHAPTER 51. TASKS AND PARALLEL COMPUTING

Base.Distributed.workers – Function.

workers()

Returns a list of all worker process identifiers.

source

Base.Distributed.rmprocs – Function.

rmprocs(pids...; waitfor=typemax(Int))

Removes the specifiedworkers. Note that only process 1 can add or removeworkers.

Argumentwaitforspecifieshowlongtowait for theworkers toshutdown: - Ifunspecified,rmprocswillwaituntil

all requested pids are removed. - An ErrorException is raised if all workers cannot be terminated before the

requestedwaitfor seconds. -Withawaitforvalueof0, thecall returns immediatelywith theworkers scheduled

for removal in adifferent task. The scheduledTaskobject is returned. Theuser should callwaiton the taskbefore

invoking any other parallel calls.

source

Base.Distributed.interrupt – Function.

interrupt(pids::Integer...)

Interrupt the current executing task on the specified workers. This is equivalent to pressing Ctrl-C on the local

machine. If no arguments are given, all workers are interrupted.

source

interrupt(pids::AbstractVector=workers())

Interrupt the current executing task on the specified workers. This is equivalent to pressing Ctrl-C on the local

machine. If no arguments are given, all workers are interrupted.

source

Base.Distributed.myid – Function.

myid()

Get the id of the current process.

source

Base.Distributed.pmap – Function.

pmap([::AbstractWorkerPool], f, c...; distributed=true, batch_size=1, on_error=nothing,

retry_delays=[]), retry_check=nothing) -> collection

Transform collection c by applying f to each element using available workers and tasks.

For multiple collection arguments, apply f elementwise.

Note thatfmust bemadeavailable to allworker processes; seeCodeAvailability andLoadingPackages for details.

If a worker pool is not specified, all available workers, i.e., the default worker pool is used.

By default, pmap distributes the computation over all specified workers. To use only the local process and dis-

tribute over tasks, specify distributed=false. This is equivalent to using asyncmap. For example, pmap(f,

c; distributed=false) is equivalent to asyncmap(f,c; ntasks=()->nworkers())

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L731-L735
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L751-L765
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L936-L941
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L944-L949
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L642-L646

51.2. GENERAL PARALLEL COMPUTING SUPPORT 671

pmap can also use a mix of processes and tasks via the batch_size argument. For batch sizes greater than 1, the

collection is processed in multiple batches, each of length batch_size or less. A batch is sent as a single request

to a free worker, where a local asyncmap processes elements from the batch usingmultiple concurrent tasks.

Any error stopspmap fromprocessing the remainder of the collection. To override this behavior you can specify an

error handling function via argument on_errorwhich takes in a single argument, i.e., the exception. The function

can stop the processing by rethrowing the error, or, to continue, return any valuewhich is then returned inlinewith

the results to the caller.

Consider the following two examples. The first one returns the exception object inline, the second a 0 in place of

any exception:

julia> pmap(x->iseven(x) ? error("foo") : x, 1:4; on_error=identity)

4-element Array{Any,1}:

1

ErrorException("foo")

3

ErrorException("foo")

julia> pmap(x->iseven(x) ? error("foo") : x, 1:4; on_error=ex->0)

4-element Array{Int64,1}:

1

0

3

0

Errorscanalsobehandledbyretrying failedcomputations. Keywordargumentsretry_delaysandretry_check

are passed through to retry as keyword arguments delays and check respectively. If batching is specified, and

an entire batch fails, all items in the batch are retried.

Note that if both on_error and retry_delays are specified, the on_error hook is called before retrying. If

on_error does not throw (or rethrow) an exception, the element will not be retried.

Example: On errors, retry f on an element amaximum of 3 times without any delay between retries.

pmap(f, c; retry_delays = zeros(3))

Example: Retry f only if the exception is not of type InexactError, with exponentially increasing delays up to 3

times. Return a NaN in place for all InexactError occurrences.

pmap(f, c; on_error = e->(isa(e, InexactError) ? NaN : rethrow(e)), retry_delays =

ExponentialBackOff(n = 3))↪→

source

Base.Distributed.RemoteException – Type.

RemoteException(captured)

Exceptions on remote computations are captured and rethrown locally. A RemoteException wraps the pid of

the worker and a captured exception. A CapturedException captures the remote exception and a serializable

form of the call stack when the exception was raised.

source

Base.Distributed.Future – Type.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/pmap.jl#L32-L98
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/process_messages.jl#L24-L30

672 CHAPTER 51. TASKS AND PARALLEL COMPUTING

Future(pid::Integer=myid())

Create a Future on process pid. The default pid is the current process.

source

Base.Distributed.RemoteChannel –Method.

RemoteChannel(pid::Integer=myid())

Make a reference to a Channel{Any}(1) on process pid. The default pid is the current process.

source

Base.Distributed.RemoteChannel –Method.

RemoteChannel(f::Function, pid::Integer=myid())

Create references to remote channels of a specific size and type. f() is a function thatwhenexecutedonpidmust

return an implementation of an AbstractChannel.

Forexample,RemoteChannel(()->Channel{Int}(10), pid), will returna reference toachannel of typeInt

and size 10 on pid.

The default pid is the current process.

source

Base.wait – Function.

wait([x])

Block the current task until some event occurs, depending on the type of the argument:

• RemoteChannel : Wait for a value to become available on the specified remote channel.

• Future : Wait for a value to become available for the specified future.

• Channel: Wait for a value to be appended to the channel.

• Condition: Wait for notify on a condition.

• Process: Wait for a process or process chain to exit. The exitcode field of a process can be used to deter-

mine success or failure.

• Task: Wait for a Task to finish, returning its result value. If the task fails with an exception, the exception is

propagated (re-thrown in the task that called wait).

• RawFD: Wait for changes on a file descriptor (see poll_fd for keyword arguments and return code)

If no argument is passed, the task blocks for an undefined period. A task can only be restarted by an explicit call to

schedule or yieldto.

Often wait is called within a while loop to ensure a waited-for condition is met before proceeding.

source

Base.fetch –Method.

fetch(x)

Waits and fetches a value from x depending on the type of x:

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L72-L77
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L80-L85
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L88-L98
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1544-L1566

51.2. GENERAL PARALLEL COMPUTING SUPPORT 673

• Future: Wait forandget thevalueofaFuture. The fetchedvalue is cached locally. Furthercalls tofetchon

thesamereferencereturn thecachedvalue. If the remotevalue isanexception, throwsaRemoteException

which captures the remote exception and backtrace.

• RemoteChannel: Wait for and get the value of a remote reference. Exceptions raised are same as for a

Future .

Does not remove the item fetched.

source

Base.Distributed.remotecall –Method.

remotecall(f, id::Integer, args...; kwargs...) -> Future

Call a function f asynchronously on the given arguments on the specified process. Returns a Future. Keyword

arguments, if any, are passed through to f.

source

Base.Distributed.remotecall_wait –Method.

remotecall_wait(f, id::Integer, args...; kwargs...)

Perform a faster wait(remotecall(...)) in one message on the Worker specified by worker id id. Keyword

arguments, if any, are passed through to f.

See also wait and remotecall.

source

Base.Distributed.remotecall_fetch –Method.

remotecall_fetch(f, id::Integer, args...; kwargs...)

Perform fetch(remotecall(...)) in one message. Keyword arguments, if any, are passed through to f. Any

remote exceptions are captured in a RemoteException and thrown.

See also fetch and remotecall.

source

Base.Distributed.remote_do –Method.

remote_do(f, id::Integer, args...; kwargs...) -> nothing

Executes f on worker id asynchronously. Unlike remotecall, it does not store the result of computation, nor is

there a way to wait for its completion.

A successful invocation indicates that the request has been accepted for execution on the remote node.

While consecutive remotecalls to the same worker are serialized in the order they are invoked, the order of

executions on the remote worker is undetermined. For example, remote_do(f1, 2); remotecall(f2, 2);

remote_do(f3, 2)will serialize the call tof1, followed byf2 andf3 in that order. However, it is not guaranteed

that f1 is executed before f3 onworker 2.

Any exceptions thrown by f are printed to STDERR on the remote worker.

Keyword arguments, if any, are passed through to f.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L469-L481
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L329-L335
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L386-L393
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L357-L366
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L412-L431

674 CHAPTER 51. TASKS AND PARALLEL COMPUTING

Base.put! –Method.

put!(rr::RemoteChannel, args...)

Store a set of values to the RemoteChannel. If the channel is full, blocks until space is available. Returns its first

argument.

source

Base.put! –Method.

put!(rr::Future, v)

Storeavalue toaFuturerr. Futuresarewrite-onceremotereferences. Aput! onanalreadysetFuture throws

anException. All asynchronous remote calls returnFutures and set thevalue to the returnvalueof the call upon

completion.

source

Base.take! –Method.

take!(rr::RemoteChannel, args...)

Fetch value(s) from a RemoteChannel rr, removing the value(s) in the processs.

source

Base.isready –Method.

isready(rr::RemoteChannel, args...)

Determine whether a RemoteChannel has a value stored to it. Note that this function can cause race conditions,

since by the time you receive its result it may no longer be true. However, it can be safely used on a Future since

they are assigned only once.

source

Base.isready –Method.

isready(rr::Future)

Determine whether a Future has a value stored to it.

If the argument Future is owned by a different node, this call will block towait for the answer. It is recommended

to wait for rr in a separate task instead or to use a local Channel as a proxy:

c = Channel(1)

@async put!(c, remotecall_fetch(long_computation, p))

isready(c) # will not block

source

Base.Distributed.WorkerPool – Type.

WorkerPool(workers::Vector{Int})

Create aWorkerPool from a vector of worker ids.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L514-L520
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L486-L494
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L532-L537
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L187-L194
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L163-L175
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/workerpool.jl#L32-L36

51.2. GENERAL PARALLEL COMPUTING SUPPORT 675

Base.Distributed.CachingPool – Type.

CachingPool(workers::Vector{Int})

An implementation of an AbstractWorkerPool. remote, remotecall_fetch, pmap (and other remote calls

which execute functions remotely) benefit fromcaching the serialized/deserialized functions on theworker nodes,

especially closures (whichmay capture large amounts of data).

The remote cache is maintained for the lifetime of the returned CachingPool object. To clear the cache earlier,

use clear!(pool).

For global variables, only the bindings are captured in a closure, not the data. let blocks can be used to capture

global data.

For example:

const foo=rand(10^8);

wp=CachingPool(workers())

let foo=foo

pmap(wp, i->sum(foo)+i, 1:100);

end

The abovewould transfer foo only once to eachworker.

source

Base.Distributed.default_worker_pool – Function.

default_worker_pool()

WorkerPool containing idle workers() - used by remote(f) and pmap (by default).

source

Base.Distributed.clear! –Method.

clear!(pool::CachingPool) -> pool

Removes all cached functions from all participating workers.

source

Base.Distributed.remote – Function.

remote([::AbstractWorkerPool], f) -> Function

Returns an anonymous function that executes function f on an available worker using remotecall_fetch.

source

Base.Distributed.remotecall –Method.

remotecall(f, pool::AbstractWorkerPool, args...; kwargs...) -> Future

WorkerPool variant of remotecall(f, pid,). Waits for and takes a free worker from pool and per-

forms a remotecall on it.

source

Base.Distributed.remotecall_wait –Method.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/workerpool.jl#L233-L259
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/workerpool.jl#L190-L194
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/workerpool.jl#L268-L272
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/workerpool.jl#L208-L213
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/workerpool.jl#L155-L159

676 CHAPTER 51. TASKS AND PARALLEL COMPUTING

remotecall_wait(f, pool::AbstractWorkerPool, args...; kwargs...) -> Future

WorkerPool variant of remotecall_wait(f, pid,). Waits for and takes a free worker from pool and

performs a remotecall_wait on it.

source

Base.Distributed.remotecall_fetch –Method.

remotecall_fetch(f, pool::AbstractWorkerPool, args...; kwargs...) -> result

WorkerPool variant of remotecall_fetch(f, pid,). Waits for and takes a freeworker from pool and

performs a remotecall_fetch on it.

source

Base.Distributed.remote_do –Method.

remote_do(f, pool::AbstractWorkerPool, args...; kwargs...) -> nothing

WorkerPool variant ofremote_do(f, pid,). Waits for and takes a freeworker frompool andperforms

a remote_do on it.

source

Base.timedwait – Function.

timedwait(testcb::Function, secs::Float64; pollint::Float64=0.1)

Waits until testcb returns true or for secs seconds, whichever is earlier. testcb is polled every pollint sec-

onds.

source

Base.Distributed.@spawn –Macro.

@spawn

Creates a closure around an expression and runs it on an automatically-chosen process, returning a Future to the

result.

source

Base.Distributed.@spawnat –Macro.

@spawnat

Accepts two arguments, p and an expression. A closure is created around the expression and run asynchronously

on process p. Returns a Future to the result.

source

Base.Distributed.@fetch –Macro.

@fetch

Equivalent to fetch(@spawn expr). See fetch and @spawn.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/workerpool.jl#L163-L168
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/workerpool.jl#L172-L177
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/workerpool.jl#L180-L185
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/task.jl#L340-L345
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2078-L2083
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L564-L569
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/macros.jl#L29-L34

51.2. GENERAL PARALLEL COMPUTING SUPPORT 677

Base.Distributed.@fetchfrom –Macro.

@fetchfrom

Equivalent to fetch(@spawnat p expr). See fetch and @spawnat.

source

Base.@async –Macro.

@async

Like @schedule, @asyncwraps an expression in a Task and adds it to the local machine's scheduler queue. Addi-

tionally it adds the task to the set of items that the nearest enclosing @syncwaits for.

source

Base.@sync –Macro.

@sync

Wait until all dynamically-enclosed uses of @async, @spawn, @spawnat and @parallel are complete. All excep-

tions thrown by enclosed async operations are collected and thrown as a CompositeException.

source

Base.Distributed.@parallel –Macro.

@parallel

A parallel for loop of the form :

@parallel [reducer] for var = range

body

end

The specified range is partitioned and locally executed across all workers. In case an optional reducer function is

specified, @parallel performs local reductions on eachworker with a final reduction on the calling process.

Note thatwithout a reducer function,@parallel executes asynchronously, i.e. it spawns independent tasks on all

available workers and returns immediately without waiting for completion. To wait for completion, prefix the call

with @sync, like :

@sync @parallel for var = range

body

end

source

Base.Distributed.@everywhere –Macro.

@everywhere expr

Execute anexpressionunderMaineverywhere. Equivalent to callingeval(Main, expr)onall processes. Errors

on any of the processes are collected into a CompositeException and thrown. For example :

@everywhere bar=1

will define Main.bar on all processes.

Unlike @spawn and @spawnat, @everywhere does not capture any local variables. Prefixing @everywherewith

@eval allows us to broadcast local variables using interpolation :

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/macros.jl#L40-L45
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/task.jl#L327-L333
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/task.jl#L292-L298
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/macros.jl#L180-L200

678 CHAPTER 51. TASKS AND PARALLEL COMPUTING

foo = 1

@eval @everywhere bar=$foo

The expression is evaluated under Main irrespective of where @everywhere is called from. For example :

module FooBar

foo() = @everywhere bar()=myid()

end

FooBar.foo()

will result in Main.bar being defined on all processes and not FooBar.bar.

source

Base.Distributed.clear! –Method.

clear!(syms, pids=workers(); mod=Main)

Clears global bindings in modules by initializing them to nothing. syms should be of type Symbol or a collection

of Symbols . pids and mod identify the processes and themodule in which global variables are to be reinitialized.

Only those names found to be defined under mod are cleared.

An exception is raised if a global constant is requested to be cleared.

source

Base.Distributed.remoteref_id – Function.

Base.remoteref_id(r::AbstractRemoteRef) -> RRID

Futures and RemoteChannels are identified by fields:

• where - refers to the nodewhere the underlying object/storage referred to by the reference actually exists.

• whence - refers to thenode the remote referencewas created from. Note that this is different from thenode

where the underlying object referred to actually exists. For example calling RemoteChannel(2) from the

master process would result in a where value of 2 and a whence value of 1.

• id is unique across all references created from theworker specified by whence.

Taken together, whence and id uniquely identify a reference across all workers.

Base.remoteref_id is a low-level API which returns a Base.RRID object that wraps whence and id values of a

remote reference.

source

Base.Distributed.channel_from_id – Function.

Base.channel_from_id(id) -> c

A low-level API which returns the backing AbstractChannel for an id returned by remoteref_id. The call is

valid only on the nodewhere the backing channel exists.

source

Base.Distributed.worker_id_from_socket – Function.

Base.worker_id_from_socket(s) -> pid

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/macros.jl#L67-L95
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/clusterserialize.jl#L228-L237
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L109-L129
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/remotecall.jl#L132-L138

51.3. SHARED ARRAYS 679

A low-level API which given a IO connection or a Worker, returns the pid of the worker it is connected to. This is

useful when writing custom serializemethods for a type, which optimizes the data written out depending on

the receiving process id.

source

Base.Distributed.cluster_cookie –Method.

Base.cluster_cookie() -> cookie

Returns the cluster cookie.

source

Base.Distributed.cluster_cookie –Method.

Base.cluster_cookie(cookie) -> cookie

Sets the passed cookie as the cluster cookie, then returns it.

source

51.3 Shared Arrays

Base.SharedArray – Type.

SharedArray{T}(dims::NTuple; init=false, pids=Int[])

SharedArray{T,N}(...)

Construct a SharedArray of a bits type T and size dims across the processes specified by pids - all of which have

to be on the same host. If N is specified by calling SharedArray{T,N}(dims), then Nmust match the length of

dims.

If pids is left unspecified, the shared array will be mapped across all processes on the current host, including the

master. But,localindexes andindexpidswill only refer toworker processes. This facilitateswork distribution

code to use workers for actual computation with themaster process acting as a driver.

If aninit functionof the typeinitfn(S::SharedArray) is specified, it is calledonall theparticipatingworkers.

The shared array is valid as long as a reference to the SharedArray object exists on the node which created the

mapping.

SharedArray{T}(filename::AbstractString, dims::NTuple, [offset=0]; mode=nothing, init=false,

pids=Int[])

SharedArray{T,N}(...)

Construct a SharedArray backed by the file filename, with element type T (must be a bits type) and size dims,

across the processes specifiedbypids - all ofwhich have to beon the samehost. This file ismmapped into the host

memory, with the following consequences:

• The array datamust be represented in binary format (e.g., an ASCII format like CSV cannot be supported)

• Any changes youmake to the array values (e.g., A[3] = 0) will also change the values on disk

If pids is left unspecified, the shared array will be mapped across all processes on the current host, including the

master. But,localindexes andindexpidswill only refer toworker processes. This facilitateswork distribution

code to use workers for actual computation with themaster process acting as a driver.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L842-L849
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L569-L573
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L576-L580

680 CHAPTER 51. TASKS AND PARALLEL COMPUTING

mode must be one of "r", "r+", "w+", or "a+", and defaults to "r+" if the file specified by filename already

exists, or "w+" if not. If an init function of the type initfn(S::SharedArray) is specified, it is called on all the

participating workers. You cannot specify an init function if the file is not writable.

offset allows you to skip the specified number of bytes at the beginning of the file.

source

Base.Distributed.procs –Method.

procs(S::SharedArray)

Get the vector of processes mapping the shared array.

source

Base.sdata – Function.

sdata(S::SharedArray)

Returns the actual Array object backing S.

source

Base.indexpids – Function.

indexpids(S::SharedArray)

Returns the current worker's index in the list of workers mapping the SharedArray (i.e. in the same list returned

by procs(S)), or 0 if the SharedArray is not mapped locally.

source

Base.localindexes – Function.

localindexes(S::SharedArray)

Returns a range describing the "default" indexes to be handled by the current process. This range should be inter-

preted in the sense of linear indexing, i.e., as a sub-range of 1:length(S). In multi-process contexts, returns an

empty range in the parent process (or any process for which indexpids returns 0).

It'sworth emphasizing thatlocalindexesexists purely as a convenience, andyoucanpartitionworkon thearray

amongworkers anyway youwish. For a SharedArray, all indexes should be equally fast for eachworker process.

source

51.4 Multi-Threading

Thisexperimental interfacesupports Julia'smulti-threadingcapabilities. Typesandfunctionsdescribedheremight (and

likely will) change in the future.

Base.Threads.threadid – Function.

Threads.threadid()

Get the ID number of the current thread of execution. Themaster thread has ID 1.

source

Base.Threads.nthreads – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sharedarray.jl#L37-L86
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sharedarray.jl#L288-L292
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sharedarray.jl#L304-L308
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sharedarray.jl#L295-L301
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sharedarray.jl#L312-L325
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/threadingconstructs.jl#L5-L9

51.4. MULTI-THREADING 681

Threads.nthreads()

Get the number of threads available to the Julia process. This is the inclusive upper bound on threadid().

source

Base.Threads.@threads –Macro.

Threads.@threads

Amacro to parallelize a for-loop to run withmultiple threads. This spawns nthreads() number of threads, splits

the iteration space amongst them, and iterates in parallel. A barrier is placed at the end of the loopwhichwaits for

all the threads to finish execution, and the loop returns.

source

Base.Threads.Atomic – Type.

Threads.Atomic{T}

Holds a reference to an object of type T, ensuring that it is only accessed atomically, i.e. in a thread-safe manner.

Only certain "simple" types can be used atomically, namely the primitive integer and float-point types. These are

Int8...Int128, UInt8...UInt128, and Float16...Float64.

New atomic objects can be created from a non-atomic values; if none is specified, the atomic object is initialized

with zero.

Atomic objects can be accessed using the [] notation:

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> x[] = 1

1

julia> x[]

1

Atomic operations use an atomic_ prefix, such as atomic_add!, atomic_xchg!, etc.

source

Base.Threads.atomic_cas! – Function.

Threads.atomic_cas!{T}(x::Atomic{T}, cmp::T, newval::T)

Atomically compare-and-set x

Atomically compares the value inxwithcmp. If equal, writenewval tox. Otherwise, leavesx unmodified. Returns

the old value in x. By comparing the returned value to cmp (via ===) one knows whether xwas modified and now

holds the new value newval.

For further details, see LLVM's cmpxchg instruction.

This function can be used to implement transactional semantics. Before the transaction, one records the value in

x. After the transaction, the new value is stored only if x has not beenmodified in themean time.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/threadingconstructs.jl#L13-L18
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/threadingconstructs.jl#L79-L86
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/atomics.jl#L35-L63

682 CHAPTER 51. TASKS AND PARALLEL COMPUTING

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_cas!(x, 4, 2);

julia> x

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_cas!(x, 3, 2);

julia> x

Base.Threads.Atomic{Int64}(2)

source

Base.Threads.atomic_xchg! – Function.

Threads.atomic_xchg!{T}(x::Atomic{T}, newval::T)

Atomically exchange the value in x

Atomically exchanges the value in xwith newval. Returns the old value.

For further details, see LLVM's atomicrmw xchg instruction.

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_xchg!(x, 2)

3

julia> x[]

2

source

Base.Threads.atomic_add! – Function.

Threads.atomic_add!{T}(x::Atomic{T}, val::T)

Atomically add val to x

Performs x[] += val atomically. Returns the old value.

For further details, see LLVM's atomicrmw add instruction.

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_add!(x, 2)

3

julia> x[]

5

source

Base.Threads.atomic_sub! – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/atomics.jl#L72-L103
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/atomics.jl#L106-L126
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/atomics.jl#L129-L148

51.4. MULTI-THREADING 683

Threads.atomic_sub!{T}(x::Atomic{T}, val::T)

Atomically subtract val from x

Performs x[] -= val atomically. Returns the old value.

For further details, see LLVM's atomicrmw sub instruction.

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_sub!(x, 2)

3

julia> x[]

1

source

Base.Threads.atomic_and! – Function.

Threads.atomic_and!{T}(x::Atomic{T}, val::T)

Atomically bitwise-and xwith val

Performs x[] &= val atomically. Returns the old value.

For further details, see LLVM's atomicrmw and instruction.

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_and!(x, 2)

3

julia> x[]

2

source

Base.Threads.atomic_nand! – Function.

Threads.atomic_nand!{T}(x::Atomic{T}, val::T)

Atomically bitwise-nand (not-and) xwith val

Performs x[] = ~(x[] & val) atomically. Returns the old value.

For further details, see LLVM's atomicrmw nand instruction.

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_nand!(x, 2)

3

julia> x[]

-3

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/atomics.jl#L151-L170
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/atomics.jl#L173-L192

684 CHAPTER 51. TASKS AND PARALLEL COMPUTING

source

Base.Threads.atomic_or! – Function.

Threads.atomic_or!{T}(x::Atomic{T}, val::T)

Atomically bitwise-or xwith val

Performs x[] |= val atomically. Returns the old value.

For further details, see LLVM's atomicrmw or instruction.

julia> x = Threads.Atomic{Int}(5)

Base.Threads.Atomic{Int64}(5)

julia> Threads.atomic_or!(x, 7)

5

julia> x[]

7

source

Base.Threads.atomic_xor! – Function.

Threads.atomic_xor!{T}(x::Atomic{T}, val::T)

Atomically bitwise-xor (exclusive-or) xwith val

Performs x[] $= val atomically. Returns the old value.

For further details, see LLVM's atomicrmw xor instruction.

julia> x = Threads.Atomic{Int}(5)

Base.Threads.Atomic{Int64}(5)

julia> Threads.atomic_xor!(x, 7)

5

julia> x[]

2

source

Base.Threads.atomic_max! – Function.

Threads.atomic_max!{T}(x::Atomic{T}, val::T)

Atomically store themaximum of x and val in x

Performs x[] = max(x[], val) atomically. Returns the old value.

For further details, see LLVM's atomicrmw max instruction.

julia> x = Threads.Atomic{Int}(5)

Base.Threads.Atomic{Int64}(5)

julia> Threads.atomic_max!(x, 7)

5

julia> x[]

7

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/atomics.jl#L195-L214
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/atomics.jl#L217-L236
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/atomics.jl#L239-L258

51.5. CCALL USING A THREADPOOL (EXPERIMENTAL) 685

source

Base.Threads.atomic_min! – Function.

Threads.atomic_min!{T}(x::Atomic{T}, val::T)

Atomically store theminimum of x and val in x

Performs x[] = min(x[], val) atomically. Returns the old value.

For further details, see LLVM's atomicrmw min instruction.

julia> x = Threads.Atomic{Int}(7)

Base.Threads.Atomic{Int64}(7)

julia> Threads.atomic_min!(x, 5)

7

julia> x[]

5

source

Base.Threads.atomic_fence – Function.

Threads.atomic_fence()

Insert a sequential-consistencymemory fence

Insertsamemory fencewithsequentially-consistentorderingsemantics. Therearealgorithmswherethis isneeded,

i.e. where an acquire/release ordering is insufficient.

This is likelyaveryexpensiveoperation. Giventhatall otheratomicoperations inJuliaalreadyhaveacquire/release

semantics, explicit fences should not be necessary in most cases.

For further details, see LLVM's fence instruction.

source

51.5 ccall using a threadpool (Experimental)

Base.@threadcall –Macro.

@threadcall((cfunc, clib), rettype, (argtypes...), argvals...)

The @threadcallmacro is called in the sameway as ccall but does thework in a different thread. This is useful

when you want to call a blocking C function without causing the main julia thread to become blocked. Concur-

rency is limited by size of the libuv thread pool, which defaults to 4 threads but can be increased by setting the

UV_THREADPOOL_SIZE environment variable and restarting the julia process.

Note that the called function should never call back into Julia.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/atomics.jl#L261-L280
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/atomics.jl#L283-L302
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/atomics.jl#L464-L478
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/threadcall.jl#L17-L28

686 CHAPTER 51. TASKS AND PARALLEL COMPUTING

51.6 Synchronization Primitives

Base.Threads.AbstractLock – Type.

AbstractLock

Abstract supertype describing types that implement the thread-safe synchronization primitives: lock, trylock,

unlock, and islocked

source

Base.lock – Function.

lock(the_lock)

Acquires the lock when it becomes available. If the lock is already locked by a different task/thread, it waits for it

to become available.

Each lockmust bematched by an unlock.

source

Base.unlock – Function.

unlock(the_lock)

Releases ownership of the lock.

If this is a recursive lockwhich has been acquired before, it just decrements an internal counter and returns imme-

diately.

source

Base.trylock – Function.

trylock(the_lock) -> Success (Boolean)

Acquires the lock if it isavailable, returningtrue if successful. If the lock isalready lockedbyadifferent task/thread,

returns false.

Each successful trylockmust bematched by an unlock.

source

Base.islocked – Function.

islocked(the_lock) -> Status (Boolean)

Checkwhether the lock isheldbyanytask/thread. This shouldnotbeusedforsynchronization (see insteadtrylock).

source

Base.ReentrantLock – Type.

ReentrantLock()

Creates a reentrant lock for synchronizing Tasks. The same task can acquire the lock as many times as required.

Each lockmust bematchedwith an unlock.

This lock is NOT threadsafe. See Threads.Mutex for a threadsafe lock.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/locks.jl#L13-L19
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/lock.jl#L54-L62
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/lock.jl#L78-L85
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/lock.jl#L31-L40
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/lock.jl#L21-L26
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/lock.jl#L4-L12

51.6. SYNCHRONIZATION PRIMITIVES 687

Base.Threads.Mutex – Type.

Mutex()

These are standard systemmutexes for locking critical sections of logic.

OnWindows, this is a critical section object, on pthreads, this is a pthread_mutex_t.

See also SpinLock for a lighter-weight lock.

source

Base.Threads.SpinLock – Type.

SpinLock()

Creates a non-reentrant lock. Recursive usewill result in a deadlock. Eachlockmust bematchedwith anunlock.

Test-and-test-and-set spin locks are quickest up to about 30ish contending threads. If you have more contention

than that, perhaps a lock is the wrongway to synchronize.

See also RecursiveSpinLock for a version that permits recursion.

See alsoMutex for amore efficient version on one core or if the lockmay be held for a considerable length of time.

source

Base.Threads.RecursiveSpinLock – Type.

RecursiveSpinLock()

Creates a reentrant lock. The same thread can acquire the lock as many times as required. Each lock must be

matchedwith an unlock.

See also SpinLock for a slightly faster version.

See alsoMutex for amore efficient version on one core or if the lockmay be held for a considerable length of time.

source

Base.Semaphore – Type.

Semaphore(sem_size)

Creates a counting semaphore that allows at most sem_size acquires to be in use at any time. Each acquire must

bemachedwith a release.

This construct is NOT threadsafe.

source

Base.acquire – Function.

acquire(s::Semaphore)

Wait for one of the sem_size permits to be available, blocking until one can be acquired.

source

Base.release – Function.

release(s::Semaphore)

Return one permit to the pool, possibly allowing another task to acquire it and resume execution.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/locks.jl#L172-L181
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/locks.jl#L35-L49
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/locks.jl#L95-L105
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/lock.jl#L118-L126
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/lock.jl#L134-L139
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/lock.jl#L151-L157

688 CHAPTER 51. TASKS AND PARALLEL COMPUTING

51.7 ClusterManager Interface

This interface provides a mechanism to launch and manage Julia workers on different cluster environments. There

are two types of managers present in Base: LocalManager, for launching additional workers on the same host, and

SSHManager, for launching on remote hosts via ssh. TCP/IP sockets are used to connect and transport messages be-

tween processes. It is possible for ClusterManagers to provide a different transport.

Base.Distributed.launch – Function.

launch(manager::ClusterManager, params::Dict, launched::Array, launch_ntfy::Condition)

Implementedbyclustermanagers. ForeveryJuliaworker launchedbythis function, it shouldappendaWorkerConfig

entry to launched and notify launch_ntfy. The function MUST exit once all workers, requested by manager

have been launched. params is a dictionary of all keyword arguments addprocswas called with.

source

Base.Distributed.manage – Function.

manage(manager::ClusterManager, id::Integer, config::WorkerConfig. op::Symbol)

Implemented by cluster managers. It is called on the master process, during a worker's lifetime, with appropriate

op values:

• with :register/:deregisterwhen aworker is added / removed from the Julia worker pool.

• with :interrupt when interrupt(workers) is called. The ClusterManager should signal the appro-

priate worker with an interrupt signal.

• with :finalize for cleanup purposes.

source

Base.kill –Method.

kill(manager::ClusterManager, pid::Int, config::WorkerConfig)

Implemented by cluster managers. It is called on the master process, by rmprocs. It should cause the remote

worker specified by pid to exit. kill(manager::ClusterManager.....) executes a remote exit() on pid.

source

Base.Distributed.init_worker – Function.

init_worker(cookie::AbstractString, manager::ClusterManager=DefaultClusterManager())

Called by cluster managers implementing custom transports. It initializes a newly launched process as a worker.

Command line argument --worker has the effect of initializing a process as a worker using TCP/IP sockets for

transport. cookie is a cluster_cookie.

source

Base.connect –Method.

connect(manager::ClusterManager, pid::Int, config::WorkerConfig) -> (instrm::IO, outstrm::IO)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/managers.jl#L342-L349
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/managers.jl#L352-L362
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/managers.jl#L517-L525
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/cluster.jl#L265-L272

51.7. CLUSTERMANAGER INTERFACE 689

Implemented by clustermanagers using custom transports. It should establish a logical connection toworkerwith

id pid, specified by config and return a pair of IO objects. Messages from pid to current process will be read off

instrm, whilemessages to be sent topidwill bewritten tooutstrm. The custom transport implementationmust

ensurethatmessagesaredeliveredandreceivedcompletelyand inorder. connect(manager::ClusterManager.....)

sets up TCP/IP socket connections in-betweenworkers.

source

Base.Distributed.process_messages – Function.

Base.process_messages(r_stream::IO, w_stream::IO, incoming::Bool=true)

Calledbyclustermanagersusingcustomtransports. It shouldbecalledwhenthecustomtransport implementation

receives the first message from a remote worker. The custom transport must manage a logical connection to the

remote worker and provide two IO objects, one for incoming messages and the other for messages addressed to

the remoteworker. If incoming is true, the remote peer initiated the connection. Whichever of the pair initiates

the connection sends the cluster cookie and its Julia version number to perform the authentication handshake.

See also cluster_cookie.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/managers.jl#L372-L382
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/distributed/process_messages.jl#L121-L134

Chapter 52

Linear Algebra

52.1 Standard Functions

Linear algebra functions in Julia are largely implemented by calling functions from LAPACK. Sparse factorizations call

functions from SuiteSparse.

Base.:* –Method.

*(x, y...)

Multiplication operator. x*y*z*... calls this function with all arguments, i.e. *(x, y, z, ...).

source

Base.:\ –Method.

\(x, y)

Left division operator: multiplication of y by the inverse of x on the left. Gives floating-point results for integer

arguments.

julia> 3 \ 6

2.0

julia> inv(3) * 6

2.0

julia> A = [1 2; 3 4]; x = [5, 6];

julia> A \ x

2-element Array{Float64,1}:

-4.0

4.5

julia> inv(A) * x

2-element Array{Float64,1}:

-4.0

4.5

source

Base.LinAlg.dot – Function.

691

http://www.netlib.org/lapack/
http://faculty.cse.tamu.edu/davis/suitesparse.html
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1917-L1923
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L431-L456

692 CHAPTER 52. LINEAR ALGEBRA

dot(n, X, incx, Y, incy)

Dot product of two vectors consisting of n elements of array X with stride incx and n elements of array Y with

stride incy.

Example:

julia> dot(10, ones(10), 1, ones(20), 2)

10.0

source

Base.LinAlg.vecdot – Function.

vecdot(x, y)

For any iterable containers x and y (including arrays of any dimension) of numbers (or any element type for which

dot is defined), compute the Euclidean dot product (the sum of dot(x[i],y[i])) as if they were vectors.

Examples

julia> vecdot(1:5, 2:6)

70

julia> x = fill(2., (5,5));

julia> y = fill(3., (5,5));

julia> vecdot(x, y)

150.0

source

Base.LinAlg.cross – Function.

cross(x, y)

×(x,y)

Compute the cross product of two 3-vectors.

Example

julia> a = [0;1;0]

3-element Array{Int64,1}:

0

1

0

julia> b = [0;0;1]

3-element Array{Int64,1}:

0

0

1

julia> cross(a,b)

3-element Array{Int64,1}:

1

0

0

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L213-L224
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L624-L643

52.1. STANDARD FUNCTIONS 693

source

Base.LinAlg.factorize – Function.

factorize(A)

Compute a convenient factorization of A, based upon the type of the inputmatrix. factorize checks A to see if it

is symmetric/triangular/etc. if A is passed as a genericmatrix. factorize checks every element of A to verify/rule

out each property. It will short-circuit as soon as it can rule out symmetry/triangular structure. The return value

can be reused for efficient solving of multiple systems. For example: A=factorize(A); x=A\b; y=A\C.

Properties of A type of factorization

Positive-definite Cholesky (see cholfact)

Dense Symmetric/Hermitian Bunch-Kaufman (see bkfact)

Sparse Symmetric/Hermitian LDLt (see ldltfact)

Triangular Triangular

Diagonal Diagonal

Bidiagonal Bidiagonal

Tridiagonal LU (see lufact)

Symmetric real tridiagonal LDLt (see ldltfact)

General square LU (see lufact)

General non-square QR (see qrfact)

Iffactorize is calledonaHermitianpositive-definitematrix, for instance, thenfactorizewill returnaCholesky

factorization.

Example

julia> A = Array(Bidiagonal(ones(5, 5), true))

5×5 Array{Float64,2}:

1.0 1.0 0.0 0.0 0.0

0.0 1.0 1.0 0.0 0.0

0.0 0.0 1.0 1.0 0.0

0.0 0.0 0.0 1.0 1.0

0.0 0.0 0.0 0.0 1.0

julia> factorize(A) # factorize will check to see that A is already factorized

5×5 Bidiagonal{Float64}:

1.0 1.0

1.0 1.0

1.0 1.0

1.0 1.0

1.0

This returnsa5×5 Bidiagonal{Float64},whichcannowbepassedtoother linearalgebra functions (e.g. eigen-

solvers) which will use specializedmethods for Bidiagonal types.

source

Base.LinAlg.Diagonal – Type.

Diagonal(A::AbstractMatrix)

Constructs amatrix from the diagonal of A.

Example

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L88-L115
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L664-L711

694 CHAPTER 52. LINEAR ALGEBRA

julia> A = [1 2 3; 4 5 6; 7 8 9]

3×3 Array{Int64,2}:

1 2 3

4 5 6

7 8 9

julia> Diagonal(A)

3×3 Diagonal{Int64}:

1

5

9

source

Diagonal(V::AbstractVector)

Constructs amatrix with V as its diagonal.

Example

julia> V = [1; 2]

2-element Array{Int64,1}:

1

2

julia> Diagonal(V)

2×2 Diagonal{Int64}:

1

2

source

Base.LinAlg.Bidiagonal – Type.

Bidiagonal(dv, ev, isupper::Bool)

Constructs an upper (isupper=true) or lower (isupper=false) bidiagonal matrix using the given diagonal (dv)

and off-diagonal (ev) vectors. The result is of type Bidiagonal and provides efficient specialized linear solvers,

but may be converted into a regular matrix with convert(Array, _) (or Array(_) for short). ev's length must

be one less than the length of dv.

Example

julia> dv = [1; 2; 3; 4]

4-element Array{Int64,1}:

1

2

3

4

julia> ev = [7; 8; 9]

3-element Array{Int64,1}:

7

8

9

julia> Bu = Bidiagonal(dv, ev, true) # ev is on the first superdiagonal

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/diagonal.jl#L8-L28
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/diagonal.jl#L30-L48

52.1. STANDARD FUNCTIONS 695

4×4 Bidiagonal{Int64}:

1 7

2 8

3 9

4

julia> Bl = Bidiagonal(dv, ev, false) # ev is on the first subdiagonal

4×4 Bidiagonal{Int64}:

1

7 2

8 3

9 4

source

Bidiagonal(dv, ev, uplo::Char)

Constructs an upper (uplo='U') or lower (uplo='L') bidiagonal matrix using the given diagonal (dv) and off-

diagonal (ev) vectors. The result is of type Bidiagonal and provides efficient specialized linear solvers, but may

be converted into a regular matrix with convert(Array, _) (or Array(_) for short). ev's length must be one

less than the length of dv.

Example

julia> dv = [1; 2; 3; 4]

4-element Array{Int64,1}:

1

2

3

4

julia> ev = [7; 8; 9]

3-element Array{Int64,1}:

7

8

9

julia> Bu = Bidiagonal(dv, ev, 'U') #e is on the first superdiagonal

4×4 Bidiagonal{Int64}:

1 7

2 8

3 9

4

julia> Bl = Bidiagonal(dv, ev, 'L') #e is on the first subdiagonal

4×4 Bidiagonal{Int64}:

1

7 2

8 3

9 4

source

Bidiagonal(A, isupper::Bool)

Construct aBidiagonalmatrix fromthemaindiagonal ofAand its first super- (ifisupper=true) or sub-diagonal

(if isupper=false).

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/bidiag.jl#L15-L54
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/bidiag.jl#L58-L97

696 CHAPTER 52. LINEAR ALGEBRA

Example

julia> A = [1 1 1 1; 2 2 2 2; 3 3 3 3; 4 4 4 4]

4×4 Array{Int64,2}:

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

julia> Bidiagonal(A, true) #contains the main diagonal and first superdiagonal of A

4×4 Bidiagonal{Int64}:

1 1

2 2

3 3

4

julia> Bidiagonal(A, false) #contains the main diagonal and first subdiagonal of A

4×4 Bidiagonal{Int64}:

1

2 2

3 3

4 4

source

Base.LinAlg.SymTridiagonal – Type.

SymTridiagonal(dv, ev)

Construct a symmetric tridiagonal matrix from the diagonal and first sub/super-diagonal, respectively. The result

is of type SymTridiagonal and provides efficient specialized eigensolvers, but may be converted into a regular

matrix with convert(Array, _) (or Array(_) for short).

Example

julia> dv = [1; 2; 3; 4]

4-element Array{Int64,1}:

1

2

3

4

julia> ev = [7; 8; 9]

3-element Array{Int64,1}:

7

8

9

julia> SymTridiagonal(dv, ev)

4×4 SymTridiagonal{Int64}:

1 7

7 2 8

8 3 9

9 4

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/bidiag.jl#L114-L144
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/tridiag.jl#L17-L48

52.1. STANDARD FUNCTIONS 697

Base.LinAlg.Tridiagonal – Type.

Tridiagonal(dl, d, du)

Construct a tridiagonalmatrix fromthefirst subdiagonal, diagonal, andfirst superdiagonal, respectively. The result

isof typeTridiagonalandprovidesefficient specialized linear solvers, butmaybeconverted intoaregularmatrix

with convert(Array, _) (or Array(_) for short). The lengths of dl and dumust be one less than the length of

d.

Example

julia> dl = [1; 2; 3]

3-element Array{Int64,1}:

1

2

3

julia> du = [4; 5; 6]

3-element Array{Int64,1}:

4

5

6

julia> d = [7; 8; 9; 0]

4-element Array{Int64,1}:

7

8

9

0

julia> Tridiagonal(dl, d, du)

4×4 Tridiagonal{Int64}:

7 4

1 8 5

2 9 6

3 0

source

Tridiagonal(A)

returns a Tridiagonal array based on (abstract) matrix A, using its first lower diagonal, main diagonal, and first

upper diagonal.

Example

julia> A = [1 2 3 4; 1 2 3 4; 1 2 3 4; 1 2 3 4]

4×4 Array{Int64,2}:

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

julia> Tridiagonal(A)

4×4 Tridiagonal{Int64}:

1 2

1 2 3

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/tridiag.jl#L395-L433

698 CHAPTER 52. LINEAR ALGEBRA

2 3 4

3 4

source

Base.LinAlg.Symmetric – Type.

Symmetric(A, uplo=:U)

Construct a Symmetric view of the upper (if uplo = :U) or lower (if uplo = :L) triangle of thematrix A.

Example

julia> A = [1 0 2 0 3; 0 4 0 5 0; 6 0 7 0 8; 0 9 0 1 0; 2 0 3 0 4]

5×5 Array{Int64,2}:

1 0 2 0 3

0 4 0 5 0

6 0 7 0 8

0 9 0 1 0

2 0 3 0 4

julia> Supper = Symmetric(A)

5×5 Symmetric{Int64,Array{Int64,2}}:

1 0 2 0 3

0 4 0 5 0

2 0 7 0 8

0 5 0 1 0

3 0 8 0 4

julia> Slower = Symmetric(A, :L)

5×5 Symmetric{Int64,Array{Int64,2}}:

1 0 6 0 2

0 4 0 9 0

6 0 7 0 3

0 9 0 1 0

2 0 3 0 4

Note that Supperwill not be equal to Slower unless A is itself symmetric (e.g. if A == A.').

source

Base.LinAlg.Hermitian – Type.

Hermitian(A, uplo=:U)

Construct a Hermitian view of the upper (if uplo = :U) or lower (if uplo = :L) triangle of thematrix A.

Example

julia> A = [1 0 2+2im 0 3-3im; 0 4 0 5 0; 6-6im 0 7 0 8+8im; 0 9 0 1 0; 2+2im 0 3-3im 0 4];

julia> Hupper = Hermitian(A)

5×5 Hermitian{Complex{Int64},Array{Complex{Int64},2}}:

1+0im 0+0im 2+2im 0+0im 3-3im

0+0im 4+0im 0+0im 5+0im 0+0im

2-2im 0+0im 7+0im 0+0im 8+8im

0+0im 5+0im 0+0im 1+0im 0+0im

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/tridiag.jl#L449-L472
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/symmetric.jl#L8-L43

52.1. STANDARD FUNCTIONS 699

3+3im 0+0im 8-8im 0+0im 4+0im

julia> Hlower = Hermitian(A, :L)

5×5 Hermitian{Complex{Int64},Array{Complex{Int64},2}}:

1+0im 0+0im 6+6im 0+0im 2-2im

0+0im 4+0im 0+0im 9+0im 0+0im

6-6im 0+0im 7+0im 0+0im 3+3im

0+0im 9+0im 0+0im 1+0im 0+0im

2+2im 0+0im 3-3im 0+0im 4+0im

Note that Hupperwill not be equal to Hlower unless A is itself Hermitian (e.g. if A == A').

source

Base.LinAlg.LowerTriangular – Type.

LowerTriangular(A::AbstractMatrix)

Construct a LowerTriangular view of the thematrix A.

Example

julia> A = [1.0 2.0 3.0; 4.0 5.0 6.0; 7.0 8.0 9.0]

3×3 Array{Float64,2}:

1.0 2.0 3.0

4.0 5.0 6.0

7.0 8.0 9.0

julia> LowerTriangular(A)

3×3 LowerTriangular{Float64,Array{Float64,2}}:

1.0

4.0 5.0

7.0 8.0 9.0

source

Base.LinAlg.UpperTriangular – Type.

UpperTriangular(A::AbstractMatrix)

Construct an UpperTriangular view of the thematrix A.

Example

julia> A = [1.0 2.0 3.0; 4.0 5.0 6.0; 7.0 8.0 9.0]

3×3 Array{Float64,2}:

1.0 2.0 3.0

4.0 5.0 6.0

7.0 8.0 9.0

julia> UpperTriangular(A)

3×3 UpperTriangular{Float64,Array{Float64,2}}:

1.0 2.0 3.0

5.0 6.0

9.0

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/symmetric.jl#L58-L87
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/triangular.jl#L53-L73
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/triangular.jl#L75-L95

700 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.lu – Function.

lu(A, pivot=Val{true}) -> L, U, p

Compute the LU factorization of A, such that A[p,:] = L*U. By default, pivoting is used. This can be overridden

by passing Val{false} for the second argument.

See also lufact.

Example

julia> A = [4. 3.; 6. 3.]

2×2 Array{Float64,2}:

4.0 3.0

6.0 3.0

julia> L, U, p = lu(A)

([1.0 0.0; 0.666667 1.0], [6.0 3.0; 0.0 1.0], [2, 1])

julia> A[p, :] == L * U

true

source

Base.LinAlg.lufact – Function.

lufact(A [,pivot=Val{true}]) -> F::LU

Compute the LU factorization of A.

Inmost cases, ifA is a subtypeSofAbstractMatrix{T}withanelement typeT supporting+,-,*and/, the return

type is LU{T,S{T}}. If pivoting is chosen (default) the element type should also support abs and <.

The individual components of the factorization F can be accessed by indexing:

Component Description

F[:L] L (lower triangular) part of LU

F[:U] U (upper triangular) part of LU

F[:p] (right) permutation Vector

F[:P] (right) permutation Matrix

The relationship between F and A is

F[:L]*F[:U] == A[F[:p], :]

F further supports the following functions:

Supported function LU LU{T,Tridiagonal{T}}

/

\

cond

inv

det

logdet

logabsdet

size

Example

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lu.jl#L165-L188

52.1. STANDARD FUNCTIONS 701

julia> A = [4 3; 6 3]

2×2 Array{Int64,2}:

4 3

6 3

julia> F = lufact(A)

Base.LinAlg.LU{Float64,Array{Float64,2}} with factors L and U:

[1.0 0.0; 1.5 1.0]

[4.0 3.0; 0.0 -1.5]

julia> F[:L] * F[:U] == A[F[:p], :]

true

source

lufact(A::SparseMatrixCSC) -> F::UmfpackLU

Compute the LU factorization of a sparsematrix A.

For sparse Awith real or complex element type, the return type of F is UmfpackLU{Tv, Ti}, with Tv = Float64

or Complex128 respectively and Ti is an integer type (Int32 or Int64).

The individual components of the factorization F can be accessed by indexing:

Component Description

F[:L] L (lower triangular) part of LU

F[:U] U (upper triangular) part of LU

F[:p] right permutation Vector

F[:q] left permutation Vector

F[:Rs] Vector of scaling factors

F[:(:)] (L,U,p,q,Rs) components

The relation between F and A is

F[:L]*F[:U] == (F[:Rs] .* A)[F[:p], F[:q]]

F further supports the following functions:

• \

• cond

• det

Note

lufact(A::SparseMatrixCSC) uses the UMFPACK library that is part of SuiteSparse. As this li-

brary only supports sparsematrices with Float64 or Complex128 elements, lufact converts A into

a copy that is of typeSparseMatrixCSC{Float64}orSparseMatrixCSC{Complex128} as appro-

priate.

source

Base.LinAlg.lufact! – Function.

lufact!(A, pivot=Val{true}) -> LU

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lu.jl#L86-L138
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/umfpack.jl#L104-L139

702 CHAPTER 52. LINEAR ALGEBRA

lufact! is thesameaslufact, but savesspacebyoverwritingthe inputA, insteadofcreatingacopy. AnInexactError

exception is thrown if the factorization produces a number not representable by the element type of A, e.g. for in-

teger types.

source

Base.LinAlg.chol – Function.

chol(A) -> U

Compute the Cholesky factorization of a positive definite matrix A and return the UpperTriangular matrix U

such that A = U'U.

Example

julia> A = [1. 2.; 2. 50.]

2×2 Array{Float64,2}:

1.0 2.0

2.0 50.0

julia> U = chol(A)

2×2 UpperTriangular{Float64,Array{Float64,2}}:

1.0 2.0

6.78233

julia> U'U

2×2 Array{Float64,2}:

1.0 2.0

2.0 50.0

source

chol(x::Number) -> y

Compute the square root of a non-negative number x.

Example

julia> chol(16)

4.0

source

Base.LinAlg.cholfact – Function.

cholfact(A; shift = 0.0, perm = Int[]) -> CHOLMOD.Factor

Compute the Cholesky factorization of a sparse positive definite matrix A. A must be a SparseMatrixCSC or a

Symmetric/Hermitian view of a SparseMatrixCSC. Note that even if A doesn't have the type tag, it must still

be symmetric or Hermitian. A fill-reducing permutation is used. F = cholfact(A) is most frequently used to

solve systems of equations with F\b, but also the methods diag, det, and logdet are defined for F. You can also

extract individual factors from F, using F[:L]. However, since pivoting is on by default, the factorization is inter-

nally represented asA == P'*L*L'*Pwith a permutationmatrixP; using justLwithout accounting forPwill give

incorrect answers. To include the effects of permutation, it's typically preferable to extract "combined" factors like

PtL = F[:PtL] (the equivalent of P'*L) and LtP = F[:UP] (the equivalent of L'*P).

Setting the optional shift keyword argument computes the factorization of A+shift*I instead of A. If the perm

argument isnonempty, it shouldbeapermutationof1:size(A,1)givingtheordering touse (insteadofCHOLMOD's

default AMDordering).

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lu.jl#L23-L30
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/cholesky.jl#L159-L183
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/cholesky.jl#L190-L201

52.1. STANDARD FUNCTIONS 703

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or complex

doubles. Inputmatricesnotof thoseelement typeswillbeconvertedtoSparseMatrixCSC{Float64}

or SparseMatrixCSC{Complex128} as appropriate.

Manyother functions fromCHOLMODarewrappedbutnotexported fromtheBase.SparseArrays.CHOLMOD

module.

source

cholfact(A, [uplo::Symbol,] Val{false}) -> Cholesky

Compute the Cholesky factorization of a dense symmetric positive definite matrix A and return a Cholesky fac-

torization. The matrix A can either be a Symmetric or Hermitian StridedMatrix or a perfectly symmetric or

Hermitian StridedMatrix. In the latter case, the optional argument uplomay be :L for using the lower part or

:U for the upper part of A. The default is to use :U. The triangular Cholesky factor can be obtained from the factor-

ization F with: F[:L] and F[:U]. The following functions are available for Cholesky objects: size, \, inv, and

det. A PosDefException exception is thrown in case thematrix is not positive definite.

Example

julia> A = [4. 12. -16.; 12. 37. -43.; -16. -43. 98.]

3×3 Array{Float64,2}:

4.0 12.0 -16.0

12.0 37.0 -43.0

-16.0 -43.0 98.0

julia> C = cholfact(A)

Base.LinAlg.Cholesky{Float64,Array{Float64,2}} with factor:

[2.0 6.0 -8.0; 0.0 1.0 5.0; 0.0 0.0 3.0]

julia> C[:U]

3×3 UpperTriangular{Float64,Array{Float64,2}}:

2.0 6.0 -8.0

1.0 5.0

3.0

julia> C[:L]

3×3 LowerTriangular{Float64,Array{Float64,2}}:

2.0

6.0 1.0

-8.0 5.0 3.0

julia> C[:L] * C[:U] == A

true

source

cholfact(A, [uplo::Symbol,] Val{true}; tol = 0.0) -> CholeskyPivoted

Compute the pivoted Cholesky factorization of a dense symmetric positive semi-definite matrix A and return a

CholeskyPivoted factorization. The matrix A can either be a Symmetric or Hermitian StridedMatrix or a

perfectly symmetric or Hermitian StridedMatrix. In the latter case, the optional argument uplomay be :L for

using the lower part or:U for theupper part ofA. Thedefault is to use:U. The triangularCholesky factor canbeob-

tainedfromthefactorizationFwith: F[:L]andF[:U]. The following functionsareavailable forPivotedCholesky

objects: size, \, inv, det, and rank. The argument tol determines the tolerance for determining the rank. For

negative values, the tolerance is themachine precision.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/cholmod.jl#L1405-L1437
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/cholesky.jl#L297-L338

704 CHAPTER 52. LINEAR ALGEBRA

source

Base.LinAlg.cholfact! – Function.

cholfact!(F::Factor, A; shift = 0.0) -> CHOLMOD.Factor

ComputetheCholesky (LL′) factorizationofA, reusing thesymbolic factorizationF.AmustbeaSparseMatrixCSC

or a Symmetric/ Hermitian view of a SparseMatrixCSC. Note that even if A doesn't have the type tag, it must

still be symmetric or Hermitian.

See also cholfact.

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or complex

doubles. Inputmatricesnotof thoseelement typeswillbeconvertedtoSparseMatrixCSC{Float64}

or SparseMatrixCSC{Complex128} as appropriate.

source

cholfact!(A, [uplo::Symbol,] Val{false}) -> Cholesky

The same as cholfact, but saves space by overwriting the input A, instead of creating a copy. An InexactError

exception is thrown if the factorization produces a number not representable by the element type of A, e.g. for

integer types.

Example

julia> A = [1 2; 2 50]

2×2 Array{Int64,2}:

1 2

2 50

julia> cholfact!(A)

ERROR: InexactError()

source

cholfact!(A, [uplo::Symbol,] Val{true}; tol = 0.0) -> CholeskyPivoted

The same as cholfact, but saves space by overwriting the input A, instead of creating a copy. An InexactError

exception is thrown if the factorization produces a number not representable by the element type of A, e.g. for

integer types.

source

Base.LinAlg.lowrankupdate – Function.

lowrankupdate(C::Cholesky, v::StridedVector) -> CC::Cholesky

Update a Cholesky factorization Cwith the vector v. If A = C[:U]'C[:U] then CC = cholfact(C[:U]'C[:U]

+ v*v') but the computation of CC only uses O(n^2) operations.

source

Base.LinAlg.lowrankdowndate – Function.

lowrankdowndate(C::Cholesky, v::StridedVector) -> CC::Cholesky

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/cholesky.jl#L363-L376
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/cholmod.jl#L1364-L1379
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/cholesky.jl#L225-L244
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/cholesky.jl#L275-L282
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/cholesky.jl#L653-L659

52.1. STANDARD FUNCTIONS 705

DowndateaCholesky factorizationCwiththevectorv. IfA = C[:U]'C[:U] thenCC = cholfact(C[:U]'C[:U]

- v*v') but the computation of CC only uses O(n^2) operations.

source

Base.LinAlg.lowrankupdate! – Function.

lowrankupdate!(C::Cholesky, v::StridedVector) -> CC::Cholesky

Update a Cholesky factorization Cwith the vector v. If A = C[:U]'C[:U] then CC = cholfact(C[:U]'C[:U]

+ v*v') but the computation of CC only uses O(n^2) operations. The input factorization C is updated in place

such that on exit C == CC. The vector v is destroyed during the computation.

source

Base.LinAlg.lowrankdowndate! – Function.

lowrankdowndate!(C::Cholesky, v::StridedVector) -> CC::Cholesky

DowndateaCholesky factorizationCwiththevectorv. IfA = C[:U]'C[:U] thenCC = cholfact(C[:U]'C[:U]

- v*v')but thecomputationofCConlyusesO(n^2)operations. The input factorizationC isupdated inplacesuch

that on exit C == CC. The vector v is destroyed during the computation.

source

Base.LinAlg.ldltfact – Function.

ldltfact(A; shift = 0.0, perm=Int[]) -> CHOLMOD.Factor

ComputetheLDL′ factorizationofasparsematrixA.AmustbeaSparseMatrixCSCoraSymmetric/Hermitian

viewof aSparseMatrixCSC. Note that even ifAdoesn't have the type tag, itmust still be symmetric orHermitian.

A fill-reducing permutation is used. F = ldltfact(A) ismost frequently used to solve systems of equationsA*x

= b with F\b. The returned factorization object F also supports the methods diag, det, logdet, and inv. You

can extract individual factors from F using F[:L]. However, since pivoting is on by default, the factorization is in-

ternally represented as A == P'*L*D*L'*P with a permutation matrix P; using just L without accounting for P

will give incorrect answers. To include the effects of permutation, it is typically preferable to extract "combined"

factors like PtL = F[:PtL] (the equivalent of P'*L) and LtP = F[:UP] (the equivalent of L'*P). The complete

list of supported factors is :L, :PtL, :D, :UP, :U, :LD, :DU, :PtLD, :DUP.

Setting the optional shift keyword argument computes the factorization of A+shift*I instead of A. If the perm

argument isnonempty, it shouldbeapermutationof1:size(A,1)givingtheordering touse (insteadofCHOLMOD's

default AMDordering).

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or complex

doubles. Inputmatricesnotof thoseelement typeswillbeconvertedtoSparseMatrixCSC{Float64}

or SparseMatrixCSC{Complex128} as appropriate.

Manyother functions fromCHOLMODarewrappedbutnotexported fromtheBase.SparseArrays.CHOLMOD

module.

source

ldltfact(S::SymTridiagonal) -> LDLt

Compute an LDLt factorization of a real symmetric tridiagonal matrix such that A = L*Diagonal(d)*L'where

L is a unit lower triangularmatrix and d is a vector. Themain use of an LDLt factorization F = ldltfact(A) is to

solve the linear system of equations Ax = bwith F\b.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/cholesky.jl#L662-L668
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/cholesky.jl#L554-L561
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/cholesky.jl#L600-L607
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/cholmod.jl#L1504-L1537
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/ldlt.jl#L35-L41

706 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.ldltfact! – Function.

ldltfact!(F::Factor, A; shift = 0.0) -> CHOLMOD.Factor

Compute theLDL′ factorization of A, reusing the symbolic factorization F. Amust be a SparseMatrixCSC or a

Symmetric/Hermitian view of a SparseMatrixCSC. Note that even if A doesn't have the type tag, it must still

be symmetric or Hermitian.

See also ldltfact.

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or complex

doubles. Inputmatricesnotof thoseelement typeswillbeconvertedtoSparseMatrixCSC{Float64}

or SparseMatrixCSC{Complex128} as appropriate.

source

ldltfact!(S::SymTridiagonal) -> LDLt

Same as ldltfact, but saves space by overwriting the input A, instead of creating a copy.

source

Base.LinAlg.qr – Function.

qr(A, pivot=Val{false}; thin::Bool=true) -> Q, R, [p]

Compute the (pivoted) QR factorization of A such that either A = Q*R or A[:,p] = Q*R. Also see qrfact. The

default is to compute a thin factorization. Note that R is not extendedwith zeros when the full Q is requested.

source

qr(v::AbstractVector) -> w, r

Computes the polar decomposition of a vector. Returns w, a unit vector in the direction of v, and r, the norm of v.

See also normalize, normalize!, and LinAlg.qr!.

Example

julia> v = [1; 2]

2-element Array{Int64,1}:

1

2

julia> w, r = qr(v)

([0.447214, 0.894427], 2.23606797749979)

julia> w*r == v

true

source

Base.LinAlg.qr! – Function.

LinAlg.qr!(v::AbstractVector) -> w, r

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/cholmod.jl#L1456-L1471
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/ldlt.jl#L19-L23
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/qr.jl#L285-L292
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/qr.jl#L304-L328

52.1. STANDARD FUNCTIONS 707

Computes the polar decomposition of a vector. Instead of returning a new vector as qr(v::AbstractVector),

this functionmutates the input vector v in place. Returns w, a unit vector in the direction of v (this is a mutation of

v), and r, the norm of v.

See also normalize, normalize!, and qr.

source

Base.LinAlg.qrfact – Function.

qrfact(A, pivot=Val{false}) -> F

Compute the QR factorization of the matrix A: an orthogonal (or unitary if A is complex-valued) matrix Q, and an

upper triangular matrix R such that

A = QR

The returned object F stores the factorization in a packed format:

• if pivot == Val{true} then F is a QRPivoted object,

• otherwise if the element type of A is a BLAS type (Float32, Float64, Complex64 or Complex128), then F

is a QRCompactWY object,

• otherwise F is a QR object.

The individual components of the factorization F can be accessed by indexing with a symbol:

• F[:Q]: the orthogonal/unitarymatrix Q

• F[:R]: the upper triangular matrix R

• F[:p]: the permutation vector of the pivot (QRPivoted only)

• F[:P]: the permutationmatrix of the pivot (QRPivoted only)

The following functions are available for the QR objects: inv, size, and \. When A is rectangular, \ will return a

least squares solution and if the solution is not unique, the onewith smallest norm is returned.

Multiplication with respect to either thin or full Q is allowed, i.e. both F[:Q]*F[:R] and F[:Q]*A are supported.

A Qmatrix can be converted into a regular matrix with fullwhich has a named argument thin.

Example

julia> A = [3.0 -6.0; 4.0 -8.0; 0.0 1.0]

3×2 Array{Float64,2}:

3.0 -6.0

4.0 -8.0

0.0 1.0

julia> F = qrfact(A)

Base.LinAlg.QRCompactWY{Float64,Array{Float64,2}} with factors Q and R:

[-0.6 0.0 0.8; -0.8 0.0 -0.6; 0.0 -1.0 0.0]

[-5.0 10.0; 0.0 -1.0]

julia> F[:Q] * F[:R] == A

true

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/qr.jl#L340-L350

708 CHAPTER 52. LINEAR ALGEBRA

Note

qrfact returnsmultiple types because LAPACKuses several representations thatminimize themem-

ory storage requirements of products of Householder elementary reflectors, so that the Q and Rma-

trices can be stored compactly rather as two separate densematrices.

source

qrfact(A) -> SPQR.Factorization

Compute theQR factorization of a sparsematrixA. A fill-reducing permutation is used. Themain application of this

type is to solve least squares problemswith \. The function calls theC library SPQR and a few additional functions

from the library are wrapped but not exported.

source

Base.LinAlg.qrfact! – Function.

qrfact!(A, pivot=Val{false})

qrfact! is the same as qrfactwhen A is a subtype of StridedMatrix, but saves space by overwriting the input

A, instead of creating a copy. An InexactError exception is thrown if the factorization produces a number not

representable by the element type of A, e.g. for integer types.

source

Base.LinAlg.QR – Type.

QR <: Factorization

AQRmatrix factorization stored in a packed format, typically obtained from qrfact. IfA is an m×nmatrix, then

A = QR

whereQ is an orthogonal/unitarymatrix andR is upper triangular. ThematrixQ is stored as a sequence ofHouse-

holder reflectors vi and coefficients τi where:

Q =

min(m,n)∏
i=1

(I − τiviv
T
i).

The object has two fields:

• factors is an m×nmatrix.

– The upper triangular part contains the elements ofR, that is R = triu(F.factors) for a QR object

F.

– The subdiagonal part contains the reflectors vi stored in a packed format where vi is the ith column of
thematrix V = eye(m,n) + tril(F.factors,-1).

• τ is a vector of length min(m,n) containing the coefficients aui.

source

Base.LinAlg.QRCompactWY – Type.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/qr.jl#L215-L272
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/spqr.jl#L142-L149
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/qr.jl#L203-L210
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/qr.jl#L4-L34

52.1. STANDARD FUNCTIONS 709

QRCompactWY <: Factorization

A QR matrix factorization stored in a compact blocked format, typically obtained from qrfact. If A is an m×n

matrix, then

A = QR

whereQ is an orthogonal/unitary matrix andR is upper triangular. It is similar to the QR format except that the

orthogonal/unitary matrixQ is stored in Compact WY format 1, as a lower trapezoidal matrix V and an upper tri-

angular matrixT where

Q =

min(m,n)∏
i=1

(I − τiviv
T
i) = I − V TV T

such that vi is the ith column ofV , and aui is the ith diagonal element ofT .

The object has two fields:

• factors, as in the QR type, is an m×nmatrix.

– The upper triangular part contains the elements ofR, that is R = triu(F.factors) for a QR object

F.

– The subdiagonal part contains the reflectors vi stored in a packed format such that V = eye(m,n) +

tril(F.factors,-1).

• T is a square matrix with min(m,n) columns, whose upper triangular part gives the matrix T above (the

subdiagonal elements are ignored).

Note

This format should not to be confusedwith the olderWY representation 2.

source

Base.LinAlg.QRPivoted – Type.

QRPivoted <: Factorization

AQRmatrix factorizationwith column pivoting in a packed format, typically obtained from qrfact. IfA is an m×n

matrix, then

AP = QR

where P is a permutation matrix,Q is an orthogonal/unitary matrix andR is upper triangular. The matrixQ is

stored as a sequence of Householder reflectors:

2C Bischof and C Van Loan, "The WY representation for products of Householder matrices", SIAM J Sci Stat Comput 8 (1987), s2-s13.

doi:10.1137/0908009

1R Schreiber and C Van Loan, "A storage-efficient WY representation for products of Householder transformations", SIAM J Sci Stat Comput

10 (1989), 53-57. doi:10.1137/0910005

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/qr.jl#L43-L87
http://dx.doi.org/10.1137/0908009
http://dx.doi.org/10.1137/0910005

710 CHAPTER 52. LINEAR ALGEBRA

Q =

min(m,n)∏
i=1

(I − τiviv
T
i).

The object has three fields:

• factors is an m×nmatrix.

– The upper triangular part contains the elements ofR, that is R = triu(F.factors) for a QR object

F.

– The subdiagonal part contains the reflectors vi stored in a packed format where vi is the ith column of
thematrix V = eye(m,n) + tril(F.factors,-1).

• τ is a vector of length min(m,n) containing the coefficients aui.

• jpvt is an integer vector of length n corresponding to the permutationP .

source

Base.LinAlg.lqfact! – Function.

lqfact!(A) -> LQ

Compute the LQ factorization of A, using the input matrix as a workspace. See also lq.

source

Base.LinAlg.lqfact – Function.

lqfact(A) -> LQ

Compute the LQ factorization of A. See also lq.

source

Base.LinAlg.lq – Function.

lq(A; [thin=true]) -> L, Q

Perform an LQ factorization of A such that A = L*Q. The default is to compute a thin factorization. The LQ factor-

ization is theQR factorization of A.'. L is not extendedwith zeros if the full Q is requested.

source

Base.LinAlg.bkfact – Function.

bkfact(A, uplo::Symbol=:U, symmetric::Bool=issymmetric(A), rook::Bool=false) -> BunchKaufman

Compute the Bunch-Kaufman 3 factorization of a symmetric or Hermitian matrix A and return a BunchKaufman

object. uplo indicateswhich triangleofmatrixA to reference. Ifsymmetric istrue,A is assumed tobe symmetric.

If symmetric is false, A is assumed to be Hermitian. If rook is true, rook pivoting is used. If rook is false, rook

pivoting isnotused. The following functionsareavailable forBunchKaufmanobjects: size,\,inv,issymmetric,

ishermitian.

source

3J R Bunch and L Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Mathematics of Computation

31:137 (1977), 163-179. url.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/qr.jl#L95-L125
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lq.jl#L20-L25
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lq.jl#L27-L31
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lq.jl#L35-L42
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/bunchkaufman.jl#L57-L71
http://www.ams.org/journals/mcom/1977-31-137/S0025-5718-1977-0428694-0/

52.1. STANDARD FUNCTIONS 711

Base.LinAlg.bkfact! – Function.

bkfact!(A, uplo::Symbol=:U, symmetric::Bool=issymmetric(A), rook::Bool=false) -> BunchKaufman

bkfact! is the same as bkfact, but saves space by overwriting the input A, instead of creating a copy.

source

Base.LinAlg.eig – Function.

eig(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> D, V

eig(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> D, V

eig(A, permute::Bool=true, scale::Bool=true) -> D, V

Computes eigenvalues (D) and eigenvectors (V) of A. See eigfact for details on the irange, vl, and vu arguments

(for SymTridiagonal, Hermitian, and Symmetricmatrices) and the permute and scale keyword arguments.

The eigenvectors are returned columnwise.

Example

julia> eig([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])

([1.0, 3.0, 18.0], [1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0])

eig is awrapperaroundeigfact, extractingallpartsof the factorizationtoatuple;wherepossible, usingeigfact

is recommended.

source

eig(A, B) -> D, V

Computes generalized eigenvalues (D) and vectors (V) of Awith respect to B.

eig is awrapperaroundeigfact, extractingallpartsof the factorizationtoatuple;wherepossible, usingeigfact

is recommended.

Example

julia> A = [1 0; 0 -1]

2×2 Array{Int64,2}:

1 0

0 -1

julia> B = [0 1; 1 0]

2×2 Array{Int64,2}:

0 1

1 0

julia> eig(A, B)

(Complex{Float64}[0.0+1.0im, 0.0-1.0im], Complex{Float64}[0.0-1.0im 0.0+1.0im; -1.0-0.0im

-1.0+0.0im])↪→

source

Base.LinAlg.eigvals – Function.

eigvals(A; permute::Bool=true, scale::Bool=true) -> values

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/bunchkaufman.jl#L19-L24
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/eigen.jl#L112-L134
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/eigen.jl#L333-L357

712 CHAPTER 52. LINEAR ALGEBRA

Returns the eigenvalues of A.

For general non-symmetric matrices it is possible to specify how thematrix is balanced before the eigenvalue cal-

culation. The option permute=true permutes thematrix to become closer to upper triangular, and scale=true

scales the matrix by its diagonal elements to make rows and columns more equal in norm. The default is true for

both options.

source

eigvals(A, B) -> values

Computes the generalized eigenvalues of A and B.

Example

julia> A = [1 0; 0 -1]

2×2 Array{Int64,2}:

1 0

0 -1

julia> B = [0 1; 1 0]

2×2 Array{Int64,2}:

0 1

1 0

julia> eigvals(A,B)

2-element Array{Complex{Float64},1}:

0.0+1.0im

0.0-1.0im

source

eigvals(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> values

Returns the eigenvalues of A. It is possible to calculate only a subset of the eigenvalues by specifying a UnitRange

irange covering indices of the sorted eigenvalues, e.g. the 2nd to 8th eigenvalues.

julia> A = SymTridiagonal([1.; 2.; 1.], [2.; 3.])

3×3 SymTridiagonal{Float64}:

1.0 2.0

2.0 2.0 3.0

3.0 1.0

julia> eigvals(A, 2:2)

1-element Array{Float64,1}:

1.0

julia> eigvals(A)

3-element Array{Float64,1}:

-2.14005

1.0

5.14005

source

eigvals(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> values

Returns the eigenvalues of A. It is possible to calculate only a subset of the eigenvalues by specifying a pair vl and

vu for the lower and upper boundaries of the eigenvalues.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/eigen.jl#L181-L191
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/eigen.jl#L383-L406
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/symmetric.jl#L366-L390

52.1. STANDARD FUNCTIONS 713

julia> A = SymTridiagonal([1.; 2.; 1.], [2.; 3.])

3×3 SymTridiagonal{Float64}:

1.0 2.0

2.0 2.0 3.0

3.0 1.0

julia> eigvals(A, -1, 2)

1-element Array{Float64,1}:

1.0

julia> eigvals(A)

3-element Array{Float64,1}:

-2.14005

1.0

5.14005

source

Base.LinAlg.eigvals! – Function.

eigvals!(A; permute::Bool=true, scale::Bool=true) -> values

Sameaseigvals, but savesspacebyoverwriting the inputA, insteadofcreatingacopy. Theoptionpermute=true

permutes the matrix to become closer to upper triangular, and scale=true scales the matrix by its diagonal ele-

ments tomake rows and columnsmore equal in norm.

source

eigvals!(A, B) -> values

Same as eigvals, but saves space by overwriting the input A (and B), instead of creating copies.

source

eigvals!(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> values

Same as eigvals, but saves space by overwriting the input A, instead of creating a copy. irange is a range of

eigenvalue indices to search for - for instance, the 2nd to 8th eigenvalues.

source

eigvals!(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> values

Same as eigvals, but saves space by overwriting the input A, instead of creating a copy. vl is the lower bound of

the interval to search for eigenvalues, and vu is the upper bound.

source

Base.LinAlg.eigmax – Function.

eigmax(A; permute::Bool=true, scale::Bool=true)

Returns the largest eigenvalue of A. The option permute=true permutes the matrix to become closer to upper

triangular, and scale=true scales the matrix by its diagonal elements to make rows and columns more equal in

norm. Note that if the eigenvalues of A are complex, thismethodwill fail, since complex numbers cannot be sorted.

Example

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/symmetric.jl#L406-L429
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/eigen.jl#L163-L170
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/eigen.jl#L367-L371
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/symmetric.jl#L357-L362
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/symmetric.jl#L397-L402

714 CHAPTER 52. LINEAR ALGEBRA

julia> A = [0 im; -im 0]

2×2 Array{Complex{Int64},2}:

0+0im 0+1im

0-1im 0+0im

julia> eigmax(A)

1.0

julia> A = [0 im; -1 0]

2×2 Array{Complex{Int64},2}:

0+0im 0+1im

-1+0im 0+0im

julia> eigmax(A)

ERROR: DomainError:

Stacktrace:

[1] #eigmax#46(::Bool, ::Bool, ::Function, ::Array{Complex{Int64},2}) at

./linalg/eigen.jl:238↪→

[2] eigmax(::Array{Complex{Int64},2}) at ./linalg/eigen.jl:236

source

Base.LinAlg.eigmin – Function.

eigmin(A; permute::Bool=true, scale::Bool=true)

Returns the smallest eigenvalue of A. The option permute=true permutes the matrix to become closer to upper

triangular, and scale=true scales the matrix by its diagonal elements to make rows and columns more equal in

norm. Note that if the eigenvalues of A are complex, thismethodwill fail, since complex numbers cannot be sorted.

Example

julia> A = [0 im; -im 0]

2×2 Array{Complex{Int64},2}:

0+0im 0+1im

0-1im 0+0im

julia> eigmin(A)

-1.0

julia> A = [0 im; -1 0]

2×2 Array{Complex{Int64},2}:

0+0im 0+1im

-1+0im 0+0im

julia> eigmin(A)

ERROR: DomainError:

Stacktrace:

[1] #eigmin#47(::Bool, ::Bool, ::Function, ::Array{Complex{Int64},2}) at

./linalg/eigen.jl:280↪→

[2] eigmin(::Array{Complex{Int64},2}) at ./linalg/eigen.jl:278

source

Base.LinAlg.eigvecs – Function.

eigvecs(A::SymTridiagonal[, eigvals]) -> Matrix

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/eigen.jl#L201-L234
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/eigen.jl#L243-L276

52.1. STANDARD FUNCTIONS 715

Returns a matrix Mwhose columns are the eigenvectors of A. (The kth eigenvector can be obtained from the slice

M[:, k].)

If the optional vector of eigenvalues eigvals is specified, eigvecs returns the specific corresponding eigenvec-

tors.

Example

julia> A = SymTridiagonal([1.; 2.; 1.], [2.; 3.])

3×3 SymTridiagonal{Float64}:

1.0 2.0

2.0 2.0 3.0

3.0 1.0

julia> eigvals(A)

3-element Array{Float64,1}:

-2.14005

1.0

5.14005

julia> eigvecs(A)

3×3 Array{Float64,2}:

0.418304 -0.83205 0.364299

-0.656749 -7.39009e-16 0.754109

0.627457 0.5547 0.546448

julia> eigvecs(A, [1.])

3×1 Array{Float64,2}:

0.83205

4.26351e-17

-0.5547

source

eigvecs(A; permute::Bool=true, scale::Bool=true) -> Matrix

Returns a matrix Mwhose columns are the eigenvectors of A. (The kth eigenvector can be obtained from the slice

M[:, k].) The permute and scale keywords are the same as for eigfact.

Example

julia> eigvecs([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])

3×3 Array{Float64,2}:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

source

eigvecs(A, B) -> Matrix

Returns a matrix M whose columns are the generalized eigenvectors of A and B. (The kth eigenvector can be ob-

tained from the slice M[:, k].)

Example

julia> A = [1 0; 0 -1]

2×2 Array{Int64,2}:

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/tridiag.jl#L212-L248
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/eigen.jl#L140-L156

716 CHAPTER 52. LINEAR ALGEBRA

1 0

0 -1

julia> B = [0 1; 1 0]

2×2 Array{Int64,2}:

0 1

1 0

julia> eigvecs(A, B)

2×2 Array{Complex{Float64},2}:

0.0-1.0im 0.0+1.0im

-1.0-0.0im -1.0+0.0im

source

Base.LinAlg.eigfact – Function.

eigfact(A; permute::Bool=true, scale::Bool=true) -> Eigen

Computes the eigenvalue decomposition of A, returning an Eigen factorization object Fwhich contains the eigen-

values in F[:values] and the eigenvectors in the columns of thematrix F[:vectors]. (The kth eigenvector can

be obtained from the slice F[:vectors][:, k].)

The following functions are available for Eigen objects: inv, det, and isposdef.

For general nonsymmetric matrices it is possible to specify how thematrix is balanced before the eigenvector cal-

culation. The option permute=true permutes thematrix to become closer to upper triangular, and scale=true

scales the matrix by its diagonal elements to make rows and columns more equal in norm. The default is true for

both options.

Example

julia> F = eigfact([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])

Base.LinAlg.Eigen{Float64,Float64,Array{Float64,2},Array{Float64,1}}([1.0, 3.0, 18.0], [1.0

0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0])↪→

julia> F[:values]

3-element Array{Float64,1}:

1.0

3.0

18.0

julia> F[:vectors]

3×3 Array{Float64,2}:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

source

eigfact(A, B) -> GeneralizedEigen

Computes thegeneralizedeigenvaluedecompositionofAandB, returningaGeneralizedEigen factorizationob-

jectFwhich contains the generalized eigenvalues inF[:values] and the generalized eigenvectors in the columns

of the matrix F[:vectors]. (The kth generalized eigenvector can be obtained from the slice F[:vectors][:,

k].)

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/eigen.jl#L412-L436
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/eigen.jl#L68-L100
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/eigen.jl#L318-L325

52.1. STANDARD FUNCTIONS 717

eigfact(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> Eigen

Computes the eigenvalue decomposition of A, returning an Eigen factorization object Fwhich contains the eigen-

values in F[:values] and the eigenvectors in the columns of thematrix F[:vectors]. (The kth eigenvector can

be obtained from the slice F[:vectors][:, k].)

The following functions are available for Eigen objects: inv, det, and isposdef.

The UnitRange irange specifies indices of the sorted eigenvalues to search for.

Note

If irange is not 1:n, where n is the dimension of A, then the returned factorization will be a truncated

factorization.

source

eigfact(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> Eigen

Computes the eigenvalue decomposition of A, returning an Eigen factorization object Fwhich contains the eigen-

values in F[:values] and the eigenvectors in the columns of thematrix F[:vectors]. (The kth eigenvector can

be obtained from the slice F[:vectors][:, k].)

The following functions are available for Eigen objects: inv, det, and isposdef.

vl is the lower bound of the window of eigenvalues to search for, and vu is the upper bound.

Note

If [vl, vu] does not contain all eigenvalues of A, then the returned factorization will be a truncated fac-

torization.

source

Base.LinAlg.eigfact! – Function.

eigfact!(A, [B])

Same as eigfact, but saves space by overwriting the input A (and B), instead of creating a copy.

source

Base.LinAlg.hessfact – Function.

hessfact(A) -> Hessenberg

Compute the Hessenberg decomposition of A and return a Hessenberg object. If F is the factorization object,

the unitary matrix can be accessed with F[:Q] and the Hessenberg matrix with F[:H]. When Q is extracted, the

resulting type is the HessenbergQ object, and may be converted to a regular matrix with convert(Array, _)

(or Array(_) for short).

Example

julia> A = [4. 9. 7.; 4. 4. 1.; 4. 3. 2.]

3×3 Array{Float64,2}:

4.0 9.0 7.0

4.0 4.0 1.0

4.0 3.0 2.0

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/symmetric.jl#L303-L317
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/symmetric.jl#L327-L341
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/eigen.jl#L32-L37

718 CHAPTER 52. LINEAR ALGEBRA

julia> F = hessfact(A);

julia> F[:Q] * F[:H] * F[:Q]'

3×3 Array{Float64,2}:

4.0 9.0 7.0

4.0 4.0 1.0

4.0 3.0 2.0

source

Base.LinAlg.hessfact! – Function.

hessfact!(A) -> Hessenberg

hessfact! is the same as hessfact, but saves space by overwriting the input A, instead of creating a copy.

source

Base.LinAlg.schurfact – Function.

schurfact(A::StridedMatrix) -> F::Schur

Computes the Schur factorization of the matrix A. The (quasi) triangular Schur factor can be obtained from the

Schur object Fwith either F[:Schur] or F[:T] and the orthogonal/unitary Schur vectors can be obtained with

F[:vectors] orF[:Z] such thatA = F[:vectors]*F[:Schur]*F[:vectors]'. The eigenvalues ofA can be

obtainedwith F[:values].

Example

julia> A = [-2. 1. 3.; 2. 1. -1.; -7. 2. 7.]

3×3 Array{Float64,2}:

-2.0 1.0 3.0

2.0 1.0 -1.0

-7.0 2.0 7.0

julia> F = schurfact(A)

Base.LinAlg.Schur{Float64,Array{Float64,2}} with factors T and Z:

[2.0 0.801792 6.63509; -8.55988e-11 2.0 8.08286; 0.0 0.0 1.99999]

[0.577351 0.154299 -0.801784; 0.577346 -0.77152 0.267262; 0.577354 0.617211 0.534522]

and values:

Complex{Float64}[2.0+8.28447e-6im, 2.0-8.28447e-6im, 1.99999+0.0im]

julia> F[:vectors] * F[:Schur] * F[:vectors]'

3×3 Array{Float64,2}:

-2.0 1.0 3.0

2.0 1.0 -1.0

-7.0 2.0 7.0

source

schurfact(A::StridedMatrix, B::StridedMatrix) -> F::GeneralizedSchur

Computes the Generalized Schur (or QZ) factorization of the matrices A and B. The (quasi) triangular Schur fac-

tors can be obtained from the Schur object F with F[:S] and F[:T], the left unitary/orthogonal Schur vectors

can be obtained with F[:left] or F[:Q] and the right unitary/orthogonal Schur vectors can be obtained with

F[:right] or F[:Z] such that A=F[:left]*F[:S]*F[:right]' and B=F[:left]*F[:T]*F[:right]'. The

generalized eigenvalues of A and B can be obtainedwith F[:alpha]./F[:beta].

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/hessenberg.jl#L24-L50
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/hessenberg.jl#L14-L19
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/schur.jl#L19-L49
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/schur.jl#L187-L196

52.1. STANDARD FUNCTIONS 719

Base.LinAlg.schurfact! – Function.

schurfact!(A::StridedMatrix) -> F::Schur

Same as schurfact but uses the input argument as workspace.

source

schurfact!(A::StridedMatrix, B::StridedMatrix) -> F::GeneralizedSchur

Same as schurfact but uses the input matrices A and B as workspace.

source

Base.LinAlg.schur – Function.

schur(A::StridedMatrix) -> T::Matrix, Z::Matrix, λ::Vector

Computes the Schur factorization of thematrixA. Themethods return the (quasi) triangular Schur factorT and the

orthogonal/unitary Schur vectors Z such that A = Z*T*Z'. The eigenvalues of A are returned in the vector λ.

See schurfact.

Example

julia> A = [-2. 1. 3.; 2. 1. -1.; -7. 2. 7.]

3×3 Array{Float64,2}:

-2.0 1.0 3.0

2.0 1.0 -1.0

-7.0 2.0 7.0

julia> T, Z, lambda = schur(A)

([2.0 0.801792 6.63509; -8.55988e-11 2.0 8.08286; 0.0 0.0 1.99999], [0.577351 0.154299

-0.801784; 0.577346 -0.77152 0.267262; 0.577354 0.617211 0.534522],

Complex{Float64}[2.0+8.28447e-6im, 2.0-8.28447e-6im, 1.99999+0.0im])

↪→

↪→

julia> Z * T * Z'

3×3 Array{Float64,2}:

-2.0 1.0 3.0

2.0 1.0 -1.0

-7.0 2.0 7.0

source

schur(A::StridedMatrix, B::StridedMatrix) -> S::StridedMatrix, T::StridedMatrix, Q::

StridedMatrix, Z::StridedMatrix, α::Vector, β::Vector

See schurfact.

source

Base.LinAlg.ordschur – Function.

ordschur(F::Schur, select::Union{Vector{Bool},BitVector}) -> F::Schur

Reorders the Schur factorization F of a matrix A = Z*T*Z' according to the logical array select returning the

reordered factorization F object. The selected eigenvalues appear in the leading diagonal of F[:Schur] and the

corresponding leading columns of F[:vectors] form an orthogonal/unitary basis of the corresponding right in-

variant subspace. In the real case, a complex conjugate pair of eigenvalues must be either both included or both

excluded via select.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/schur.jl#L12-L16
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/schur.jl#L179-L183
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/schur.jl#L78-L105
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/schur.jl#L271-L275
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/schur.jl#L128-L137

720 CHAPTER 52. LINEAR ALGEBRA

ordschur(T::StridedMatrix, Z::StridedMatrix, select::Union{Vector{Bool},BitVector}) -> T::

StridedMatrix, Z::StridedMatrix, λ::Vector

Reorders the Schur factorization of a realmatrixA = Z*T*Z' according to the logical arrayselect returning the

reordered matrices T and Z as well as the vector of eigenvalues λ. The selected eigenvalues appear in the leading

diagonal of T and the corresponding leading columns of Z form an orthogonal/unitary basis of the corresponding

right invariant subspace. In the real case, a complex conjugate pair of eigenvalues must be either both included or

both excluded via select.

source

ordschur(F::GeneralizedSchur, select::Union{Vector{Bool},BitVector}) -> F::GeneralizedSchur

Reorders theGeneralized Schur factorization F of amatrix pair (A, B) = (Q*S*Z', Q*T*Z') according to the

logical array select and returns a GeneralizedSchur object F. The selected eigenvalues appear in the leading di-

agonal of both F[:S] and F[:T], and the left and right orthogonal/unitary Schur vectors are also reordered such

that (A, B) = F[:Q]*(F[:S], F[:T])*F[:Z]' still holds and the generalized eigenvalues of A and B can still

be obtainedwith F[:alpha]./F[:beta].

source

ordschur(S::StridedMatrix, T::StridedMatrix, Q::StridedMatrix, Z::StridedMatrix, select) -> S

::StridedMatrix, T::StridedMatrix, Q::StridedMatrix, Z::StridedMatrix, α::Vector, β::

Vector

Reorders the Generalized Schur factorization of a matrix pair (A, B) = (Q*S*Z', Q*T*Z') according to the

logical array select and returns the matrices S, T, Q, Z and vectors α and β. The selected eigenvalues appear in

the leading diagonal of both S and T, and the left and right unitary/orthogonal Schur vectors are also reordered

such that (A, B) = Q*(S, T)*Z' still holds and the generalized eigenvalues of A and B can still be obtained

with α./β.

source

Base.LinAlg.ordschur! – Function.

ordschur!(F::Schur, select::Union{Vector{Bool},BitVector}) -> F::Schur

Same as ordschur but overwrites the factorization F.

source

ordschur!(T::StridedMatrix, Z::StridedMatrix, select::Union{Vector{Bool},BitVector}) -> T::

StridedMatrix, Z::StridedMatrix, λ::Vector

Same as ordschur but overwrites the input arguments.

source

ordschur!(F::GeneralizedSchur, select::Union{Vector{Bool},BitVector}) -> F::GeneralizedSchur

Same as ordschur but overwrites the factorization F.

source

ordschur!(S::StridedMatrix, T::StridedMatrix, Q::StridedMatrix, Z::StridedMatrix, select) ->

S::StridedMatrix, T::StridedMatrix, Q::StridedMatrix, Z::StridedMatrix, α::Vector, β::

Vector

Same as ordschur but overwrites the factorization the input arguments.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/schur.jl#L149-L158
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/schur.jl#L215-L224
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/schur.jl#L237-L246
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/schur.jl#L117-L121
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/schur.jl#L141-L145
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/schur.jl#L203-L207
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/schur.jl#L228-L232

52.1. STANDARD FUNCTIONS 721

Base.LinAlg.svdfact – Function.

svdfact(A; thin::Bool=true) -> SVD

Compute the singular value decomposition (SVD) of A and return an SVD object.

U, S, V and Vt can be obtained from the factorization F with F[:U], F[:S], F[:V] and F[:Vt], such that A =

U*diagm(S)*Vt. The algorithm produces Vt and hence Vt is more efficient to extract than V. The singular val-

ues in S are sorted in descending order.

If thin=true (default), a thin SVD is returned. For aM ×N matrix A, U isM ×M for a full SVD (thin=false)

andM × min(M,N) for a thin SVD.

Example

julia> A = [1. 0. 0. 0. 2.; 0. 0. 3. 0. 0.; 0. 0. 0. 0. 0.; 0. 2. 0. 0. 0.]

4×5 Array{Float64,2}:

1.0 0.0 0.0 0.0 2.0

0.0 0.0 3.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 2.0 0.0 0.0 0.0

julia> F = svdfact(A)

Base.LinAlg.SVD{Float64,Float64,Array{Float64,2}}([0.0 1.0 0.0 0.0; 1.0 0.0 0.0 0.0; 0.0 0.0

0.0 -1.0; 0.0 0.0 1.0 0.0], [3.0, 2.23607, 2.0, 0.0], [-0.0 0.0 … -0.0 0.0; 0.447214 0.0

… 0.0 0.894427; -0.0 1.0 … -0.0 0.0; 0.0 0.0 … 1.0 0.0])

↪→

↪→

julia> F[:U] * diagm(F[:S]) * F[:Vt]

4×5 Array{Float64,2}:

1.0 0.0 0.0 0.0 2.0

0.0 0.0 3.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 2.0 0.0 0.0 0.0

source

svdfact(A, B) -> GeneralizedSVD

ComputethegeneralizedSVDofAandB, returningaGeneralizedSVD factorizationobjectF, suchthatA = F[:U]*F[:D1]*F[:R0]*F[:Q]'

and B = F[:V]*F[:D2]*F[:R0]*F[:Q]'.

For anM-by-Nmatrix A and P-by-Nmatrix B,

• F[:U] is aM-by-M orthogonal matrix,

• F[:V] is a P-by-P orthogonal matrix,

• F[:Q] is a N-by-N orthogonal matrix,

• F[:R0] is a (K+L)-by-Nmatrix whose rightmost (K+L)-by-(K+L) block is nonsingular upper block triangular,

• F[:D1] is aM-by-(K+L) diagonal matrix with 1s in the first K entries,

• F[:D2] is a P-by-(K+L) matrix whose top right L-by-L block is diagonal,

K+L is the effective numerical rank of thematrix [A; B].

The entries of F[:D1] and F[:D2] are related, as explained in the LAPACK documentation for the generalized

SVD and the xGGSVD3 routine which is called underneath (in LAPACK 3.6.0 and newer).

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/svd.jl#L29-L62
http://www.netlib.org/lapack/lug/node36.html
http://www.netlib.org/lapack/lug/node36.html
http://www.netlib.org/lapack/explore-html/d6/db3/dggsvd3_8f.html
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/svd.jl#L206-L229

722 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.svdfact! – Function.

svdfact!(A, thin::Bool=true) -> SVD

svdfact! is the same as svdfact, but saves space by overwriting the input A, instead of creating a copy.

source

svdfact!(A, B) -> GeneralizedSVD

svdfact! is the same as svdfact, but modifies the arguments A and B in-place, instead of making copies.

source

Base.LinAlg.svd – Function.

svd(A; thin::Bool=true) -> U, S, V

Computes the SVDof A, returning U, vector S, and V such that A == U*diagm(S)*V'. The singular values in S are

sorted in descending order.

If thin=true (default), a thin SVD is returned. For aM ×N matrix A, U isM ×M for a full SVD (thin=false)

andM × min(M,N) for a thin SVD.

svd is a wrapper around svdfact, extracting all parts of the SVD factorization to a tuple. Direct use of svdfact is

thereforemore efficient.

Example

julia> A = [1. 0. 0. 0. 2.; 0. 0. 3. 0. 0.; 0. 0. 0. 0. 0.; 0. 2. 0. 0. 0.]

4×5 Array{Float64,2}:

1.0 0.0 0.0 0.0 2.0

0.0 0.0 3.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 2.0 0.0 0.0 0.0

julia> U, S, V = svd(A)

([0.0 1.0 0.0 0.0; 1.0 0.0 0.0 0.0; 0.0 0.0 0.0 -1.0; 0.0 0.0 1.0 0.0], [3.0, 2.23607, 2.0,

0.0], [-0.0 0.447214 -0.0 0.0; 0.0 0.0 1.0 0.0; … ; -0.0 0.0 -0.0 1.0; 0.0 0.894427 0.0

0.0])

↪→

↪→

julia> U*diagm(S)*V'

4×5 Array{Float64,2}:

1.0 0.0 0.0 0.0 2.0

0.0 0.0 3.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 2.0 0.0 0.0 0.0

source

svd(A, B) -> U, V, Q, D1, D2, R0

Wrapper around svdfact extracting all parts of the factorization to a tuple. Direct use of svdfact is therefore

generallymore efficient. The function returns the generalized SVDof A and B, returning U, V, Q, D1, D2, and R0 such

that A = U*D1*R0*Q' and B = V*D2*R0*Q'.

source

Base.LinAlg.svdvals – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/svd.jl#L13-L18
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/svd.jl#L189-L194
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/svd.jl#L70-L104
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/svd.jl#L235-L243

52.1. STANDARD FUNCTIONS 723

svdvals(A)

Returns the singular values of A in descending order.

Example

julia> A = [1. 0. 0. 0. 2.; 0. 0. 3. 0. 0.; 0. 0. 0. 0. 0.; 0. 2. 0. 0. 0.]

4×5 Array{Float64,2}:

1.0 0.0 0.0 0.0 2.0

0.0 0.0 3.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 2.0 0.0 0.0 0.0

julia> svdvals(A)

4-element Array{Float64,1}:

3.0

2.23607

2.0

0.0

source

svdvals(A, B)

Return the generalized singular values from the generalized singular value decomposition of A and B. See also

svdfact.

source

Base.LinAlg.Givens – Type.

LinAlg.Givens(i1,i2,c,s) -> G

A Givens rotation linear operator. The fields c and s represent the cosine and sine of the rotation angle, respec-

tively. The Givens type supports left multiplication G*A and conjugated transpose right multiplication A*G'. The

typedoesn't haveasizeandcan thereforebemultipliedwithmatricesof arbitrary sizeas longasi2<=size(A,2)

for G*A or i2<=size(A,1) for A*G'.

See also: givens

source

Base.LinAlg.givens – Function.

givens{T}(f::T, g::T, i1::Integer, i2::Integer) -> (G::Givens, r::T)

Computes the Givens rotation G and scalar r such that for any vector xwhere

x[i1] = f

x[i2] = g

the result of themultiplication

y = G*x

has the property that

y[i1] = r

y[i2] = 0

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/svd.jl#L133-L155
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/svd.jl#L298-L303
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/givens.jl#L16-L26

724 CHAPTER 52. LINEAR ALGEBRA

See also: LinAlg.Givens

source

givens(A::AbstractArray, i1::Integer, i2::Integer, j::Integer) -> (G::Givens, r)

Computes the Givens rotation G and scalar r such that the result of themultiplication

B = G*A

has the property that

B[i1,j] = r

B[i2,j] = 0

See also: LinAlg.Givens

source

givens(x::AbstractVector, i1::Integer, i2::Integer) -> (G::Givens, r)

Computes the Givens rotation G and scalar r such that the result of themultiplication

B = G*x

has the property that

B[i1] = r

B[i2] = 0

See also: LinAlg.Givens

source

Base.LinAlg.triu – Function.

triu(M)

Upper triangle of a matrix.

Example

julia> a = ones(4,4)

4×4 Array{Float64,2}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> triu(a)

4×4 Array{Float64,2}:

1.0 1.0 1.0 1.0

0.0 1.0 1.0 1.0

0.0 0.0 1.0 1.0

0.0 0.0 0.0 1.0

source

triu(M, k::Integer)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/givens.jl#L234-L254
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/givens.jl#L266-L280
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/givens.jl#L285-L299
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L119-L141

52.1. STANDARD FUNCTIONS 725

Returns the upper triangle of M starting from the kth superdiagonal.

Example

julia> a = ones(4,4)

4×4 Array{Float64,2}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> triu(a,3)

4×4 Array{Float64,2}:

0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

julia> triu(a,-3)

4×4 Array{Float64,2}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

source

Base.LinAlg.triu! – Function.

triu!(M)

Upper triangle of a matrix, overwriting M in the process. See also triu.

source

triu!(M, k::Integer)

Returns the upper triangle of M starting from the kth superdiagonal, overwriting M in the process.

Example

julia> M = [1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5]

5×5 Array{Int64,2}:

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

julia> triu!(M, 1)

5×5 Array{Int64,2}:

0 2 3 4 5

0 0 3 4 5

0 0 0 4 5

0 0 0 0 5

0 0 0 0 0

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L169-L198
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L233-L238
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L99-L123

726 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.tril – Function.

tril(M)

Lower triangle of a matrix.

Example

julia> a = ones(4,4)

4×4 Array{Float64,2}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> tril(a)

4×4 Array{Float64,2}:

1.0 0.0 0.0 0.0

1.0 1.0 0.0 0.0

1.0 1.0 1.0 0.0

1.0 1.0 1.0 1.0

source

tril(M, k::Integer)

Returns the lower triangle of M starting from the kth superdiagonal.

Example

julia> a = ones(4,4)

4×4 Array{Float64,2}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> tril(a,3)

4×4 Array{Float64,2}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> tril(a,-3)

4×4 Array{Float64,2}:

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0

source

Base.LinAlg.tril! – Function.

tril!(M)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L144-L166
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L201-L230

52.1. STANDARD FUNCTIONS 727

Lower triangle of a matrix, overwriting M in the process. See also tril.

source

tril!(M, k::Integer)

Returns the lower triangle of M starting from the kth superdiagonal, overwriting M in the process.

Example

julia> M = [1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5]

5×5 Array{Int64,2}:

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

julia> tril!(M, 2)

5×5 Array{Int64,2}:

1 2 3 0 0

1 2 3 4 0

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

source

Base.LinAlg.diagind – Function.

diagind(M, k::Integer=0)

A Range giving the indices of the kth diagonal of thematrix M.

Example

julia> A = [1 2 3; 4 5 6; 7 8 9]

3×3 Array{Int64,2}:

1 2 3

4 5 6

7 8 9

julia> diagind(A,-1)

2:4:6

source

Base.LinAlg.diag – Function.

diag(M, k::Integer=0)

The kth diagonal of a matrix, as a vector. Use diagm to construct a diagonal matrix.

Example

julia> A = [1 2 3; 4 5 6; 7 8 9]

3×3 Array{Int64,2}:

1 2 3

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L241-L246
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L142-L167
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L209-L226

728 CHAPTER 52. LINEAR ALGEBRA

4 5 6

7 8 9

julia> diag(A,1)

2-element Array{Int64,1}:

2

6

source

Base.LinAlg.diagm – Function.

diagm(v, k::Integer=0)

Construct amatrix by placing v on the kth diagonal.

Example

julia> diagm([1,2,3],1)

4×4 Array{Int64,2}:

0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

source

Base.LinAlg.scale! – Function.

scale!(A, b)

scale!(b, A)

Scale an array A by a scalar b overwriting A in-place.

IfA is amatrix andb is a vector, thenscale!(A,b) scales each columniofAbyb[i] (similar toA*Diagonal(b)),

whilescale!(b,A) scales each rowi ofA byb[i] (similar toDiagonal(b)*A), again operating in-place onA. An

InexactError exception is thrown if the scaling produces a number not representable by the element type of A,

e.g. for integer types.

Example

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> b = [1; 2]

2-element Array{Int64,1}:

1

2

julia> scale!(a,b)

2×2 Array{Int64,2}:

1 4

3 8

julia> a = [1 2; 3 4];

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L229-L249
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L252-L267

52.1. STANDARD FUNCTIONS 729

julia> b = [1; 2];

julia> scale!(b,a)

2×2 Array{Int64,2}:

1 2

6 8

source

Base.LinAlg.rank – Function.

rank(M[, tol::Real])

Compute the rank of a matrix by counting how many singular values of M have magnitude greater than tol. By

default, the value of tol is the largest dimension of Mmultiplied by the eps of the eltype of M.

Example

julia> rank(eye(3))

3

julia> rank(diagm([1, 0, 2]))

2

julia> rank(diagm([1, 0.001, 2]), 0.1)

2

julia> rank(diagm([1, 0.001, 2]), 0.00001)

3

source

Base.LinAlg.norm – Function.

norm(A::AbstractArray, p::Real=2)

Compute the p-norm of a vector or the operator norm of amatrix A, defaulting to the 2-norm.

norm(A::AbstractVector, p::Real=2)

For vectors, this is equivalent to vecnorm and equal to:

‖A‖p =

(
n∑

i=1

|ai|p
)1/p

with ai the entries ofA andn its length.

p can assume any numeric value (even though not all values produce a mathematically valid vector norm). In par-

ticular, norm(A, Inf) returns the largest value in abs(A), whereas norm(A, -Inf) returns the smallest.

Example

julia> v = [3, -2, 6]

3-element Array{Int64,1}:

3

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L45-L84
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L697-L720

730 CHAPTER 52. LINEAR ALGEBRA

-2

6

julia> norm(v)

7.0

julia> norm(v, Inf)

6.0

source

norm(A::AbstractMatrix, p::Real=2)

Formatrices, thematrix norm induced by the vector p-norm is used, where valid values of p are 1, 2, or Inf. (Note

that for sparsematrices, p=2 is currently not implemented.) Use vecnorm to compute the Frobenius norm.

When p=1, thematrix norm is themaximum absolute column sum of A:

‖A‖1 = max
1jn

m∑
i=1

|aij |

with aij the entries ofA, andm andn its dimensions.

When p=2, thematrix norm is the spectral norm, equal to the largest singular value of A.

When p=Inf, thematrix norm is themaximum absolute row sum of A:

‖A‖∞ = max
1im

n∑
j=1

|aij |

Example

julia> A = [1 -2 -3; 2 3 -1]

2×3 Array{Int64,2}:

1 -2 -3

2 3 -1

julia> norm(A, Inf)

6.0

source

norm(x::Number, p::Real=2)

For numbers, return (|x|p)1/p. This is equivalent to vecnorm.

source

norm(A::RowVector, q::Real=2)

For rowvectors, return theq-normofA, which is equivalent to thep-normwith valuep = q/(q-1). They coincide

at p = q = 2.

The difference in normbetween a vector space and its dual arises to preserve the relationship betweenduality and

the inner product, and the result is consistent with the p-norm of 1 × nmatrix.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L506-L539
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L542-L574
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L587-L592
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L597-L606

52.1. STANDARD FUNCTIONS 731

Base.LinAlg.vecnorm – Function.

vecnorm(A, p::Real=2)

For any iterable container A (including arrays of any dimension) of numbers (or any element type forwhich norm is

defined), compute the p-norm (defaulting to p=2) as if Awere a vector of the corresponding length.

The p-norm is defined as:

‖A‖p =

(
n∑

i=1

|ai|p
)1/p

with ai the entries ofA andn its length.

p canassumeanynumeric value (even thoughnot all values produceamathematically valid vector norm). In partic-

ular, vecnorm(A, Inf) returns the largest value in abs(A), whereas vecnorm(A, -Inf) returns the smallest.

If A is a matrix and p=2, then this is equivalent to the Frobenius norm.

Example

julia> vecnorm([1 2 3; 4 5 6; 7 8 9])

16.881943016134134

julia> vecnorm([1 2 3 4 5 6 7 8 9])

16.881943016134134

source

vecnorm(x::Number, p::Real=2)

For numbers, return (|x|p)1/p.

source

Base.LinAlg.normalize! – Function.

normalize!(v::AbstractVector, p::Real=2)

Normalize the vector v in-place so that its p-norm equals unity, i.e. norm(v, p) == 1. See also normalize and

vecnorm.

source

Base.LinAlg.normalize – Function.

normalize(v::AbstractVector, p::Real=2)

Normalize the vector v so that its p-norm equals unity, i.e. norm(v, p) == vecnorm(v, p) == 1. See also

normalize! and vecnorm.

Examples

julia> a = [1,2,4];

julia> b = normalize(a)

3-element Array{Float64,1}:

0.218218

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L414-L441
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L460-L464
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L1306-L1312

732 CHAPTER 52. LINEAR ALGEBRA

0.436436

0.872872

julia> norm(b)

1.0

julia> c = normalize(a, 1)

3-element Array{Float64,1}:

0.142857

0.285714

0.571429

julia> norm(c, 1)

1.0

source

Base.LinAlg.cond – Function.

cond(M, p::Real=2)

Conditionnumberof thematrixM, computedusing theoperatorp-norm. Valid values forp are1,2 (default), orInf.

source

Base.LinAlg.condskeel – Function.

condskeel(M, [x, p::Real=Inf])

κS(M,p) =
∥∥|M |

∣∣M−1
∣∣∥∥

p

κS(M,x, p) =
∥∥|M |

∣∣M−1
∣∣ |x|∥∥

p

Skeel condition numberκS of thematrixM, optionallywith respect to the vectorx, as computedusing the operator

p-norm. |M | denotes the matrix of (entry wise) absolute values ofM ; |M |ij = |Mij |. Valid values for p are 1, 2
and Inf (default).

This quantity is also known in the literature as the Bauer condition number, relative condition number, or compo-

nentwise relative condition number.

source

Base.LinAlg.trace – Function.

trace(M)

Matrix trace. Sums the diagonal elements of M.

Example

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> trace(A)

5

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L1335-L1365
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L904-L909
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L848-L864

52.1. STANDARD FUNCTIONS 733

source

Base.LinAlg.det – Function.

det(M)

Matrix determinant.

Example

julia> M = [1 0; 2 2]

2×2 Array{Int64,2}:

1 0

2 2

julia> det(M)

2.0

source

Base.LinAlg.logdet – Function.

logdet(M)

Log of matrix determinant. Equivalent to log(det(M)), but may provide increased accuracy and/or speed.

Examples

julia> M = [1 0; 2 2]

2×2 Array{Int64,2}:

1 0

2 2

julia> logdet(M)

0.6931471805599453

julia> logdet(eye(3))

0.0

source

Base.LinAlg.logabsdet – Function.

logabsdet(M)

Log of absolute value of matrix determinant. Equivalent to (log(abs(det(M))), sign(det(M))), but may

provide increased accuracy and/or speed.

source

Base.inv – Function.

inv(M)

Matrix inverse. Computesmatrix N such that M * N = I, where I is the identitymatrix. Computed by solving the

left-division N = M \ I.

Example

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L730-L746
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L1204-L1220
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L1238-L1258
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L1230-L1235

734 CHAPTER 52. LINEAR ALGEBRA

julia> M = [2 5; 1 3]

2×2 Array{Int64,2}:

2 5

1 3

julia> N = inv(M)

2×2 Array{Float64,2}:

3.0 -5.0

-1.0 2.0

julia> M*N == N*M == eye(2)

true

source

Base.LinAlg.pinv – Function.

pinv(M[, tol::Real])

Computes theMoore-Penrose pseudoinverse.

Formatrices Mwith floating point elements, it is convenient to compute the pseudoinverse by inverting only singu-

lar values above a given threshold, tol.

The optimal choice of tol varies both with the value of M and the intended application of the pseudoinverse. The

default value of tol is eps(real(float(one(eltype(M)))))*maximum(size(A)), which is essentially ma-

chine epsilon for the real part of a matrix element multiplied by the larger matrix dimension. For inverting dense

ill-conditionedmatrices ina least-squares sense,tol = sqrt(eps(real(float(one(eltype(M)))))) is rec-

ommended.

For more information, see 4, 5, 6, 7.

Example

julia> M = [1.5 1.3; 1.2 1.9]

2×2 Array{Float64,2}:

1.5 1.3

1.2 1.9

julia> N = pinv(M)

2×2 Array{Float64,2}:

1.47287 -1.00775

-0.930233 1.16279

julia> M * N

2×2 Array{Float64,2}:

1.0 -2.22045e-16

4.44089e-16 1.0

4Issue 8859, "Fix least squares", https://github.com/JuliaLang/julia/pull/8859

5ÅkeBjörck, "NumericalMethods for Least Squares Problems", SIAMPress, Philadelphia, 1996, "Other Titles in AppliedMathematics", Vol. 51.

doi:10.1137/1.9781611971484

6G.W. Stewart, "Rank Degeneracy", SIAM Journal on Scientific and Statistical Computing, 5(2), 1984, 403-413. doi:10.1137/0905030

7Konstantinos Konstantinides and Kung Yao, "Statistical analysis of effective singular values in matrix rank determination", IEEE Transactions

on Acoustics, Speech and Signal Processing, 36(5), 1988, 757-763. doi:10.1109/29.1585

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L758-L782
http://epubs.siam.org/doi/book/10.1137/1.9781611971484
http://epubs.siam.org/doi/abs/10.1137/0905030
http://dx.doi.org/10.1109/29.1585

52.1. STANDARD FUNCTIONS 735

source

Base.LinAlg.nullspace – Function.

nullspace(M)

Basis for nullspace of M.

Example

julia> M = [1 0 0; 0 1 0; 0 0 0]

3×3 Array{Int64,2}:

1 0 0

0 1 0

0 0 0

julia> nullspace(M)

3×1 Array{Float64,2}:

0.0

0.0

1.0

source

Base.repmat – Function.

repmat(A, m::Integer, n::Integer=1)

Construct amatrix by repeating the givenmatrix (or vector) m times in dimension 1 and n times in dimension 2.

Examples

julia> repmat([1, 2, 3], 2)

6-element Array{Int64,1}:

1

2

3

1

2

3

julia> repmat([1, 2, 3], 2, 3)

6×3 Array{Int64,2}:

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

source

Base.repeat – Function.

repeat(A::AbstractArray; inner=ntuple(x->1, ndims(A)), outer=ntuple(x->1, ndims(A)))

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L788-L832
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L874-L894
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarraymath.jl#L283-L309

736 CHAPTER 52. LINEAR ALGEBRA

Construct an array by repeating the entries of A. The i-th element of inner specifies the number of times that the

individual entries of the i-th dimension of A should be repeated. The i-th element of outer specifies the number of

times that a slice along the i-th dimension of A should be repeated. If inner or outer are omitted, no repetition is

performed.

Examples

julia> repeat(1:2, inner=2)

4-element Array{Int64,1}:

1

1

2

2

julia> repeat(1:2, outer=2)

4-element Array{Int64,1}:

1

2

1

2

julia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))

4×6 Array{Int64,2}:

1 2 1 2 1 2

1 2 1 2 1 2

3 4 3 4 3 4

3 4 3 4 3 4

source

Base.kron – Function.

kron(A, B)

Kronecker tensor product of two vectors or twomatrices.

Example

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> B = [im 1; 1 -im]

2×2 Array{Complex{Int64},2}:

0+1im 1+0im

1+0im 0-1im

julia> kron(A, B)

4×4 Array{Complex{Int64},2}:

0+1im 1+0im 0+2im 2+0im

1+0im 0-1im 2+0im 0-2im

0+3im 3+0im 0+4im 4+0im

3+0im 0-3im 4+0im 0-4im

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/abstractarraymath.jl#L337-L369
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L286-L311

52.1. STANDARD FUNCTIONS 737

Base.SparseArrays.blkdiag – Function.

blkdiag(A...)

Concatenatematrices block-diagonally. Currently only implemented for sparsematrices.

Example

julia> blkdiag(speye(3), 2*speye(2))

5×5 SparseMatrixCSC{Float64,Int64} with 5 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

[4, 4] = 2.0

[5, 5] = 2.0

source

Base.LinAlg.linreg – Function.

linreg(x, y)

Perform simple linear regression using Ordinary Least Squares. Returns a and b such that a + b*x is the closest

straight line to the given points (x, y), i.e., such that the squared error between y and a + b*x is minimized.

Examples:

using PyPlot

x = 1.0:12.0

y = [5.5, 6.3, 7.6, 8.8, 10.9, 11.79, 13.48, 15.02, 17.77, 20.81, 22.0, 22.99]

a, b = linreg(x, y) # Linear regression

plot(x, y, "o") # Plot (x, y) points

plot(x, a + b*x) # Plot line determined by linear regression

See also:

\, cov, std, mean.

source

Base.LinAlg.expm – Function.

expm(A)

Compute thematrix exponential of A, defined by

eA =

∞∑
n=0

An

n!
.

For symmetric orHermitian A, an eigendecomposition (eigfact) is used, otherwise the scaling and squaring algo-

rithm (see 8) is chosen.

Example

8Nicholas J. Higham, "The squaring and scalingmethod for thematrix exponential revisited", SIAMJournal onMatrix Analysis andApplications,

26(4), 2005, 1179-1193. doi:10.1137/090768539

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sparse/sparsematrix.jl#L3083-L3098
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L1048-L1068
http://dx.doi.org/10.1137/090768539

738 CHAPTER 52. LINEAR ALGEBRA

julia> A = eye(2, 2)

2×2 Array{Float64,2}:

1.0 0.0

0.0 1.0

julia> expm(A)

2×2 Array{Float64,2}:

2.71828 0.0

0.0 2.71828

source

Base.LinAlg.logm – Function.

logm(A{T}::StridedMatrix{T})

IfAhas no negative real eigenvalue, compute the principalmatrix logarithmofA, i.e. the uniquematrixX such that

eX = A and−π < Im(λ) < π for all the eigenvalues λ ofX . If A has nonpositive eigenvalues, a nonprincipal

matrix function is returnedwhenever possible.

If A is symmetric or Hermitian, its eigendecomposition (eigfact) is used, if A is triangular an improved version of

the inverse scaling and squaring method is employed (see 9 and 10). For general matrices, the complex Schur form

(schur) is computed and the triangular algorithm is used on the triangular factor.

Example

julia> A = 2.7182818 * eye(2)

2×2 Array{Float64,2}:

2.71828 0.0

0.0 2.71828

julia> logm(A)

2×2 Symmetric{Float64,Array{Float64,2}}:

1.0 0.0

0.0 1.0

source

Base.LinAlg.sqrtm – Function.

sqrtm(A)

If A has no negative real eigenvalues, compute the principal matrix square root of A, that is the unique matrixX
with eigenvalues having positive real part such thatX2 = A. Otherwise, a nonprincipal square root is returned.

If A is symmetric or Hermitian, its eigendecomposition (eigfact) is used to compute the square root. Otherwise,

the square root is determined bymeans of the Björck-Hammarlingmethod 11, which computes the complex Schur

form (schur) and then the complex square root of the triangular factor.

Example

9Awad H. Al-Mohy and Nicholas J. Higham, "Improved inverse scaling and squaring algorithms for the matrix logarithm", SIAM Journal on Sci-

entific Computing, 34(4), 2012, C153-C169. doi:10.1137/110852553

10Awad H. Al-Mohy, Nicholas J. Higham and Samuel D. Relton, "Computing the Fréchet derivative of the matrix logarithm and estimating the

condition number", SIAM Journal on Scientific Computing, 35(4), 2013, C394-C410. doi:10.1137/120885991

11ÅkeBjörck and SvenHammarling, "A Schurmethod for the square root of amatrix", LinearAlgebra and its Applications, 52-53, 1983, 127-140.

doi:10.1016/0024-3795(83)80010-X

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L395-L422
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L522-L553
http://dx.doi.org/10.1137/110852553
http://dx.doi.org/10.1137/120885991
http://dx.doi.org/10.1016/0024-3795(83)80010-X

52.1. STANDARD FUNCTIONS 739

julia> A = [4 0; 0 4]

2×2 Array{Int64,2}:

4 0

0 4

julia> sqrtm(A)

2×2 Array{Float64,2}:

2.0 0.0

0.0 2.0

source

Base.LinAlg.lyap – Function.

lyap(A, C)

Computes the solutionX to the continuous Lyapunov equationAX + XA' + C = 0, where no eigenvalue ofAhas

a zero real part and no two eigenvalues are negative complex conjugates of each other.

source

Base.LinAlg.sylvester – Function.

sylvester(A, B, C)

Computes the solution X to the Sylvester equation AX + XB + C = 0, where A, B and C have compatible dimen-

sions and A and -B have no eigenvalues with equal real part.

source

Base.LinAlg.issymmetric – Function.

issymmetric(A) -> Bool

Test whether amatrix is symmetric.

Examples

julia> a = [1 2; 2 -1]

2×2 Array{Int64,2}:

1 2

2 -1

julia> issymmetric(a)

true

julia> b = [1 im; -im 1]

2×2 Array{Complex{Int64},2}:

1+0im 0+1im

0-1im 1+0im

julia> issymmetric(b)

false

source

Base.LinAlg.isposdef – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L589-L620
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L946-L952
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L926-L931
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L867-L891

740 CHAPTER 52. LINEAR ALGEBRA

isposdef(A) -> Bool

Test whether amatrix is positive definite.

Example

julia> A = [1 2; 2 50]

2×2 Array{Int64,2}:

1 2

2 50

julia> isposdef(A)

true

source

Base.LinAlg.isposdef! – Function.

isposdef!(A) -> Bool

Test whether amatrix is positive definite, overwriting A in the process.

Example

julia> A = [1. 2.; 2. 50.];

julia> isposdef!(A)

true

julia> A

2×2 Array{Float64,2}:

1.0 2.0

2.0 6.78233

source

Base.LinAlg.istril – Function.

istril(A) -> Bool

Test whether amatrix is lower triangular.

Examples

julia> a = [1 2; 2 -1]

2×2 Array{Int64,2}:

1 2

2 -1

julia> istril(a)

false

julia> b = [1 0; -im -1]

2×2 Array{Complex{Int64},2}:

1+0im 0+0im

0-1im -1+0im

julia> istril(b)

true

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L60-L76
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/dense.jl#L35-L53

52.1. STANDARD FUNCTIONS 741

source

Base.LinAlg.istriu – Function.

istriu(A) -> Bool

Test whether amatrix is upper triangular.

Examples

julia> a = [1 2; 2 -1]

2×2 Array{Int64,2}:

1 2

2 -1

julia> istriu(a)

false

julia> b = [1 im; 0 -1]

2×2 Array{Complex{Int64},2}:

1+0im 0+1im

0+0im -1+0im

julia> istriu(b)

true

source

Base.LinAlg.isdiag – Function.

isdiag(A) -> Bool

Test whether amatrix is diagonal.

Examples

julia> a = [1 2; 2 -1]

2×2 Array{Int64,2}:

1 2

2 -1

julia> isdiag(a)

false

julia> b = [im 0; 0 -im]

2×2 Array{Complex{Int64},2}:

0+1im 0+0im

0+0im 0-1im

julia> isdiag(b)

true

source

Base.LinAlg.ishermitian – Function.

ishermitian(A) -> Bool

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L982-L1006
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L947-L971
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L1017-L1041

742 CHAPTER 52. LINEAR ALGEBRA

Test whether amatrix is Hermitian.

Examples

julia> a = [1 2; 2 -1]

2×2 Array{Int64,2}:

1 2

2 -1

julia> ishermitian(a)

true

julia> b = [1 im; -im 1]

2×2 Array{Complex{Int64},2}:

1+0im 0+1im

0-1im 1+0im

julia> ishermitian(b)

true

source

Base.LinAlg.RowVector – Type.

RowVector(vector)

A lazy-viewwrapper of anAbstractVector, which turns a length-n vector into a1×n shaped rowvector and rep-

resents the transpose of a vector (the elements are also transposed recursively). This type is usually constructed

(and unwrapped) via the transpose function or .' operator (or related ctranspose or ' operator).

By convention, a vector can bemultiplied by amatrix on its left (A * v) whereas a row vector can bemultiplied by

a matrix on its right (such that v.' * A = (A.' * v).'). It differs from a 1×n-sized matrix by the facts that its

transpose returns a vector and the inner product v1.' * v2 returns a scalar, but will otherwise behave similarly.

source

Base.LinAlg.ConjArray – Type.

ConjArray(array)

A lazy-view wrapper of an AbstractArray, taking the elementwise complex conjugate. This type is usually con-

structed (andunwrapped) via theconj function (or relatedctranspose), but currently this is thedefault behavior

for RowVector only. For other arrays, the ConjArray constructor can be used directly.

Examples

julia> [1+im, 1-im]'

1×2 RowVector{Complex{Int64},ConjArray{Complex{Int64},1,Array{Complex{Int64},1}}}:

1-1im 1+1im

julia> ConjArray([1+im 0; 0 1-im])

2×2 ConjArray{Complex{Int64},2,Array{Complex{Int64},2}}:

1-1im 0+0im

0+0im 1+1im

source

Base.transpose – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L907-L931
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/rowvector.jl#L3-L15
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/conjarray.jl#L3-L23

52.1. STANDARD FUNCTIONS 743

transpose(A::AbstractMatrix)

The transposition operator (.').

Example

julia> A = [1 2 3; 4 5 6; 7 8 9]

3×3 Array{Int64,2}:

1 2 3

4 5 6

7 8 9

julia> transpose(A)

3×3 Array{Int64,2}:

1 4 7

2 5 8

3 6 9

source

transpose(v::AbstractVector)

The transposition operator (.').

Example

julia> v = [1,2,3]

3-element Array{Int64,1}:

1

2

3

julia> transpose(v)

1×3 RowVector{Int64,Array{Int64,1}}:

1 2 3

source

Base.LinAlg.transpose! – Function.

transpose!(dest,src)

Transpose array src and store the result in the preallocated array dest, which should have a size corresponding

to (size(src,2),size(src,1)). No in-place transposition is supported and unexpected results will happen if

src and dest have overlappingmemory regions.

source

Base.ctranspose – Function.

ctranspose(A)

The conjugate transposition operator (').

Example

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/transpose.jl#L97-L117
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/rowvector.jl#L59-L77
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/transpose.jl#L8-L15

744 CHAPTER 52. LINEAR ALGEBRA

julia> A = [3+2im 9+2im; 8+7im 4+6im]

2×2 Array{Complex{Int64},2}:

3+2im 9+2im

8+7im 4+6im

julia> ctranspose(A)

2×2 Array{Complex{Int64},2}:

3-2im 8-7im

9-2im 4-6im

source

Base.LinAlg.ctranspose! – Function.

ctranspose!(dest,src)

Conjugate transpose arraysrc and store the result in the preallocated arraydest, which should have a size corre-

sponding to (size(src,2),size(src,1)). No in-place transposition is supported and unexpected results will

happen if src and dest have overlappingmemory regions.

source

Base.LinAlg.eigs –Method.

eigs(A; nev=6, ncv=max(20,2*nev+1), which=:LM, tol=0.0, maxiter=300, sigma=nothing, ritzvec=

true, v0=zeros((0,))) -> (d,[v,],nconv,niter,nmult,resid)

Computes eigenvalues d of A using implicitly restarted Lanczos or Arnoldi iterations for real symmetric or general

nonsymmetric matrices respectively.

The following keyword arguments are supported:

• nev: Number of eigenvalues

• ncv: Number of Krylov vectors used in the computation; should satisfy nev+1 <= ncv <= n for real sym-

metric problems andnev+2 <= ncv <= n for other problems,wheren is the size of the inputmatrixA. The

default isncv = max(20,2*nev+1). Note that these restrictions limit the inputmatrixA tobeofdimension

at least 2.

• which: type of eigenvalues to compute. See the note below.

which type of eigenvalues

:LM eigenvalues of largest magnitude (default)

:SM eigenvalues of smallest magnitude

:LR eigenvalues of largest real part

:SR eigenvalues of smallest real part

:LI eigenvalues of largest imaginary part (nonsymmetric or complex A only)

:SI eigenvalues of smallest imaginary part (nonsymmetric or complex A only)

:BE compute half of the eigenvalues from each end of the spectrum, biased in favor of the high end. (real

symmetric A only)

• tol: parameter defining the relative tolerance for convergence of Ritz values (eigenvalue estimates). A Ritz

value is considered converged when its associated residual is less than or equal to the product of tol and

max(2/3, ||), where = eps(real(eltype(A)))/2 is LAPACK's machine epsilon. The residual associ-

ated with and its corresponding Ritz vector v is defined as the norm ||Av − v||. The specified value of tol
should be positive; otherwise, it is ignored and is used instead. Default: .

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L689-L707
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/transpose.jl#L18-L25

52.1. STANDARD FUNCTIONS 745

• maxiter: Maximum number of iterations (default = 300)

• sigma: Specifies the level shift used in inverse iteration. If nothing (default), defaults to ordinary (forward)

iterations. Otherwise, find eigenvalues close to sigma using shift and invert iterations.

• ritzvec: Returns the Ritz vectors v (eigenvectors) if true

• v0: starting vector fromwhich to start the iterations

eigs returns the nev requested eigenvalues in d, the corresponding Ritz vectors v (only if ritzvec=true), the

number of converged eigenvalues nconv, the number of iterations niter and the number of matrix vector multi-

plications nmult, as well as the final residual vector resid.

Example

julia> A = spdiagm(1:4);

julia> λ, = eigs(A, nev = 2);

julia> λ

2-element Array{Float64,1}:

4.0

3.0

Note

Thesigma andwhich keywords interact: the description of eigenvalues searched for bywhich do not

necessarily refer to theeigenvaluesofA, but rather the linearoperator constructedby thespecification

of the iterationmode implied by sigma.

sigma iterationmode which refers to eigenvalues of

nothing ordinary (forward) A
real or complex inverse with level shift sigma (A− σI)−1

Note

Although tol has a default value, the best choice depends strongly on the matrix A. We recommend

that users _always_ specify a value for tolwhich suits their specific needs.

For details of how the errors in the computed eigenvalues are estimated, see:

• B.N. Parlett, "The Symmetric EigenvalueProblem", SIAM:Philadelphia, 2/e (1998), Ch. 13.2, "Ac-

cessing Accuracy in Lanczos Problems", pp. 290-292 ff.

• R. B. Lehoucq andD. C. Sorensen, "Deflation Techniques for an Implicitly RestartedArnoldi Itera-

tion", SIAMJournalonMatrixAnalysisandApplications (1996), 17(4), 789–821. doi:10.1137/S0895479895281484

source

Base.LinAlg.eigs –Method.

eigs(A, B; nev=6, ncv=max(20,2*nev+1), which=:LM, tol=0.0, maxiter=300, sigma=nothing,

ritzvec=true, v0=zeros((0,))) -> (d,[v,],nconv,niter,nmult,resid)

Computes generalized eigenvalues d of A and B using implicitly restarted Lanczos or Arnoldi iterations for real

symmetric or general nonsymmetric matrices respectively.

The following keyword arguments are supported:

• nev: Number of eigenvalues

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/arnoldi.jl#L6-L89

746 CHAPTER 52. LINEAR ALGEBRA

• ncv: Number of Krylov vectors used in the computation; should satisfy nev+1 <= ncv <= n for real sym-

metric problems and nev+2 <= ncv <= n for other problems, where n is the size of the input matrices A

and B. The default is ncv = max(20,2*nev+1). Note that these restrictions limit the input matrix A to be

of dimension at least 2.

• which: type of eigenvalues to compute. See the note below.

which type of eigenvalues

:LM eigenvalues of largest magnitude (default)

:SM eigenvalues of smallest magnitude

:LR eigenvalues of largest real part

:SR eigenvalues of smallest real part

:LI eigenvalues of largest imaginary part (nonsymmetric or complex A only)

:SI eigenvalues of smallest imaginary part (nonsymmetric or complex A only)

:BE compute half of the eigenvalues from each end of the spectrum, biased in favor of the high end. (real

symmetric A only)

• tol: relative tolerance used in the convergence criterion for eigenvalues, similar to tol in the eigs(A)

method for the ordinary eigenvalue problem, but effectively for the eigenvalues ofB−1A instead ofA. See

the documentation for the ordinary eigenvalue problem in eigs(A) and the accompanying note about tol.

• maxiter: Maximum number of iterations (default = 300)

• sigma: Specifies the level shift used in inverse iteration. If nothing (default), defaults to ordinary (forward)

iterations. Otherwise, find eigenvalues close to sigma using shift and invert iterations.

• ritzvec: Returns the Ritz vectors v (eigenvectors) if true

• v0: starting vector fromwhich to start the iterations

eigs returns the nev requested eigenvalues in d, the corresponding Ritz vectors v (only if ritzvec=true), the

number of converged eigenvalues nconv, the number of iterations niter and the number of matrix vector multi-

plications nmult, as well as the final residual vector resid.

Example

julia> A = speye(4, 4); B = spdiagm(1:4);

julia> λ, = eigs(A, B, nev = 2);

julia> λ

2-element Array{Float64,1}:

1.0

0.5

Note

Thesigma andwhich keywords interact: the description of eigenvalues searched for bywhich do not

necessarily refer to the eigenvalue problemAv = Bvλ, but rather the linear operator constructed
by the specification of the iterationmode implied by sigma.

sigma iterationmode which refers to the problem

nothing ordinary (forward) Av = Bvλ
real or complex inverse with level shift sigma (A− σB)−1B = vν

52.1. STANDARD FUNCTIONS 747

source

Base.LinAlg.svds – Function.

svds(A; nsv=6, ritzvec=true, tol=0.0, maxiter=1000, ncv=2*nsv, u0=zeros((0,)), v0=zeros((0,))

) -> (SVD([left_sv,] s, [right_sv,]), nconv, niter, nmult, resid)

Computes the largest singular values s of A using implicitly restarted Lanczos iterations derived from eigs.

Inputs

• A: Linearoperatorwhose singular values aredesired. Amaybe representedasa subtypeofAbstractArray,

e.g., a sparsematrix, or anyother type supporting the fourmethodssize(A),eltype(A),A * vector, and

A' * vector.

• nsv: Number of singular values. Default: 6.

• ritzvec: If true, return the left and right singular vectors left_sv and right_sv. If false, omit the

singular vectors. Default: true.

• tol: tolerance, see eigs.

• maxiter: Maximum number of iterations, see eigs. Default: 1000.

• ncv: Maximum size of the Krylov subspace, see eigs (there called nev). Default: 2*nsv.

• u0: Initial guess for the first left Krylov vector. It may have length m (the first dimension of A), or 0.

• v0: Initial guess for the first right Krylov vector. It may have length n (the second dimension of A), or 0.

Outputs

• svd: An SVD object containing the left singular vectors, the requested values, and the right singular vectors.

If ritzvec = false, the left and right singular vectors will be empty.

• nconv: Number of converged singular values.

• niter: Number of iterations.

• nmult: Number of matrix–vector products used.

• resid: Final residual vector.

Example

julia> A = spdiagm(1:4);

julia> s = svds(A, nsv = 2)[1];

julia> s[:S]

2-element Array{Float64,1}:

4.0

3.0

Implementation

svds(A) is formally equivalent to calling eigs to perform implicitly restarted Lanczos tridiagonaliza-

tion on theHermitianmatrix

(
0 A′

A 0

)
, whose eigenvalues are plus andminus the singular values of

A.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/arnoldi.jl#L105-L169
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/arnoldi.jl#L333-L381

748 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.peakflops – Function.

peakflops(n::Integer=2000; parallel::Bool=false)

peakflops computes the peak flop rate of the computer by using double precision gemm!. By default, if no argu-

ments are specified, it multiplies amatrix of size n x n, where n = 2000. If the underlying BLAS is usingmultiple

threads, higherflop rates are realized. ThenumberofBLAS threads canbe setwithBLAS.set_num_threads(n).

If the keyword argument parallel is set to true, peakflops is run in parallel on all the worker processors. The

flop rate of the entire parallel computer is returned. When running in parallel, only 1 BLAS thread is used. The

argument n still refers to the size of the problem that is solved on each processor.

source

52.2 Low-level matrix operations

Matrix operations involving transpositions operations like A' \ B are converted by the Julia parser into calls to spe-

cially named functions like Ac_ldiv_B. If youwant to overload these operations for your own types, then it is useful to

know the names of these functions.

Also, in many cases there are in-place versions of matrix operations that allow you to supply a pre-allocated output

vector or matrix. This is useful when optimizing critical code in order to avoid the overhead of repeated allocations.

These in-place operations are suffixedwith ! below (e.g. A_mul_B!) according to the usual Julia convention.

Base.LinAlg.A_ldiv_B! – Function.

A_ldiv_B!([Y,] A, B) -> Y

Compute A \ B in-place and store the result in Y, returning the result. If only two arguments are passed, then

A_ldiv_B!(A, B) overwrites Bwith the result.

TheargumentA shouldnotbeamatrix. Rather, insteadofmatrices it shouldbea factorizationobject (e.g. produced

byfactorizeorcholfact). The reason for this is that factorization itself isbothexpensiveand typically allocates

memory (although it can also be done in-place via, e.g., lufact!), and performance-critical situations requiring

A_ldiv_B! usually also require fine-grained control over the factorization of A.

source

Base.A_ldiv_Bc – Function.

A_ldiv_Bc(A, B)

Formatrices or vectorsA andB, calculatesA \B.

source

Base.A_ldiv_Bt – Function.

A_ldiv_Bt(A, B)

Formatrices or vectorsA andB, calculatesA \B.

source

Base.LinAlg.A_mul_B! – Function.

A_mul_B!(Y, A, B) -> Y

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/generic.jl#L1103-L1116
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/factorization.jl#L63-L76
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L806-L810
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L827-L831

52.2. LOW-LEVELMATRIX OPERATIONS 749

Calculates thematrix-matrixormatrix-vectorproductAB andstores the result inY, overwriting theexistingvalue

of Y. Note that Ymust not be aliased with either A or B.

Example

julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; Y = similar(B); A_mul_B!(Y, A, B);

julia> Y

2×2 Array{Float64,2}:

3.0 3.0

7.0 7.0

source

Base.A_mul_Bc – Function.

A_mul_Bc(A, B)

Formatrices or vectorsA andB, calculatesAB.

source

Base.A_mul_Bt – Function.

A_mul_Bt(A, B)

Formatrices or vectorsA andB, calculatesAB.

source

Base.A_rdiv_Bc – Function.

A_rdiv_Bc(A, B)

Formatrices or vectorsA andB, calculatesA/B.

source

Base.A_rdiv_Bt – Function.

A_rdiv_Bt(A, B)

Formatrices or vectorsA andB, calculatesA/B.

source

Base.Ac_ldiv_B – Function.

Ac_ldiv_B(A, B)

Formatrices or vectorsA andB, calculatesA \B.

source

Base.LinAlg.Ac_ldiv_B! – Function.

Ac_ldiv_B!([Y,] A, B) -> Y

Similar to A_ldiv_B!, but returnA \B, computing the result in-place in Y (or overwriting B if Y is not supplied).

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/matmul.jl#L160-L177
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L720-L724
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L741-L745
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L764-L768
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L785-L789
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L799-L803
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/factorization.jl#L79-L84

750 CHAPTER 52. LINEAR ALGEBRA

Base.Ac_ldiv_Bc – Function.

Ac_ldiv_Bc(A, B)

Formatrices or vectorsA andB, calculatesA \B.

source

Base.Ac_mul_B – Function.

Ac_mul_B(A, B)

Formatrices or vectorsA andB, calculatesAB.

source

Base.Ac_mul_Bc – Function.

Ac_mul_Bc(A, B)

Formatrices or vectorsA andB, calculatesAB.

source

Base.Ac_rdiv_B – Function.

Ac_rdiv_B(A, B)

Formatrices or vectorsA andB, calculatesA/B.

source

Base.Ac_rdiv_Bc – Function.

Ac_rdiv_Bc(A, B)

Formatrices or vectorsA andB, calculatesA/B.

source

Base.At_ldiv_B – Function.

At_ldiv_B(A, B)

Formatrices or vectorsA andB, calculatesA \B.

source

Base.LinAlg.At_ldiv_B! – Function.

At_ldiv_B!([Y,] A, B) -> Y

Similar to A_ldiv_B!, but returnA \B, computing the result in-place in Y (or overwriting B if Y is not supplied).

source

Base.At_ldiv_Bt – Function.

At_ldiv_Bt(A, B)

Formatrices or vectorsA andB, calculatesA \B.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L813-L817
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L713-L717
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L727-L731
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L757-L761
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L771-L775
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L820-L824
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/factorization.jl#L87-L92
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L834-L838

52.3. BLAS FUNCTIONS 751

Base.At_mul_B – Function.

At_mul_B(A, B)

Formatrices or vectorsA andB, calculatesAB.

source

Base.At_mul_Bt – Function.

At_mul_Bt(A, B)

Formatrices or vectorsA andB, calculatesAB.

source

Base.At_rdiv_B – Function.

At_rdiv_B(A, B)

Formatrices or vectorsA andB, calculatesA/B.

source

Base.At_rdiv_Bt – Function.

At_rdiv_Bt(A, B)

Formatrices or vectorsA andB, calculatesA/B.

source

52.3 BLAS Functions

In Julia (as in much of scientific computation), dense linear-algebra operations are based on the LAPACK library, which

in turn is built on top of basic linear-algebra building-blocks known as the BLAS. There are highly optimized implemen-

tations of BLAS available for every computer architecture, and sometimes in high-performance linear algebra routines

it is useful to call the BLAS functions directly.

Base.LinAlg.BLAS provides wrappers for some of the BLAS functions. Those BLAS functions that overwrite one of

the input arrays have names ending in '!'. Usually, a BLAS function has fourmethods defined, for Float64, Float32,

Complex128, and Complex64 arrays.

BLAS Character Arguments

Many BLAS functions accept arguments that determine whether to transpose an argument (trans), which triangle of

a matrix to reference (uplo or ul), whether the diagonal of a triangular matrix can be assumed to be all ones (dA) or

which side of amatrix multiplication the input argument belongs on (side). The possiblities are:

MultplicationOrder

side Meaning

'L' The argument goes on the left side of amatrix-matrix operation.

'R' The argument goes on the right side of amatrix-matrix operation.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L734-L738
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L748-L752
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L778-L782
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/operators.jl#L792-L796
http://www.netlib.org/lapack/
http://www.netlib.org/blas/

752 CHAPTER 52. LINEAR ALGEBRA

uplo/ul Meaning

'U' Only the upper triangle of thematrix will be used.

'L' Only the lower triangle of thematrix will be used.

trans/tX Meaning

'N' The input matrix X is not transposed or conjugated.

'T' The input matrix Xwill be transposed.

'C' The input matrix Xwill be conjugated and transposed.

diag/dX Meaning

'N' The diagonal values of thematrix Xwill be read.

'U' The diagonal of thematrix X is assumed to be all ones.

Triangle Referencing

TranspositionOperation

Unit Diagonal

Base.LinAlg.BLAS.dotu – Function.

dotu(n, X, incx, Y, incy)

Dot function for two complex vectors consisting of n elements of array Xwith stride incx and n elements of array

Ywith stride incy.

Example:

julia> Base.BLAS.dotu(10, im*ones(10), 1, complex.(ones(20), ones(20)), 2)

-10.0 + 10.0im

source

Base.LinAlg.BLAS.dotc – Function.

dotc(n, X, incx, U, incy)

Dot function for two complex vectors, consisting of n elements of array Xwith stride incx and n elements of array

Uwith stride incy, conjugating the first vector.

Example:

julia> Base.BLAS.dotc(10, im*ones(10), 1, complex.(ones(20), ones(20)), 2)

10.0 - 10.0im

source

Base.LinAlg.BLAS.blascopy! – Function.

blascopy!(n, X, incx, Y, incy)

Copy n elements of array Xwith stride incx to array Ywith stride incy. Returns Y.

source

Base.LinAlg.BLAS.nrm2 – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L242-L253
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L227-L239
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L157-L161

52.3. BLAS FUNCTIONS 753

nrm2(n, X, incx)

2-norm of a vector consisting of n elements of array Xwith stride incx.

Example:

julia> Base.BLAS.nrm2(4, ones(8), 2)

2.0

julia> Base.BLAS.nrm2(1, ones(8), 2)

1.0

source

Base.LinAlg.BLAS.asum – Function.

asum(n, X, incx)

Sum of the absolute values of the first n elements of array Xwith stride incx.

Example:

julia> Base.BLAS.asum(5, im*ones(10), 2)

5.0

julia> Base.BLAS.asum(2, im*ones(10), 5)

2.0

source

Base.LinAlg.axpy! – Function.

axpy!(a, X, Y)

Overwrite Ywith a*X + Y, where a is a scalar. Returns Y.

Example:

julia> x = [1; 2; 3];

julia> y = [4; 5; 6];

julia> Base.BLAS.axpy!(2, x, y)

3-element Array{Int64,1}:

6

9

12

source

Base.LinAlg.BLAS.scal! – Function.

scal!(n, a, X, incx)

Overwrite Xwith a*X for the first n elements of array Xwith stride incx. Returns X.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L335-L348
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L368-L381
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L401-L418
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L181-L185

754 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.BLAS.scal – Function.

scal(n, a, X, incx)

Returns X scaled by a for the first n elements of array Xwith stride incx.

source

Base.LinAlg.BLAS.ger! – Function.

ger!(alpha, x, y, A)

Rank-1 update of thematrix Awith vectors x and y as alpha*x*y' + A.

source

Base.LinAlg.BLAS.syr! – Function.

syr!(uplo, alpha, x, A)

Rank-1 update of the symmetric matrix Awith vector x as alpha*x*x.' + A. uplo controls which triangle of A

is updated. Returns A.

source

Base.LinAlg.BLAS.syrk! – Function.

syrk!(uplo, trans, alpha, A, beta, C)

Rank-k update of the symmetricmatrix C as alpha*A*A.' + beta*C or alpha*A.'*A + beta*C according to

trans. Only the uplo triangle of C is used. Returns C.

source

Base.LinAlg.BLAS.syrk – Function.

syrk(uplo, trans, alpha, A)

Returns either the upper triangle or the lower triangle ofA, according touplo, ofalpha*A*A.' oralpha*A.'*A,

according to trans.

source

Base.LinAlg.BLAS.her! – Function.

her!(uplo, alpha, x, A)

Methods for complex arrays only. Rank-1 update of the Hermitian matrix A with vector x as alpha*x*x' + A.

uplo controls which triangle of A is updated. Returns A.

source

Base.LinAlg.BLAS.herk! – Function.

herk!(uplo, trans, alpha, A, beta, C)

Methods forcomplexarraysonly. Rank-kupdateof theHermitianmatrixCasalpha*A*A' + beta*Coralpha*A'*A

+ beta*C according to trans. Only the uplo triangle of C is updated. Returns C.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L188-L192
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L904-L908
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L935-L940
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L1169-L1175
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L1178-L1185
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L965-L971
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L1225-L1232

52.3. BLAS FUNCTIONS 755

Base.LinAlg.BLAS.herk – Function.

herk(uplo, trans, alpha, A)

Methods for complex arrays only. Returns the uplo triangle of alpha*A*A' or alpha*A'*A, according to trans.

source

Base.LinAlg.BLAS.gbmv! – Function.

gbmv!(trans, m, kl, ku, alpha, A, x, beta, y)

Update vectory asalpha*A*x + beta*yoralpha*A'*x + beta*y according totrans. ThematrixA is a gen-

eral band matrix of dimension m by size(A,2) with kl sub-diagonals and ku super-diagonals. alpha and beta

are scalars. Returns the updated y.

source

Base.LinAlg.BLAS.gbmv – Function.

gbmv(trans, m, kl, ku, alpha, A, x)

Returns alpha*A*x or alpha*A'*x according to trans. Thematrix A is a general bandmatrix of dimension m by

size(A,2)with kl sub-diagonals and ku super-diagonals, and alpha is a scalar.

source

Base.LinAlg.BLAS.sbmv! – Function.

sbmv!(uplo, k, alpha, A, x, beta, y)

Updatevectoryasalpha*A*x + beta*ywhereA is aasymmetricbandmatrixofordersize(A,2)withk super-

diagonals stored in the argument A. The storage layout for A is described the reference BLASmodule, level-2 BLAS

at http://www.netlib.org/lapack/explore-html/. Only the uplo triangle of A is used.

Returns the updated y.

source

Base.LinAlg.BLAS.sbmv –Method.

sbmv(uplo, k, alpha, A, x)

Returnsalpha*A*xwhereA is a symmetric bandmatrix of ordersize(A,2)withk super-diagonals stored in the

argument A. Only the uplo triangle of A is used.

source

Base.LinAlg.BLAS.sbmv –Method.

sbmv(uplo, k, A, x)

Returns A*xwhere A is a symmetric band matrix of order size(A,2)with k super-diagonals stored in the argu-

ment A. Only the uplo triangle of A is used.

source

Base.LinAlg.BLAS.gemm! – Function.

gemm!(tA, tB, alpha, A, B, beta, C)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L1235-L1241
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L547-L553
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L556-L562
http://www.netlib.org/lapack/explore-html/
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L754-L764
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L736-L742
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L745-L751

756 CHAPTER 52. LINEAR ALGEBRA

Update C as alpha*A*B + beta*C or the other three variants according to tA and tB. Returns the updated C.

source

Base.LinAlg.BLAS.gemm –Method.

gemm(tA, tB, alpha, A, B)

Returns alpha*A*B or the other three variants according to tA and tB.

source

Base.LinAlg.BLAS.gemm –Method.

gemm(tA, tB, A, B)

Returns A*B or the other three variants according to tA and tB.

source

Base.LinAlg.BLAS.gemv! – Function.

gemv!(tA, alpha, A, x, beta, y)

Update the vector y as alpha*A*x + beta*y or alpha*A'x + beta*y according to tA. alpha and beta are

scalars. Returns the updated y.

source

Base.LinAlg.BLAS.gemv –Method.

gemv(tA, alpha, A, x)

Returns alpha*A*x or alpha*A'x according to tA. alpha is a scalar.

source

Base.LinAlg.BLAS.gemv –Method.

gemv(tA, A, x)

Returns A*x or A'x according to tA.

source

Base.LinAlg.BLAS.symm! – Function.

symm!(side, ul, alpha, A, B, beta, C)

Update C as alpha*A*B + beta*C or alpha*B*A + beta*C according to side. A is assumed to be symmetric.

Only the ul triangle of A is used. Returns the updated C.

source

Base.LinAlg.BLAS.symm –Method.

symm(side, ul, alpha, A, B)

Returns alpha*A*B or alpha*B*A according to side. A is assumed to be symmetric. Only the ul triangle of A is

used.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L995-L1000
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L1047-L1051
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L1054-L1058
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L521-L527
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L530-L535
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L538-L542
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L1120-L1126
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L1102-L1108

52.3. BLAS FUNCTIONS 757

Base.LinAlg.BLAS.symm –Method.

symm(side, ul, A, B)

Returns A*B or B*A according to side. A is assumed to be symmetric. Only the ul triangle of A is used.

source

Base.LinAlg.BLAS.symv! – Function.

symv!(ul, alpha, A, x, beta, y)

Update the vector y as alpha*A*x + beta*y. A is assumed to be symmetric. Only the ul triangle of A is used.

alpha and beta are scalars. Returns the updated y.

source

Base.LinAlg.BLAS.symv –Method.

symv(ul, alpha, A, x)

Returns alpha*A*x. A is assumed to be symmetric. Only the ul triangle of A is used. alpha is a scalar.

source

Base.LinAlg.BLAS.symv –Method.

symv(ul, A, x)

Returns A*x. A is assumed to be symmetric. Only the ul triangle of A is used.

source

Base.LinAlg.BLAS.trmm! – Function.

trmm!(side, ul, tA, dA, alpha, A, B)

Update B as alpha*A*B or one of the other three variants determined by side and tA. Only the ul triangle of A is

used. dA determines if the diagonal values are read or are assumed to be all ones. Returns the updated B.

source

Base.LinAlg.BLAS.trmm – Function.

trmm(side, ul, tA, dA, alpha, A, B)

Returns alpha*A*B or one of the other three variants determined by side and tA. Only the ul triangle of A is

used. dA determines if the diagonal values are read or are assumed to be all ones.

source

Base.LinAlg.BLAS.trsm! – Function.

trsm!(side, ul, tA, dA, alpha, A, B)

Overwrite Bwith the solution to A*X = alpha*B or one of the other three variants determined by side and tA.

Only theul triangleofA isused. dAdetermines if thediagonalvaluesarereadorareassumedtobeallones. Returns

the updated B.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L1111-L1117
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L601-L607
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L652-L658
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L661-L666
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L1358-L1367
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L1370-L1378
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L1381-L1390

758 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.BLAS.trsm – Function.

trsm(side, ul, tA, dA, alpha, A, B)

Returns the solution to A*X = alpha*B or one of the other three variants determined by determined by side

and tA. Only the ul triangle of A is used. dA determines if the diagonal values are read or are assumed to be all

ones.

source

Base.LinAlg.BLAS.trmv! – Function.

trmv!(ul, tA, dA, A, b)

Returns op(A)*b, where op is determined by tA. Only the ul triangle of A is used. dA determines if the diagonal

values are read or are assumed to be all ones. Themultiplication occurs in-place on b.

source

Base.LinAlg.BLAS.trmv – Function.

trmv(ul, tA, dA, A, b)

Returns op(A)*b, where op is determined by tA. Only the ul triangle of A is used. dA determines if the diagonal

values are read or are assumed to be all ones.

source

Base.LinAlg.BLAS.trsv! – Function.

trsv!(ul, tA, dA, A, b)

Overwritebwith thesolution toA*x = boroneof theother twovariantsdeterminedbytAandul. dAdetermines

if the diagonal values are read or are assumed to be all ones. Returns the updated b.

source

Base.LinAlg.BLAS.trsv – Function.

trsv(ul, tA, dA, A, b)

Returns the solution to A*x = b or one of the other two variants determined by tA and ul. dA determines if the

diagonal values are read or are assumed to be all ones.

source

Base.LinAlg.BLAS.set_num_threads – Function.

set_num_threads(n)

Set the number of threads the BLAS library should use.

source

Base.LinAlg.I – Constant.

I

An object of type UniformScaling, representing an identity matrix of any size.

Example

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L1393-L1401
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L810-L818
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L800-L807
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L852-L860
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L863-L870
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/blas.jl#L89-L93

52.4. LAPACK FUNCTIONS 759

julia> ones(5, 6) * I == ones(5, 6)

true

julia> [1 2im 3; 1im 2 3] * I

2×3 Array{Complex{Int64},2}:

1+0im 0+2im 3+0im

0+1im 2+0im 3+0im

source

52.4 LAPACK Functions

Base.LinAlg.LAPACK provides wrappers for some of the LAPACK functions for linear algebra. Those functions that

overwrite one of the input arrays have names ending in '!'.

Usually a function has 4methods defined, one each for Float64, Float32, Complex128 and Complex64 arrays.

Note that the LAPACKAPI provided by Julia can andwill change in the future. Since this API is not user-facing, there is

no commitment to support/deprecate this specific set of functions in future releases.

Base.LinAlg.LAPACK.gbtrf! – Function.

gbtrf!(kl, ku, m, AB) -> (AB, ipiv)

Compute the LU factorization of a banded matrix AB. kl is the first subdiagonal containing a nonzero band, ku is

the last superdiagonal containing one, and m is the first dimension of the matrix AB. Returns the LU factorization

in-place and ipiv, the vector of pivots used.

source

Base.LinAlg.LAPACK.gbtrs! – Function.

gbtrs!(trans, kl, ku, m, AB, ipiv, B)

Solve the equationAB * X = B.transdetermines theorientationofAB. ItmaybeN (no transpose),T (transpose),

or C (conjugate transpose). kl is the first subdiagonal containing a nonzero band, ku is the last superdiagonal con-

taining one, and m is the first dimension of the matrix AB. ipiv is the vector of pivots returned from gbtrf!. Re-

turns the vector or matrix X, overwriting B in-place.

source

Base.LinAlg.LAPACK.gebal! – Function.

gebal!(job, A) -> (ilo, ihi, scale)

Balance the matrix A before computing its eigensystem or Schur factorization. job can be one of N (Awill not be

permuted or scaled), P (Awill only be permuted), S (Awill only be scaled), or B (Awill be both permuted and scaled).

Modifies A in-place and returns ilo, ihi, and scale. If permuting was turned on, A[i,j] = 0 if j > i and 1 <

j < ilo or j > ihi. scale contains information about the scaling/permutations performed.

source

Base.LinAlg.LAPACK.gebak! – Function.

gebak!(job, side, ilo, ihi, scale, V)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/uniformscaling.jl#L11-L27
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L161-L168
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L171-L179
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L235-L244

760 CHAPTER 52. LINEAR ALGEBRA

Transform the eigenvectors V of amatrix balanced using gebal! to the unscaled/unpermuted eigenvectors of the

original matrix. Modifies V in-place. side can be L (left eigenvectors are transformed) or R (right eigenvectors are

transformed).

source

Base.LinAlg.LAPACK.gebrd! – Function.

gebrd!(A) -> (A, d, e, tauq, taup)

Reduce A in-place to bidiagonal form A = QBP'. Returns A, containing the bidiagonal matrix B; d, containing the

diagonal elements of B; e, containing the off-diagonal elements of B; tauq, containing the elementary reflectors

representing Q; and taup, containing the elementary reflectors representing P.

source

Base.LinAlg.LAPACK.gelqf! – Function.

gelqf!(A, tau)

Compute the LQ factorization of A, A = LQ. tau contains scalars which parameterize the elementary reflectors of

the factorization. taumust have length greater than or equal to the smallest dimension of A.

Returns A and taumodified in-place.

source

gelqf!(A) -> (A, tau)

Compute the LQ factorization of A, A = LQ.

Returns A, modified in-place, and tau, which contains scalars which parameterize the elementary reflectors of the

factorization.

source

Base.LinAlg.LAPACK.geqlf! – Function.

geqlf!(A, tau)

Compute the QL factorization of A, A = QL. tau contains scalars which parameterize the elementary reflectors of

the factorization. taumust have length greater than or equal to the smallest dimension of A.

Returns A and taumodified in-place.

source

geqlf!(A) -> (A, tau)

Compute the QL factorization of A, A = QL.

Returns A, modified in-place, and tau, which contains scalars which parameterize the elementary reflectors of the

factorization.

source

Base.LinAlg.LAPACK.geqrf! – Function.

geqrf!(A, tau)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L247-L254
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L544-L552
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L555-L564
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L650-L657
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L567-L575
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L660-L667

52.4. LAPACK FUNCTIONS 761

Compute the QR factorization of A, A = QR. tau contains scalars which parameterize the elementary reflectors of

the factorization. taumust have length greater than or equal to the smallest dimension of A.

Returns A and taumodified in-place.

source

geqrf!(A) -> (A, tau)

Compute the QR factorization of A, A = QR.

Returns A, modified in-place, and tau, which contains scalars which parameterize the elementary reflectors of the

factorization.

source

Base.LinAlg.LAPACK.geqp3! – Function.

geqp3!(A, jpvt, tau)

Compute the pivoted QR factorization of A, AP = QR using BLAS level 3. P is a pivoting matrix, represented by

jpvt. tau stores the elementary reflectors. jpvtmust have length length greater than or equal to n if A is an (m

x n)matrix. taumust have length greater than or equal to the smallest dimension of A.

A, jpvt, and tau aremodified in-place.

source

geqp3!(A, jpvt) -> (A, jpvt, tau)

Compute the pivoted QR factorization of A, AP = QR using BLAS level 3. P is a pivoting matrix, represented by

jpvt. jpvtmust have length greater than or equal to n if A is an (m x n)matrix.

Returns A and jpvt, modified in-place, and tau, which stores the elementary reflectors.

source

geqp3!(A) -> (A, jpvt, tau)

Compute the pivoted QR factorization of A, AP = QR using BLAS level 3.

Returns A, modified in-place, jpvt, which represents the pivoting matrix P, and tau, which stores the elementary

reflectors.

source

Base.LinAlg.LAPACK.gerqf! – Function.

gerqf!(A, tau)

Compute the RQ factorization of A, A = RQ. tau contains scalars which parameterize the elementary reflectors of

the factorization. taumust have length greater than or equal to the smallest dimension of A.

Returns A and taumodified in-place.

source

gerqf!(A) -> (A, tau)

Compute the RQ factorization of A, A = RQ.

Returns A, modified in-place, and tau, which contains scalars which parameterize the elementary reflectors of the

factorization.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L617-L625
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L692-L699
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L578-L588
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L712-L721
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L727-L734
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L628-L636
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L702-L709

762 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.LAPACK.geqrt! – Function.

geqrt!(A, T)

Compute the blocked QR factorization of A, A = QR. T contains upper triangular block reflectors which parame-

terize the elementary reflectors of the factorization. The first dimension of T sets the block size and it must be

between 1 and n. The second dimension of Tmust equal the smallest dimension of A.

Returns A and Tmodified in-place.

source

geqrt!(A, nb) -> (A, T)

Compute the blocked QR factorization of A, A = QR. nb sets the block size and it must be between 1 and n, the

second dimension of A.

Returns A, modified in-place, and T, which contains upper triangular block reflectors which parameterize the ele-

mentary reflectors of the factorization.

source

Base.LinAlg.LAPACK.geqrt3! – Function.

geqrt3!(A, T)

Recursively computes theblockedQR factorizationofA,A = QR.T containsupper triangularblock reflectorswhich

parameterize the elementary reflectors of the factorization. Thefirst dimension ofT sets the block size and itmust

be between 1 and n. The second dimension of Tmust equal the smallest dimension of A.

Returns A and Tmodified in-place.

source

geqrt3!(A) -> (A, T)

Recursively computes the blocked QR factorization of A, A = QR.

Returns A, modified in-place, and T, which contains upper triangular block reflectors which parameterize the ele-

mentary reflectors of the factorization.

source

Base.LinAlg.LAPACK.getrf! – Function.

getrf!(A) -> (A, ipiv, info)

Compute the pivoted LU factorization of A, A = LU.

Returns A, modified in-place, ipiv, the pivoting information, and an info code which indicates success (info =

0), a singular value in U (info = i, in which case U[i,i] is singular), or an error code (info < 0).

source

Base.LinAlg.LAPACK.tzrzf! – Function.

tzrzf!(A) -> (A, tau)

Transforms the upper trapezoidalmatrix A to upper triangular form in-place. Returns A and tau, the scalar param-

eters for the elementary reflectors of the transformation.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L591-L601
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L670-L679
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L604-L614
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L682-L689
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L639-L647
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L834-L840

52.4. LAPACK FUNCTIONS 763

Base.LinAlg.LAPACK.ormrz! – Function.

ormrz!(side, trans, A, tau, C)

Multiplies the matrix C by Q from the transformation supplied by tzrzf!. Depending on side or trans the mul-

tiplication can be left-sided (side = L, Q*C) or right-sided (side = R, C*Q) and Q can be unmodified (trans

= N), transposed (trans = T), or conjugate transposed (trans = C). ReturnsmatrixCwhich ismodified in-place

with the result of themultiplication.

source

Base.LinAlg.LAPACK.gels! – Function.

gels!(trans, A, B) -> (F, B, ssr)

Solves the linear equationA * X = B,A.' * X =B, orA' * X = B using aQRor LQ factorization. Modifies the

matrix/vector B in place with the solution. A is overwritten with its QR or LQ factorization. transmay be one of N

(no modification), T (transpose), or C (conjugate transpose). gels! searches for the minimum norm/least squares

solution. Amay be under or over determined. The solution is returned in B.

source

Base.LinAlg.LAPACK.gesv! – Function.

gesv!(A, B) -> (B, A, ipiv)

Solves the linear equation A * X = Bwhere A is a square matrix using the LU factorization of A. A is overwritten

with itsLU factorization andB is overwrittenwith the solutionX.ipiv contains the pivoting information for theLU

factorization of A.

source

Base.LinAlg.LAPACK.getrs! – Function.

getrs!(trans, A, ipiv, B)

Solves the linear equation A * X = B, A.' * X =B, or A' * X = B for square A. Modifies the matrix/vector B

in place with the solution. A is the LU factorization from getrf!, with ipiv the pivoting information. transmay

be one of N (nomodification), T (transpose), or C (conjugate transpose).

source

Base.LinAlg.LAPACK.getri! – Function.

getri!(A, ipiv)

Computes the inverse of A, using its LU factorization found by getrf!. ipiv is the pivot information output and A

contains the LU factorization of getrf!. A is overwritten with its inverse.

source

Base.LinAlg.LAPACK.gesvx! – Function.

gesvx!(fact, trans, A, AF, ipiv, equed, R, C, B) -> (X, equed, R, C, B, rcond, ferr, berr,

work)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L822-L831
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L970-L979
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L982-L989
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L992-L1000
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L1003-L1010

764 CHAPTER 52. LINEAR ALGEBRA

Solves the linear equation A * X = B (trans = N), A.' * X =B (trans = T), or A' * X = B (trans = C)

using theLU factorization ofA.factmaybeE, inwhich caseAwill be equilibrated and copied toAF;F, inwhich case

AFandipiv fromapreviousLU factorizationare inputs; orN, inwhich caseAwill be copied toAFand then factored.

Iffact = F,equedmaybeN,meaningAhasnotbeenequilibrated;R,meaningAwasmultipliedbydiagm(R) from

the left;C,meaningAwasmultipliedbydiagm(C) fromthe right; orB,meaningAwasmultipliedbydiagm(R) from

the left and diagm(C) from the right. If fact = F and equed = R or B the elements of Rmust all be positive. If

fact = F and equed = C or B the elements of Cmust all be positive.

Returns the solution X; equed, which is an output if fact is not N, and describes the equilibration that was per-

formed; R, the row equilibration diagonal; C, the column equilibration diagonal; B, which may be overwritten with

its equilibrated formdiagm(R)*B (iftrans = Nandequed = R,B) ordiagm(C)*B (iftrans = T,Candequed

= C,B); rcond, the reciprocal condition number of A after equilbrating; ferr, the forward error bound for each

solution vector in X; berr, the forward error bound for each solution vector in X; and work, the reciprocal pivot

growth factor.

source

gesvx!(A, B)

The no-equilibration, no-transpose simplification of gesvx!.

source

Base.LinAlg.LAPACK.gelsd! – Function.

gelsd!(A, B, rcond) -> (B, rnk)

Computes the leastnormsolutionofA * X = BbyfindingtheSVD factorizationofA, thendividing-and-conquering

the problem. B is overwrittenwith the solution X. Singular values below rcondwill be treated as zero. Returns the

solution in B and the effective rank of A in rnk.

source

Base.LinAlg.LAPACK.gelsy! – Function.

gelsy!(A, B, rcond) -> (B, rnk)

Computes the leastnormsolutionofA * X = Bbyfindingthe fullQR factorizationofA, thendividing-and-conquering

the problem. B is overwrittenwith the solution X. Singular values below rcondwill be treated as zero. Returns the

solution in B and the effective rank of A in rnk.

source

Base.LinAlg.LAPACK.gglse! – Function.

gglse!(A, c, B, d) -> (X,res)

Solves the equation A * x = c where x is subject to the equality constraint B * x = d. Uses the formula ||c

- A*x||^2 = 0 to solve. Returns X and the residual sum-of-squares.

source

Base.LinAlg.LAPACK.geev! – Function.

geev!(jobvl, jobvr, A) -> (W, VL, VR)

Finds the eigensystem of A. If jobvl = N, the left eigenvectors of A aren't computed. If jobvr = N, the right

eigenvectors of A aren't computed. If jobvl = V or jobvr = V, the corresponding eigenvectors are computed.

Returns the eigenvalues in W, the right eigenvectors in VR, and the left eigenvectors in VL.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L1153-L1176
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L1180-L1184
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L1375-L1383
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L1386-L1394
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L1447-L1453
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L1742-L1750

52.4. LAPACK FUNCTIONS 765

Base.LinAlg.LAPACK.gesdd! – Function.

gesdd!(job, A) -> (U, S, VT)

Finds the singular value decomposition of A, A = U * S * V', using a divide and conquer approach. If job = A,

all the columns of U and the rows of V' are computed. If job = N, no columns of U or rows of V' are computed. If

job = O, A is overwritten with the columns of (thin) U and the rows of (thin) V'. If job = S, the columns of (thin)

U and the rows of (thin) V' are computed and returned separately.

source

Base.LinAlg.LAPACK.gesvd! – Function.

gesvd!(jobu, jobvt, A) -> (U, S, VT)

Finds the singular value decomposition of A, A = U * S * V'. If jobu = A, all the columns of U are computed. If

jobvt = A all the rows of V' are computed. If jobu = N, no columns of U are computed. If jobvt = N no rows

ofV' are computed. Ifjobu = O,A is overwrittenwith the columnsof (thin)U. Ifjobvt = O,A is overwrittenwith

the rows of (thin) V'. If jobu = S, the columns of (thin) U are computed and returned separately. If jobvt = S

the rows of (thin) V' are computed and returned separately. jobu and jobvt can't both be O.

Returns U, S, and Vt, where S are the singular values of A.

source

Base.LinAlg.LAPACK.ggsvd! – Function.

ggsvd!(jobu, jobv, jobq, A, B) -> (U, V, Q, alpha, beta, k, l, R)

Finds the generalized singular value decomposition of A and B, U'*A*Q = D1*R and V'*B*Q = D2*R. D1 has

alpha on its diagonal and D2 has beta on its diagonal. If jobu = U, the orthogonal/unitarymatrix U is computed.

If jobv = V the orthogonal/unitary matrix V is computed. If jobq = Q, the orthogonal/unitary matrix Q is com-

puted. If jobu, jobv or jobq is N, that matrix is not computed. This function is only available in LAPACK versions

prior to 3.6.0.

source

Base.LinAlg.LAPACK.ggsvd3! – Function.

ggsvd3!(jobu, jobv, jobq, A, B) -> (U, V, Q, alpha, beta, k, l, R)

Finds the generalized singular value decomposition of A and B, U'*A*Q = D1*R and V'*B*Q = D2*R. D1 has

alpha on its diagonal and D2 has beta on its diagonal. If jobu = U, the orthogonal/unitarymatrix U is computed.

If jobv = V the orthogonal/unitary matrix V is computed. If jobq = Q, the orthogonal/unitary matrix Q is com-

puted. If jobu, jobv, or jobq is N, that matrix is not computed. This function requires LAPACK 3.6.0.

source

Base.LinAlg.LAPACK.geevx! – Function.

geevx!(balanc, jobvl, jobvr, sense, A) -> (A, w, VL, VR, ilo, ihi, scale, abnrm, rconde,

rcondv)

Finds the eigensystem of A with matrix balancing. If jobvl = N, the left eigenvectors of A aren't computed. If

jobvr = N, the right eigenvectors of A aren't computed. If jobvl = V or jobvr = V, the corresponding eigen-

vectors are computed. If balanc = N, no balancing is performed. If balanc = P, A is permuted but not scaled. If

balanc = S, A is scaled but not permuted. If balanc = B, A is permuted and scaled. If sense = N, no reciprocal

condition numbers are computed. If sense = E, reciprocal condition numbers are computed for the eigenvalues

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L1753-L1762
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L1765-L1778
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L1781-L1791
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L1910-L1919

766 CHAPTER 52. LINEAR ALGEBRA

only. If sense = V, reciprocal condition numbers are computed for the right eigenvectors only. If sense = B,

reciprocal condition numbers are computed for the right eigenvectors and the eigenvectors. If sense = E,B, the

right and left eigenvectors must be computed.

source

Base.LinAlg.LAPACK.ggev! – Function.

ggev!(jobvl, jobvr, A, B) -> (alpha, beta, vl, vr)

Finds the generalized eigendecomposition of A and B. If jobvl = N, the left eigenvectors aren't computed. If

jobvr = N, the right eigenvectors aren't computed. If jobvl = V or jobvr = V, the corresponding eigenvec-

tors are computed.

source

Base.LinAlg.LAPACK.gtsv! – Function.

gtsv!(dl, d, du, B)

Solves the equation A * X = Bwhere A is a tridiagonal matrix with dl on the subdiagonal, d on the diagonal, and

du on the superdiagonal.

Overwrites Bwith the solution X and returns it.

source

Base.LinAlg.LAPACK.gttrf! – Function.

gttrf!(dl, d, du) -> (dl, d, du, du2, ipiv)

Finds the LU factorization of a tridiagonal matrix with dl on the subdiagonal, d on the diagonal, and du on the

superdiagonal.

Modifies dl, d, and du in-place and returns them and the second superdiagonal du2 and the pivoting vector ipiv.

source

Base.LinAlg.LAPACK.gttrs! – Function.

gttrs!(trans, dl, d, du, du2, ipiv, B)

Solves the equation A * X = B (trans = N), A.' * X = B (trans = T), or A' * X = B (trans = C) using

the LU factorization computed by gttrf!. B is overwritten with the solution X.

source

Base.LinAlg.LAPACK.orglq! – Function.

orglq!(A, tau, k = length(tau))

Explicitly finds the matrix Q of a LQ factorization after calling gelqf! on A. Uses the output of gelqf!. A is over-

written by Q.

source

Base.LinAlg.LAPACK.orgqr! – Function.

orgqr!(A, tau, k = length(tau))

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L2220-L2236
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L2239-L2246
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L2413-L2421
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L2424-L2432
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L2435-L2441
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L2835-L2840

52.4. LAPACK FUNCTIONS 767

Explicitly finds the matrix Q of a QR factorization after calling geqrf! on A. Uses the output of geqrf!. A is over-

written by Q.

source

Base.LinAlg.LAPACK.orgql! – Function.

orgql!(A, tau, k = length(tau))

Explicitly finds the matrix Q of a QL factorization after calling geqlf! on A. Uses the output of geqlf!. A is over-

written by Q.

source

Base.LinAlg.LAPACK.orgrq! – Function.

orgrq!(A, tau, k = length(tau))

Explicitly finds the matrix Q of a RQ factorization after calling gerqf! on A. Uses the output of gerqf!. A is over-

written by Q.

source

Base.LinAlg.LAPACK.ormlq! – Function.

ormlq!(side, trans, A, tau, C)

Computes Q * C (trans = N), Q.' * C (trans = T), Q' * C (trans = C) for side = L or the equivalent

right-sided multiplication for side = R using Q from a LQ factorization of A computed using gelqf!. C is over-

written.

source

Base.LinAlg.LAPACK.ormqr! – Function.

ormqr!(side, trans, A, tau, C)

Computes Q * C (trans = N), Q.' * C (trans = T), Q' * C (trans = C) for side = L or the equivalent

right-sided multiplication for side = R using Q from a QR factorization of A computed using geqrf!. C is over-

written.

source

Base.LinAlg.LAPACK.ormql! – Function.

ormql!(side, trans, A, tau, C)

Computes Q * C (trans = N), Q.' * C (trans = T), Q' * C (trans = C) for side = L or the equivalent

right-sided multiplication for side = R using Q from a QL factorization of A computed using geqlf!. C is over-

written.

source

Base.LinAlg.LAPACK.ormrq! – Function.

ormrq!(side, trans, A, tau, C)

Computes Q * C (trans = N), Q.' * C (trans = T), Q' * C (trans = C) for side = L or the equivalent

right-sided multiplication for side = R using Q from a RQ factorization of A computed using gerqf!. C is over-

written.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L2843-L2848
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L2851-L2856
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L2859-L2864
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L2867-L2874
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L2877-L2884
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L2887-L2894
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L2897-L2904

768 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.LAPACK.gemqrt! – Function.

gemqrt!(side, trans, V, T, C)

Computes Q * C (trans = N), Q.' * C (trans = T), Q' * C (trans = C) for side = L or the equivalent

right-sided multiplication for side = R using Q from a QR factorization of A computed using geqrt!. C is over-

written.

source

Base.LinAlg.LAPACK.posv! – Function.

posv!(uplo, A, B) -> (A, B)

Finds the solution to A * X = B where A is a symmetric or Hermitian positive definite matrix. If uplo = U the

upperCholeskydecompositionofA is computed. Ifuplo = L the lowerCholeskydecompositionofA is computed.

A is overwritten by its Cholesky decomposition. B is overwritten with the solution X.

source

Base.LinAlg.LAPACK.potrf! – Function.

potrf!(uplo, A)

Computes the Cholesky (upper if uplo = U, lower if uplo = L) decomposition of positive-definite matrix A. A is

overwritten and returnedwith an info code.

source

Base.LinAlg.LAPACK.potri! – Function.

potri!(uplo, A)

Computes the inverse of positive-definite matrix A after calling potrf! to find its (upper if uplo = U, lower if

uplo = L) Cholesky decomposition.

A is overwritten by its inverse and returned.

source

Base.LinAlg.LAPACK.potrs! – Function.

potrs!(uplo, A, B)

Finds the solution to A * X = B where A is a symmetric or Hermitian positive definite matrix whose Cholesky

decomposition was computed by potrf!. If uplo = U the upper Cholesky decomposition of Awas computed. If

uplo = L the lower Cholesky decomposition of Awas computed. B is overwritten with the solution X.

source

Base.LinAlg.LAPACK.pstrf! – Function.

pstrf!(uplo, A, tol) -> (A, piv, rank, info)

Computes the (upper ifuplo = U, lower ifuplo = L) pivotedCholeskydecompositionofpositive-definitematrix

Awith a user-set tolerance tol. A is overwritten by its Cholesky decomposition.

Returns A, the pivots piv, the rank of A, and an info code. If info = 0, the factorization succeeded. If info = i

> 0, then A is indefinite or rank-deficient.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L2907-L2914
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3045-L3053
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3056-L3062
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3065-L3073
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3076-L3084
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3087-L3097

52.4. LAPACK FUNCTIONS 769

Base.LinAlg.LAPACK.ptsv! – Function.

ptsv!(D, E, B)

SolvesA * X = B forpositive-definite tridiagonalA.D is thediagonalofAandE is theoff-diagonal. B is overwritten

with the solution X and returned.

source

Base.LinAlg.LAPACK.pttrf! – Function.

pttrf!(D, E)

Computes the LDLt factorization of a positive-definite tridiagonal matrix with D as diagonal and E as off-diagonal.

D and E are overwritten and returned.

source

Base.LinAlg.LAPACK.pttrs! – Function.

pttrs!(D, E, B)

Solves A * X = B for positive-definite tridiagonal Awith diagonal D and off-diagonal E after computing A's LDLt

factorization using pttrf!. B is overwritten with the solution X.

source

Base.LinAlg.LAPACK.trtri! – Function.

trtri!(uplo, diag, A)

Finds the inverse of (upper if uplo = U, lower if uplo = L) triangularmatrix A. If diag = N, A has non-unit diag-

onal elements. If diag = U, all diagonal elements of A are one. A is overwritten with its inverse.

source

Base.LinAlg.LAPACK.trtrs! – Function.

trtrs!(uplo, trans, diag, A, B)

SolvesA * X = B (trans = N),A.' * X = B (trans = T), orA' * X = B (trans = C) for (upper ifuplo =

U, lower ifuplo = L) triangularmatrixA. Ifdiag = N,Ahasnon-unit diagonal elements. Ifdiag = U, all diagonal

elements of A are one. B is overwritten with the solution X.

source

Base.LinAlg.LAPACK.trcon! – Function.

trcon!(norm, uplo, diag, A)

Finds the reciprocal condition number of (upper if uplo = U, lower if uplo = L) triangular matrix A. If diag =

N, A has non-unit diagonal elements. If diag = U, all diagonal elements of A are one. If norm = I, the condition

number is found in the infinity norm. If norm = O or 1, the condition number is found in the one norm.

source

Base.LinAlg.LAPACK.trevc! – Function.

trevc!(side, howmny, select, T, VL = similar(T), VR = similar(T))

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3152-L3158
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3161-L3167
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3232-L3238
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3297-L3304
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3307-L3315
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3576-L3584

770 CHAPTER 52. LINEAR ALGEBRA

Finds the eigensystem of an upper triangular matrix T. If side = R, the right eigenvectors are computed. If side

= L, the left eigenvectors are computed. If side = B, both sets are computed. If howmny = A, all eigenvectors

are found. If howmny = B, all eigenvectors are found and backtransformed using VL and VR. If howmny = S, only

the eigenvectors corresponding to the values in select are computed.

source

Base.LinAlg.LAPACK.trrfs! – Function.

trrfs!(uplo, trans, diag, A, B, X, Ferr, Berr) -> (Ferr, Berr)

Estimates theerror in the solution toA * X = B (trans = N),A.' * X = B (trans = T),A' * X = B (trans

= C) forside = L, or the equivalent equations a right-handedside = RX * A after computingXusingtrtrs!.

If uplo = U, A is upper triangular. If uplo = L, A is lower triangular. If diag = N, A has non-unit diagonal ele-

ments. If diag = U, all diagonal elements of A are one. Ferr and Berr are optional inputs. Ferr is the forward

error and Berr is the backward error, each component-wise.

source

Base.LinAlg.LAPACK.stev! – Function.

stev!(job, dv, ev) -> (dv, Zmat)

Computes the eigensystem for a symmetric tridiagonalmatrixwithdv as diagonal andev as off-diagonal. Ifjob =

Nonly the eigenvalues are found and returned indv. Ifjob = V then the eigenvectors are also found and returned

in Zmat.

source

Base.LinAlg.LAPACK.stebz! – Function.

stebz!(range, order, vl, vu, il, iu, abstol, dv, ev) -> (dv, iblock, isplit)

Computes the eigenvalues for a symmetric tridiagonal matrix with dv as diagonal and ev as off-diagonal. If range

= A, all the eigenvalues are found. If range = V, the eigenvalues in the half-open interval (vl, vu] are found.

If range = I, the eigenvalues with indices between il and iu are found. If order = B, eigvalues are ordered

within a block. If order = E, they are ordered across all the blocks. abstol can be set as a tolerance for conver-

gence.

source

Base.LinAlg.LAPACK.stegr! – Function.

stegr!(jobz, range, dv, ev, vl, vu, il, iu) -> (w, Z)

Computes the eigenvalues (jobz = N) or eigenvalues and eigenvectors (jobz = V) for a symmetric tridiagonal

matrix with dv as diagonal and ev as off-diagonal. If range = A, all the eigenvalues are found. If range = V, the

eigenvalues in thehalf-open interval(vl, vu] are found. Ifrange = I, the eigenvalueswith indices betweenil

and iu are found. The eigenvalues are returned in w and the eigenvectors in Z.

source

Base.LinAlg.LAPACK.stein! – Function.

stein!(dv, ev_in, w_in, iblock_in, isplit_in)

Computes theeigenvectors fora symmetric tridiagonalmatrixwithdvasdiagonal andev_inasoff-diagonal. w_in

specifies the inputeigenvalues forwhich tofindcorrespondingeigenvectors. iblock_in specifies thesubmatrices

corresponding to the eigenvalues inw_in. isplit_in specifies the splitting points between the submatrix blocks.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3587-L3597
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3601-L3612
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3773-L3780
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3783-L3793
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3796-L3806
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L3809-L3817

52.4. LAPACK FUNCTIONS 771

Base.LinAlg.LAPACK.syconv! – Function.

syconv!(uplo, A, ipiv) -> (A, work)

Converts a symmetric matrix A (which has been factorized into a triangular matrix) into two matrices L and D. If

uplo = U, A is upper triangular. If uplo = L, it is lower triangular. ipiv is the pivot vector from the triangular

factorization. A is overwritten by L and D.

source

Base.LinAlg.LAPACK.sysv! – Function.

sysv!(uplo, A, B) -> (B, A, ipiv)

Finds the solution to A * X = B for symmetric matrix A. If uplo = U, the upper half of A is stored. If uplo = L,

the lower half is stored. B is overwritten by the solution X. A is overwritten by its Bunch-Kaufman factorization.

ipiv contains pivoting information about the factorization.

source

Base.LinAlg.LAPACK.sytrf! – Function.

sytrf!(uplo, A) -> (A, ipiv, info)

Computes the Bunch-Kaufman factorization of a symmetric matrix A. If uplo = U, the upper half of A is stored. If

uplo = L, the lower half is stored.

Returns A, overwritten by the factorization, a pivot vector ipiv, and the error code infowhich is a non-negative

integer. Ifinfo is positive thematrix is singular and thediagonal part of the factorization is exactly zero at position

info.

source

Base.LinAlg.LAPACK.sytri! – Function.

sytri!(uplo, A, ipiv)

Computes the inverse of a symmetric matrix A using the results of sytrf!. If uplo = U, the upper half of A is

stored. If uplo = L, the lower half is stored. A is overwritten by its inverse.

source

Base.LinAlg.LAPACK.sytrs! – Function.

sytrs!(uplo, A, ipiv, B)

Solves the equation A * X = B for a symmetricmatrix A using the results of sytrf!. If uplo = U, the upper half

of A is stored. If uplo = L, the lower half is stored. B is overwritten by the solution X.

source

Base.LinAlg.LAPACK.hesv! – Function.

hesv!(uplo, A, B) -> (B, A, ipiv)

Finds the solution to A * X = B for Hermitian matrix A. If uplo = U, the upper half of A is stored. If uplo = L,

the lower half is stored. B is overwritten by the solution X. A is overwritten by its Bunch-Kaufman factorization.

ipiv contains pivoting information about the factorization.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L4673-L4681
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L4684-L4692
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L4695-L4706
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L4709-L4715
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L4718-L4725
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L4729-L4737

772 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.LAPACK.hetrf! – Function.

hetrf!(uplo, A) -> (A, ipiv, info)

Computes the Bunch-Kaufman factorization of a Hermitian matrix A. If uplo = U, the upper half of A is stored. If

uplo = L, the lower half is stored.

Returns A, overwritten by the factorization, a pivot vector ipiv, and the error code infowhich is a non-negative

integer. Ifinfo is positive thematrix is singular and thediagonal part of the factorization is exactly zero at position

info.

source

Base.LinAlg.LAPACK.hetri! – Function.

hetri!(uplo, A, ipiv)

Computes the inverse of a Hermitian matrix A using the results of sytrf!. If uplo = U, the upper half of A is

stored. If uplo = L, the lower half is stored. A is overwritten by its inverse.

source

Base.LinAlg.LAPACK.hetrs! – Function.

hetrs!(uplo, A, ipiv, B)

Solves the equation A * X = B for a Hermitianmatrix A using the results of sytrf!. If uplo = U, the upper half

of A is stored. If uplo = L, the lower half is stored. B is overwritten by the solution X.

source

Base.LinAlg.LAPACK.syev! – Function.

syev!(jobz, uplo, A)

Finds the eigenvalues (jobz = N) or eigenvalues and eigenvectors (jobz = V) of a symmetric matrix A. If uplo

= U, the upper triangle of A is used. If uplo = L, the lower triangle of A is used.

source

Base.LinAlg.LAPACK.syevr! – Function.

syevr!(jobz, range, uplo, A, vl, vu, il, iu, abstol) -> (W, Z)

Finds the eigenvalues (jobz = N) or eigenvalues and eigenvectors (jobz = V) of a symmetricmatrixA. Ifuplo =

U, the upper triangle ofA is used. Ifuplo = L, the lower triangle ofA is used. Ifrange = A, all the eigenvalues are

found. Ifrange = V, theeigenvalues in thehalf-open interval(vl, vu]are found. Ifrange = I, theeigenvalues

with indices between il and iu are found. abstol can be set as a tolerance for convergence.

The eigenvalues are returned in W and the eigenvectors in Z.

source

Base.LinAlg.LAPACK.sygvd! – Function.

sygvd!(itype, jobz, uplo, A, B) -> (w, A, B)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L4740-L4751
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L4754-L4760
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L4763-L4770
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L5072-L5078
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L5081-L5093

52.4. LAPACK FUNCTIONS 773

Finds the generalized eigenvalues (jobz = N) or eigenvalues and eigenvectors (jobz = V) of a symmetricmatrix

A and symmetric positive-definitematrix B. If uplo = U, the upper triangles of A and B are used. If uplo = L, the

lower triangles of A and B are used. If itype = 1, the problem to solve is A * x = lambda * B * x. If itype

= 2, the problem to solve is A * B * x = lambda * x. If itype = 3, the problem to solve is B * A * x =

lambda * x.

source

Base.LinAlg.LAPACK.bdsqr! – Function.

bdsqr!(uplo, d, e_, Vt, U, C) -> (d, Vt, U, C)

Computes thesingularvaluedecompositionofabidiagonalmatrixwithdonthediagonalande_ontheoff-diagonal.

Ifuplo = U,e_ is the superdiagonal. Ifuplo = L,e_ is the subdiagonal. Canoptionally also compute theproduct

Q' * C.

Returns the singular values in d, and thematrix C overwritten with Q' * C.

source

Base.LinAlg.LAPACK.bdsdc! – Function.

bdsdc!(uplo, compq, d, e_) -> (d, e, u, vt, q, iq)

Computes thesingularvaluedecompositionofabidiagonalmatrixwithdonthediagonalande_ontheoff-diagonal

using a divide and conqueq method. If uplo = U, e_ is the superdiagonal. If uplo = L, e_ is the subdiagonal. If

compq = N, only the singular values are found. If compq = I, the singular values and vectors are found. If compq

= P, the singular values and vectors are found in compact form. Only works for real types.

Returns the singular values in d, and if compq = P, the compact singular vectors in iq.

source

Base.LinAlg.LAPACK.gecon! – Function.

gecon!(normtype, A, anorm)

Finds the reciprocal condition number of matrix A. If normtype = I, the condition number is found in the infinity

norm. If normtype = O or 1, the condition number is found in the one norm. Amust be the result of getrf! and

anorm is the norm of A in the relevant norm.

source

Base.LinAlg.LAPACK.gehrd! – Function.

gehrd!(ilo, ihi, A) -> (A, tau)

Converts amatrixA toHessenberg form. IfA is balancedwithgebal! theniloandihiare theoutputsofgebal!.

Otherwise they should beilo = 1 andihi = size(A,2). tau contains the elementary reflectors of the factor-

ization.

source

Base.LinAlg.LAPACK.orghr! – Function.

orghr!(ilo, ihi, A, tau)

Explicitly finds Q, the orthogonal/unitary matrix from gehrd!. ilo, ihi, A, and tau must correspond to the in-

put/output to gehrd!.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L5097-L5108
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L5160-L5169
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L5228-L5240
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L5311-L5318
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L5361-L5368
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L5410-L5415

774 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.LAPACK.gees! – Function.

gees!(jobvs, A) -> (A, vs, w)

Computes the eigenvalues (jobvs = N) or the eigenvalues and Schur vectors (jobvs = V) of matrix A. A is over-

written by its Schur form.

Returns A, vs containing the Schur vectors, and w, containing the eigenvalues.

source

Base.LinAlg.LAPACK.gges! – Function.

gges!(jobvsl, jobvsr, A, B) -> (A, B, alpha, beta, vsl, vsr)

Computes the generalized eigenvalues, generalized Schur form, left Schur vectors (jobsvl = V), or right Schur

vectors (jobvsr = V) of A and B.

The generalized eigenvalues are returned in alpha and beta. The left Schur vectors are returned in vsl and the

right Schur vectors are returned in vsr.

source

Base.LinAlg.LAPACK.trexc! – Function.

trexc!(compq, ifst, ilst, T, Q) -> (T, Q)

Reorder the Schur factorization of a matrix. If compq = V, the Schur vectors Q are reordered. If compq = N they

are not modified. ifst and ilst specify the reordering of the vectors.

source

Base.LinAlg.LAPACK.trsen! – Function.

trsen!(compq, job, select, T, Q) -> (T, Q, w)

Reorder the Schur factorization of amatrix and optionally finds reciprocal condition numbers. Ifjob = N, no con-

dition numbers are found. If job = E, only the condition number for this cluster of eigenvalues is found. If job =

V, only the condition number for the invariant subspace is found. If job = B then the condition numbers for the

cluster and subspace are found. If compq = V the Schur vectors Q are updated. If compq = N the Schur vectors

are not modified. select determines which eigenvalues are in the cluster.

Returns T, Q, and reordered eigenvalues in w.

source

Base.LinAlg.LAPACK.tgsen! – Function.

tgsen!(select, S, T, Q, Z) -> (S, T, alpha, beta, Q, Z)

Reorders the vectors of a generalized Schur decomposition. select specifices the eigenvalues in each cluster.

source

Base.LinAlg.LAPACK.trsyl! – Function.

trsyl!(transa, transb, A, B, C, isgn=1) -> (C, scale)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L5656-L5664
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L5668-L5677
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L5972-L5978
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L5981-L5994
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L5997-L6002

52.4. LAPACK FUNCTIONS 775

Solves the Sylvester matrix equation A * X +/- X * B = scale*Cwhere A and B are both quasi-upper trian-

gular. Iftransa = N,A is notmodified. Iftransa = T,A is transposed. Iftransa = C,A is conjugate transposed.

Similarly for transb and B. If isgn = 1, the equation A * X + X * B = scale * C is solved. If isgn = -1,

the equation A * X - X * B = scale * C is solved.

Returns X (overwriting C) and scale.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/linalg/lapack.jl#L6036-L6047

Chapter 53

Constants

Core.nothing – Constant.

nothing

The singleton instance of type Void, used by conventionwhen there is no value to return (as in a C void function).

Can be converted to an empty Nullable value.

source

Base.PROGRAM_FILE – Constant.

PROGRAM_FILE

A string containing the script name passed to Julia from the command line. Note that the script name remains

unchanged fromwithin included files. Alternatively see @__FILE__.

source

Base.ARGS – Constant.

ARGS

An array of the command line arguments passed to Julia, as strings.

source

Base.C_NULL – Constant.

C_NULL

The C null pointer constant, sometimes usedwhen calling external code.

source

Base.VERSION – Constant.

VERSION

A VersionNumber object describing which version of Julia is in use. For details see Version Number Literals.

source

Base.LOAD_PATH – Constant.

777

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/basedocs.jl#L691-L696
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/initdefs.jl#L5-L11
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/initdefs.jl#L14-L18
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pointer.jl#L13-L17
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/version.jl#L220-L225

778 CHAPTER 53. CONSTANTS

LOAD_PATH

An array of paths as strings or custom loader objects for therequire function andusing andimport statements

to considerwhen loading code. To create a custom loader type, define the type and then add appropriatemethods

to the Base.load_hook function with the following signature:

Base.load_hook(loader::Loader, name::String, found::Any)

Theloader argument is the current value inLOAD_PATH,name is the nameof themodule to load, andfound is the

path of any previously found code to provide name. If no provider has been found earlier in LOAD_PATH then the

value of foundwill be nothing. Custom loader functionality is experimental andmay break or change in Julia 1.0.

source

Base.JULIA_HOME – Constant.

JULIA_HOME

A string containing the full path to the directory containing the julia executable.

source

Core.ANY – Constant.

ANY

Equivalent to Any for dispatch purposes, but signals the compiler to skip code generation specialization for that

field.

source

Base.Sys.CPU_CORES – Constant.

Sys.CPU_CORES

The number of logical CPU cores available in the system.

See the Hwloc.jl package for extended information, including number of physical cores.

source

Base.Sys.WORD_SIZE – Constant.

Sys.WORD_SIZE

Standard word size on the current machine, in bits.

source

Base.Sys.KERNEL – Constant.

Sys.KERNEL

A symbol representing the name of the operating system, as returned by uname of the build configuration.

source

Base.Sys.ARCH – Constant.

Sys.ARCH

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/initdefs.jl#L30-L46
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/initdefs.jl#L71-L75
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/basedocs.jl#L699-L704
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sysinfo.jl#L22-L28
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sysinfo.jl#L53-L57
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sysinfo.jl#L39-L43

779

A symbol representing the architecture of the build configuration.

source

Base.Sys.MACHINE – Constant.

Sys.MACHINE

A string containing the build triple.

source

See also:

• STDIN

• STDOUT

• STDERR

• ENV

• ENDIAN_BOM

• Libc.MS_ASYNC

• Libc.MS_INVALIDATE

• Libc.MS_SYNC

• Libdl.DL_LOAD_PATH

• Libdl.RTLD_DEEPBIND

• Libdl.RTLD_LOCAL

• Libdl.RTLD_NOLOAD

• Libdl.RTLD_LAZY

• Libdl.RTLD_NOW

• Libdl.RTLD_GLOBAL

• Libdl.RTLD_NODELETE

• Libdl.RTLD_FIRST

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sysinfo.jl#L31-L35
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sysinfo.jl#L46-L50

Chapter 54

Filesystem

Base.Filesystem.pwd – Function.

pwd() -> AbstractString

Get the current working directory.

source

Base.Filesystem.cd –Method.

cd(dir::AbstractString=homedir())

Set the current working directory.

source

Base.Filesystem.cd –Method.

cd(f::Function, dir::AbstractString=homedir())

Temporarily changes the current working directory and applies function f before returning.

source

Base.Filesystem.readdir – Function.

readdir(dir::AbstractString=".") -> Vector{String}

Returns the files and directories in the directory dir (or the current working directory if not given).

source

Base.Filesystem.walkdir – Function.

walkdir(dir; topdown=true, follow_symlinks=false, onerror=throw)

The walkdir method returns an iterator that walks the directory tree of a directory. The iterator returns a tu-

ple containing (rootpath, dirs, files). The directory tree can be traversed top-down or bottom-up. If

walkdir encounters a SystemError it will rethrow the error by default. A custom error handling function can

be provided through onerror keyword argument. onerror is called with a SystemError as argument.

781

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L32-L36
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L44-L48
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L77-L81
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L403-L407

782 CHAPTER 54. FILESYSTEM

for (root, dirs, files) in walkdir(".")

println("Directories in $root")

for dir in dirs

println(joinpath(root, dir)) # path to directories

end

println("Files in $root")

for file in files

println(joinpath(root, file)) # path to files

end

end

source

Base.Filesystem.mkdir – Function.

mkdir(path::AbstractString, mode::Unsigned=0o777)

Make a new directory with name path and permissions mode. mode defaults to 0o777, modified by the current

file creation mask. This function never creates more than one directory. If the directory already exists, or some

intermediate directories do not exist, this function throws an error. See mkpath for a function which creates all

required intermediate directories.

source

Base.Filesystem.mkpath – Function.

mkpath(path::AbstractString, mode::Unsigned=0o777)

Create all directories in the given path, with permissions mode. mode defaults to 0o777, modified by the current

file creationmask.

source

Base.Filesystem.symlink – Function.

symlink(target::AbstractString, link::AbstractString)

Creates a symbolic link to targetwith the name link.

Note

This function raises an error under operating systems that do not support soft symbolic links, such as

Windows XP.

source

Base.Filesystem.readlink – Function.

readlink(path::AbstractString) -> AbstractString

Returns the target location a symbolic link path points to.

source

Base.Filesystem.chmod – Function.

chmod(path::AbstractString, mode::Integer; recursive::Bool=false)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L433-L455
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L84-L92
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L102-L107
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L543-L551
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L574-L578

783

Changethepermissionsmodeofpath tomode. Only integermodes (e.g. 0o777) arecurrentlysupported. Ifrecursive=true

and the path is a directory all permissions in that directory will be recursively changed.

source

Base.Filesystem.chown – Function.

chown(path::AbstractString, owner::Integer, group::Integer=-1)

Change the owner and/or group ofpath toowner and/orgroup. If the value entered forowner orgroup is-1 the

corresponding IDwill not change. Only integer owners and groups are currently supported.

source

Base.stat – Function.

stat(file)

Returns a structure whose fields contain information about the file. The fields of the structure are:

Name Description

size The size (in bytes) of the file

device ID of the device that contains the file

inode The inode number of the file

mode The protectionmode of the file

nlink The number of hard links to the file

uid The user id of the owner of the file

gid The group id of the file owner

rdev If this file refers to a device, the ID of the device it refers to

blksize The file-system preferred block size for the file

blocks The number of such blocks allocated

mtime Unix timestamp of when the file was last modified

ctime Unix timestamp of when the file was created

source

Base.Filesystem.lstat – Function.

lstat(file)

Like stat, but for symbolic links gets the info for the link itself rather than the file it refers to. This function must

be called on a file path rather than a file object or a file descriptor.

source

Base.Filesystem.ctime – Function.

ctime(file)

Equivalent to stat(file).ctime

source

Base.Filesystem.mtime – Function.

mtime(file)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L598-L604
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L618-L623
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L83-L104
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L107-L114
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L140-L144

784 CHAPTER 54. FILESYSTEM

Equivalent to stat(file).mtime.

source

Base.Filesystem.filemode – Function.

filemode(file)

Equivalent to stat(file).mode

source

Base.Filesystem.filesize – Function.

filesize(path...)

Equivalent to stat(file).size.

source

Base.Filesystem.uperm – Function.

uperm(file)

Gets the permissions of the owner of the file as a bitfield of

Value Description

01 Execute Permission

02 Write Permission

04 Read Permission

For allowed arguments, see stat.

source

Base.Filesystem.gperm – Function.

gperm(file)

Like uperm but gets the permissions of the group owning the file.

source

Base.Filesystem.operm – Function.

operm(file)

Likeupermbut gets the permissions for peoplewhoneither own the file nor are amember of the group owning the

file

source

Base.Filesystem.cp – Function.

cp(src::AbstractString, dst::AbstractString; remove_destination::Bool=false, follow_symlinks

::Bool=false)

Copy the file, link, or directory from src to dest. remove_destination=truewill first remove an existing dst.

Iffollow_symlinks=false, andsrc is asymbolic link,dstwillbecreatedasasymbolic link. Iffollow_symlinks=true

and src is a symbolic link, dstwill be a copy of the file or directory src refers to.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L133-L137
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L119-L123
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L126-L130
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L228-L240
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L243-L247
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L250-L255
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L209-L218

785

Base.download – Function.

download(url::AbstractString, [localfile::AbstractString])

Download a file from the given url, optionally renaming it to the given local file name. Note that this function relies

on the availability of external tools such as curl, wget or fetch to download the file and is provided for conve-

nience. For production use or situations inwhichmore options are needed, please use a package that provides the

desired functionality instead.

source

Base.Filesystem.mv – Function.

mv(src::AbstractString, dst::AbstractString; remove_destination::Bool=false)

Move the file, link, or directory from src to dst. remove_destination=truewill first remove an existing dst.

source

Base.Filesystem.rm – Function.

rm(path::AbstractString; force::Bool=false, recursive::Bool=false)

Delete thefile, link, oremptydirectoryat thegivenpath. Ifforce=true ispassed, anon-existingpath isnot treated

as error. If recursive=true is passed and the path is a directory, then all contents are removed recursively.

source

Base.Filesystem.touch – Function.

touch(path::AbstractString)

Update the last-modified timestamp on a file to the current time.

source

Base.Filesystem.tempname – Function.

tempname()

Generate a unique temporary file path.

source

Base.Filesystem.tempdir – Function.

tempdir()

Obtain the path of a temporary directory (possibly sharedwith other processes).

source

Base.Filesystem.mktemp –Method.

mktemp(parent=tempdir())

Returns (path, io), where path is the path of a new temporary file in parent and io is an open file object for

this path.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L635-L643
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L231-L236
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L129-L135
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L242-L246
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L343-L347
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L336-L340
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L350-L355

786 CHAPTER 54. FILESYSTEM

Base.Filesystem.mktemp –Method.

mktemp(f::Function, parent=tempdir())

Apply the function f to the result of mktemp(parent) and remove the temporary file upon completion.

source

Base.Filesystem.mktempdir –Method.

mktempdir(parent=tempdir())

Create a temporary directory in theparentdirectory and return its path. Ifparentdoes not exist, throwanerror.

source

Base.Filesystem.mktempdir –Method.

mktempdir(f::Function, parent=tempdir())

Apply the function f to the result of mktempdir(parent) and remove the temporary directory upon completion.

source

Base.Filesystem.isblockdev – Function.

isblockdev(path) -> Bool

Returns true if path is a block device, false otherwise.

source

Base.Filesystem.ischardev – Function.

ischardev(path) -> Bool

Returns true if path is a character device, false otherwise.

source

Base.Filesystem.isdir – Function.

isdir(path) -> Bool

Returns true if path is a directory, false otherwise.

source

Base.Filesystem.isfifo – Function.

isfifo(path) -> Bool

Returns true if path is a FIFO, false otherwise.

source

Base.Filesystem.isfile – Function.

isfile(path) -> Bool

Returns true if path is a regular file, false otherwise.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L367-L372
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L358-L363
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/file.jl#L383-L388
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L177-L181
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L163-L167
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L170-L174
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L156-L160
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L184-L188

787

Base.Filesystem.islink – Function.

islink(path) -> Bool

Returns true if path is a symbolic link, false otherwise.

source

Base.Filesystem.ismount – Function.

ismount(path) -> Bool

Returns true if path is a mount point, false otherwise.

source

Base.Filesystem.ispath – Function.

ispath(path) -> Bool

Returns true if path is a valid filesystem path, false otherwise.

source

Base.Filesystem.issetgid – Function.

issetgid(path) -> Bool

Returns true if path has the setgid flag set, false otherwise.

source

Base.Filesystem.issetuid – Function.

issetuid(path) -> Bool

Returns true if path has the setuid flag set, false otherwise.

source

Base.Filesystem.issocket – Function.

issocket(path) -> Bool

Returns true if path is a socket, false otherwise.

source

Base.Filesystem.issticky – Function.

issticky(path) -> Bool

Returns true if path has the sticky bit set, false otherwise.

source

Base.Filesystem.homedir – Function.

homedir() -> AbstractString

Return the current user's home directory.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L191-L195
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L296-L300
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L149-L153
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L214-L218
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L207-L211
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L198-L202
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stat.jl#L221-L225

788 CHAPTER 54. FILESYSTEM

Note

homedir determines the home directory via libuv's uv_os_homedir. For details (for example on

how to specify the home directory via environment variables), see the uv_os_homedir documenta-

tion.

source

Base.Filesystem.dirname – Function.

dirname(path::AbstractString) -> AbstractString

Get the directory part of a path.

julia> dirname("/home/myuser")

"/home"

See also: basename

source

Base.Filesystem.basename – Function.

basename(path::AbstractString) -> AbstractString

Get the file name part of a path.

julia> basename("/home/myuser/example.jl")

"example.jl"

See also: dirname

source

Base.@__FILE__ –Macro.

@__FILE__ -> AbstractString

@__FILE__ expands to a stringwith the absolute file path of the file containing themacro. Returnsnothing if run

from a REPL or an empty string if evaluated by julia -e <expr>. Alternatively see PROGRAM_FILE.

source

Base.@__DIR__ –Macro.

@__DIR__ -> AbstractString

@__DIR__ expands to a stringwith thedirectory part of the absolute path of thefile containing themacro. Returns

nothing if run from a REPL or an empty string if evaluated by julia -e <expr>.

source

@__LINE__ –Macro.

@__LINE__ -> Int

@__LINE__ expands to the line number of the call-site.

source

http://docs.libuv.org/en/v1.x/misc.html#c.uv_os_homedir
http://docs.libuv.org/en/v1.x/misc.html#c.uv_os_homedir
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L52-L61
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L134-L145
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L148-L159
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/loading.jl#L548-L554
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/loading.jl#L557-L563
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/basedocs.jl#L647-L651

789

Base.Filesystem.isabspath – Function.

isabspath(path::AbstractString) -> Bool

Determines whether a path is absolute (begins at the root directory).

julia> isabspath("/home")

true

julia> isabspath("home")

false

source

Base.Filesystem.isdirpath – Function.

isdirpath(path::AbstractString) -> Bool

Determines whether a path refers to a directory (for example, ends with a path separator).

julia> isdirpath("/home")

false

julia> isdirpath("/home/")

true

source

Base.Filesystem.joinpath – Function.

joinpath(parts...) -> AbstractString

Join path components into a full path. If some argument is an absolute path, then prior components are dropped.

julia> joinpath("/home/myuser","example.jl")

"/home/myuser/example.jl"

source

Base.Filesystem.abspath – Function.

abspath(path::AbstractString) -> AbstractString

Convert a path to an absolute path by adding the current directory if necessary.

source

abspath(path::AbstractString, paths::AbstractString...) -> AbstractString

Convert a set of paths to an absolute path by joining them together and adding the current directory if necessary.

Equivalent to abspath(joinpath(path, paths...)).

source

Base.Filesystem.normpath – Function.

normpath(path::AbstractString) -> AbstractString

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L86-L98
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L101-L113
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L194-L204
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L264-L268
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L271-L276

790 CHAPTER 54. FILESYSTEM

Normalize a path, removing "." and ".." entries.

julia> normpath("/home/myuser/../example.jl")

"/home/example.jl"

source

Base.Filesystem.realpath – Function.

realpath(path::AbstractString) -> AbstractString

Canonicalize a path by expanding symbolic links and removing "." and ".." entries.

source

Base.Filesystem.relpath – Function.

relpath(path::AbstractString, startpath::AbstractString = ".") -> AbstractString

Return a relative filepath to path either from the current directory or from an optional start directory. This is a

path computation: the filesystem is not accessed to confirm the existence or nature of path or startpath.

source

Base.Filesystem.expanduser – Function.

expanduser(path::AbstractString) -> AbstractString

OnUnix systems, replace a tilde character at the start of a path with the current user's home directory.

source

Base.Filesystem.splitdir – Function.

splitdir(path::AbstractString) -> (AbstractString, AbstractString)

Split a path into a tuple of the directory name and file name.

julia> splitdir("/home/myuser")

("/home", "myuser")

source

Base.Filesystem.splitdrive – Function.

splitdrive(path::AbstractString) -> (AbstractString, AbstractString)

OnWindows, split apath into thedrive letterpartand thepathpart. OnUnix systems, thefirst component is always

the empty string.

source

Base.Filesystem.splitext – Function.

splitext(path::AbstractString) -> (AbstractString, AbstractString)

If the last component of a path contains adot, split thepath into everythingbefore thedot andeverything including

and after the dot. Otherwise, return a tuple of the argument unmodified and the empty string.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L219-L228
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L319-L323
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L350-L356
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L342-L346
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L116-L125
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L44-L49

791

julia> splitext("/home/myuser/example.jl")

("/home/myuser/example", ".jl")

julia> splitext("/home/myuser/example")

("/home/myuser/example", "")

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/path.jl#L162-L176

Chapter 55

I/O andNetwork

55.1 General I/O

Base.STDOUT – Constant.

STDOUT

Global variable referring to the standard out stream.

source

Base.STDERR – Constant.

STDERR

Global variable referring to the standard error stream.

source

Base.STDIN – Constant.

STDIN

Global variable referring to the standard input stream.

source

Base.open – Function.

open(filename::AbstractString, [read::Bool, write::Bool, create::Bool, truncate::Bool, append

::Bool]) -> IOStream

Open a file in a mode specified by five boolean arguments. The default is to open files for reading only. Returns a

stream for accessing the file.

source

open(filename::AbstractString, [mode::AbstractString]) -> IOStream

Alternate syntax for open, where a string-based mode specifier is used instead of the five booleans. The values of

modecorrespondto those fromfopen(3)orPerlopen, andareequivalent tosetting the followingbooleangroups:

source

open(f::Function, args...)

793

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libuv.jl#L114-L118
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libuv.jl#L121-L125
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libuv.jl#L107-L111
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iostream.jl#L96-L101
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iostream.jl#L115-L130

794 CHAPTER 55. I/O ANDNETWORK

Mode Description

r read

r+ read, write

w write, create, truncate

w+ read, write, create, truncate

a write, create, append

a+ read, write, create, append

Apply the function f to the result of open(args...) and close the resulting file descriptor upon completion.

Example: open(readstring, "file.txt")

source

open(command, mode::AbstractString="r", stdio=DevNull)

Start runningcommandasynchronously, andreturna tuple(stream,process). Ifmode is"r", thenstream reads

from the process's standard output and stdio optionally specifies the process's standard input stream. If mode is

"w", then stream writes to the process's standard input and stdio optionally specifies the process's standard

output stream.

source

open(f::Function, command, mode::AbstractString="r", stdio=DevNull)

Similar toopen(command, mode, stdio), butcallsf(stream)ontheresultingreadorwritestream, thencloses

the stream andwaits for the process to complete. Returns the value returned by f.

source

Base.IOBuffer – Type.

IOBuffer([data,],[readable::Bool=true, writable::Bool=true, [maxsize::Int=typemax(Int)]])

Create an IOBuffer, which may optionally operate on a pre-existing array. If the readable/writable arguments

are given, they restrict whether or not the buffer may be read from or written to respectively. The last argument

optionally specifies a size beyondwhich the buffer may not be grown.

source

IOBuffer() -> IOBuffer

Create an in-memory I/O stream.

source

IOBuffer(size::Int)

Create a fixed size IOBuffer. The buffer will not grow dynamically.

source

IOBuffer(string::String)

Create a read-only IOBuffer on the data underlying the given string.

julia> io = IOBuffer("Haho");

julia> String(take!(io))

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iostream.jl#L141-L148
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/process.jl#L565-L573
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/process.jl#L591-L597
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iobuffer.jl#L34-L41
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iobuffer.jl#L51-L55
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iobuffer.jl#L58-L62

55.1. GENERAL I/O 795

"Haho"

julia> String(take!(io))

"Haho"

source

Base.take! –Method.

take!(b::IOBuffer)

Obtain the contents of an IOBuffer as an array, without copying. Afterwards, the IOBuffer is reset to its initial

state.

source

Base.fdio – Function.

fdio([name::AbstractString,]fd::Integer[, own::Bool=false]) -> IOStream

Create an IOStream object from an integer file descriptor. If own is true, closing this object will close the under-

lying descriptor. By default, an IOStream is closed when it is garbage collected. name allows you to associate the

descriptor with a named file.

source

Base.flush – Function.

flush(stream)

Commit all currently buffered writes to the given stream.

source

Base.close – Function.

close(stream)

Close an I/O stream. Performs a flush first.

source

Base.write – Function.

write(stream::IO, x)

write(filename::AbstractString, x)

Write the canonical binary representation of a value to the given I/O stream or file. Returns the number of bytes

written into the stream.

You canwrite multiple values with the same write call. i.e. the following are equivalent:

write(stream, x, y...)

write(stream, x) + write(stream, y...)

source

Base.read – Function.

read(filename::AbstractString, args...)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/io.jl#L152-L166
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iobuffer.jl#L266-L271
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iostream.jl#L80-L86
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L641-L645
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L22-L26
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L52-L63

796 CHAPTER 55. I/O ANDNETWORK

Open a file and read its contents. args is passed to read: this is equivalent to open(io->read(io, args...),

filename).

source

read(stream::IO, T, dims)

Read a series of values of type T from stream, in canonical binary representation. dims is either a tuple or a series

of integer arguments specifying the size of the Array{T} to return.

source

read(s::IO, nb=typemax(Int))

Read at most nb bytes from s, returning a Vector{UInt8} of the bytes read.

source

read(s::IOStream, nb::Integer; all=true)

Read at most nb bytes from s, returning a Vector{UInt8} of the bytes read.

If all is true (the default), this function will block repeatedly trying to read all requested bytes, until an error or

end-of-file occurs. If all is false, at most one read call is performed, and the amount of data returned is device-

dependent. Note that not all stream types support the all option.

source

read(stream::IO, T)

Read a single value of type T from stream, in canonical binary representation.

source

Base.read! – Function.

read!(stream::IO, array::Union{Array, BitArray})

read!(filename::AbstractString, array::Union{Array, BitArray})

Read binary data from an I/O stream or file, filling in array.

source

Base.readbytes! – Function.

readbytes!(stream::IO, b::AbstractVector{UInt8}, nb=length(b))

Read at most nb bytes from stream into b, returning the number of bytes read. The size of bwill be increased if

needed (i.e. if nb is greater than length(b) and enough bytes could be read), but it will never be decreased.

source

readbytes!(stream::IOStream, b::AbstractVector{UInt8}, nb=length(b); all::Bool=true)

Read at most nb bytes from stream into b, returning the number of bytes read. The size of bwill be increased if

needed (i.e. if nb is greater than length(b) and enough bytes could be read), but it will never be decreased.

See read for a description of the all option.

source

Base.unsafe_read – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L154-L159
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L377-L383
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L520-L524
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iostream.jl#L295-L304
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1482-L1486
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L39-L44
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L495-L501
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iostream.jl#L268-L276

55.1. GENERAL I/O 797

unsafe_read(io::IO, ref, nbytes::UInt)

Copy nbytes from the IO stream object into ref (converted to a pointer).

It is recommended that subtypes T<:IO override the followingmethod signature to providemore efficient imple-

mentations: unsafe_read(s::T, p::Ptr{UInt8}, n::UInt)

source

Base.unsafe_write – Function.

unsafe_write(io::IO, ref, nbytes::UInt)

Copy nbytes from ref (converted to a pointer) into the IO object.

It is recommended that subtypes T<:IO override the followingmethod signature to providemore efficient imple-

mentations: unsafe_write(s::T, p::Ptr{UInt8}, n::UInt)

source

Base.position – Function.

position(s)

Get the current position of a stream.

source

Base.seek – Function.

seek(s, pos)

Seek a stream to the given position.

source

Base.seekstart – Function.

seekstart(s)

Seek a stream to its beginning.

source

Base.seekend – Function.

seekend(s)

Seek a stream to its end.

source

Base.skip – Function.

skip(s, offset)

Seek a stream relative to the current position.

source

Base.mark – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L86-L94
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L69-L77
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1224-L1228
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1057-L1061
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1691-L1695
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2654-L2658
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L785-L789

798 CHAPTER 55. I/O ANDNETWORK

mark(s)

Add amark at the current position of stream s. Returns themarked position.

See also unmark, reset, ismarked.

source

Base.unmark – Function.

unmark(s)

Remove amark from stream s. Returns true if the streamwasmarked, false otherwise.

See also mark, reset, ismarked.

source

Base.reset – Function.

reset(s)

Reset a stream s to a previously marked position, and remove the mark. Returns the previously marked position.

Throws an error if the stream is not marked.

See also mark, unmark, ismarked.

source

Base.ismarked – Function.

ismarked(s)

Returns true if stream s is marked.

See also mark, unmark, reset.

source

Base.eof – Function.

eof(stream) -> Bool

Tests whether an I/O stream is at end-of-file. If the stream is not yet exhausted, this function will block to wait for

more data if necessary, and then returnfalse. Therefore it is always safe to read one byte after seeingeof return

false. eof will return false as long as buffered data is still available, even if the remote end of a connection is

closed.

source

Base.isreadonly – Function.

isreadonly(stream) -> Bool

Determine whether a stream is read-only.

source

Base.iswritable – Function.

iswritable(io) -> Bool

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L589-L595
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L600-L606
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L613-L620
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L629-L635
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L137-L145
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L275-L279

55.1. GENERAL I/O 799

Returns true if the specified IO object is writable (if that can be determined).

source

Base.isreadable – Function.

isreadable(io) -> Bool

Returns true if the specified IO object is readable (if that can be determined).

source

Base.isopen – Function.

isopen(object) -> Bool

Determinewhether an object - such as a stream, timer, ormmap – is not yet closed. Once an object is closed, it will

never produce a new event. However, a closed streammay still have data to read in its buffer, use eof to check for

the ability to read data. Use poll_fd to be notifiedwhen a streammight be writable or readable.

source

Base.Serializer.serialize – Function.

serialize(stream, value)

Write an arbitrary value to a stream in anopaque format, such that it canbe readbackbydeserialize. The read-

back value will be as identical as possible to the original. In general, this process will not work if the reading and

writing are done by different versions of Julia, or an instance of Juliawith a different system image. Ptr values are

serialized as all-zero bit patterns (NULL).

source

Base.Serializer.deserialize – Function.

deserialize(stream)

Read a value written by serialize. deserialize assumes the binary data read from stream is correct and has

been serialized by a compatible implementation of serialize. It has been designed with simplicity and perfor-

mance as a goal and does not validate the data read. Malformed data can result in process termination. The caller

has to ensure the integrity and correctness of data read from stream.

source

Base.Grisu.print_shortest – Function.

print_shortest(io, x)

Print the shortest possible representation, with theminimumnumber of consecutive non-zero digits, of numberx,

ensuring that it would parse to the exact same number.

source

Base.fd – Function.

fd(stream)

Returns the file descriptor backing the stream or file. Note that this function only applies to synchronous File's

and IOStream's not to any of the asynchronous streams.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L43-L47
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L36-L40
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L12-L19
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L990-L998
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1997-L2005
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L572-L577
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L420-L425

800 CHAPTER 55. I/O ANDNETWORK

Base.redirect_stdout – Function.

redirect_stdout([stream]) -> (rd, wr)

Create a pipe towhich all C and Julia levelSTDOUToutputwill be redirected. Returns a tuple(rd, wr) represent-

ing the pipe ends. Data written to STDOUTmay now be read from the rd end of the pipe. The wr end is given for

convenience in case the old STDOUT object was cached by the user and needs to be replaced elsewhere.

Note

streammust be a TTY, a Pipe, or a TCPSocket.

source

Base.redirect_stdout –Method.

redirect_stdout(f::Function, stream)

Run the function fwhile redirecting STDOUT to stream. Upon completion, STDOUT is restored to its prior setting.

Note

streammust be a TTY, a Pipe, or a TCPSocket.

source

Base.redirect_stderr – Function.

redirect_stderr([stream]) -> (rd, wr)

Like redirect_stdout, but for STDERR.

Note

streammust be a TTY, a Pipe, or a TCPSocket.

source

Base.redirect_stderr –Method.

redirect_stderr(f::Function, stream)

Run the function fwhile redirecting STDERR to stream. Upon completion, STDERR is restored to its prior setting.

Note

streammust be a TTY, a Pipe, or a TCPSocket.

source

Base.redirect_stdin – Function.

redirect_stdin([stream]) -> (rd, wr)

Like redirect_stdout, but for STDIN. Note that the order of the return tuple is still (rd, wr), i.e. data to be

read from STDINmay bewritten to wr.

Note

streammust be a TTY, a Pipe, or a TCPSocket.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stream.jl#L1042-L1055
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stream.jl#L1094-L1102
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stream.jl#L1058-L1065
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stream.jl#L1105-L1113

55.1. GENERAL I/O 801

source

Base.redirect_stdin –Method.

redirect_stdin(f::Function, stream)

Run the function fwhile redirecting STDIN to stream. Upon completion, STDIN is restored to its prior setting.

Note

streammust be a TTY, a Pipe, or a TCPSocket.

source

Base.readchomp – Function.

readchomp(x)

Read the entirety of x as a string and remove a single trailing newline. Equivalent to chomp!(readstring(x)).

source

Base.truncate – Function.

truncate(file,n)

Resize the file or buffer given by the first argument to exactly n bytes, filling previously unallocated spacewith '\0'

if the file or buffer is grown.

source

Base.skipchars – Function.

skipchars(stream, predicate; linecomment::Char)

Advancethestreamuntilbefore thefirstcharacter forwhichpredicate returnsfalse. Forexampleskipchars(stream,

isspace)will skip allwhitespace. If keywordargumentlinecomment is specified, characters fromthat character

through the end of a line will also be skipped.

source

Base.DataFmt.countlines – Function.

countlines(io::IO, eol::Char='\n')

Readiountil the endof the stream/file and count the number of lines. To specify a file pass the filenameas the first

argument. EOLmarkers other than '\n' are supported by passing them as the second argument.

source

Base.PipeBuffer – Function.

PipeBuffer(data::Vector{UInt8}=UInt8[],[maxsize::Int=typemax(Int)])

An IOBuffer that allows reading and performs writes by appending. Seeking and truncating are not supported.

See IOBuffer for the available constructors. If data is given, creates a PipeBuffer to operate on a data vector,

optionally specifying a size beyondwhich the underlying Arraymay not be grown.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stream.jl#L1068-L1077
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stream.jl#L1116-L1124
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L485-L490
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L615-L620
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2494-L2501
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/datafmt.jl#L20-L26
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iobuffer.jl#L67-L75

802 CHAPTER 55. I/O ANDNETWORK

Base.readavailable – Function.

readavailable(stream)

Readall availabledataonthestream,blockingthetaskonly ifnodata isavailable. Theresult isaVector{UInt8,1}.

source

Base.IOContext – Type.

IOContext

IOContext provides amechanism for passing output configuration settings among showmethods.

In short, it is an immutable dictionary that is a subclass of IO. It supports standard dictionary operations such as

getindex, and can also be used as an I/O stream.

source

Base.IOContext –Method.

IOContext(io::IO, KV::Pair)

Create an IOContext that wraps a given stream, adding the specified key=>value pair to the properties of that

stream (note that io can itself be an IOContext).

• use (key => value) in dict to see if this particular combination is in the properties set

• use get(dict, key, default) to retrieve themost recent value for a particular key

The following properties are in common use:

• :compact: Boolean specifying that small values shouldbeprintedmore compactly, e.g. that numbers should

be printed with fewer digits. This is set when printing array elements.

• :limit: Boolean specifying that containers should be truncated, e.g. showing … in place of most elements.

• :displaysize: A Tuple{Int,Int} giving the size in rows and columns to use for text output. This can be

used to override the display size for called functions, but to get the size of the screen use the displaysize

function.

julia> function f(io::IO)

if get(io, :short, false)

print(io, "short")

else

print(io, "loooooong")

end

end

f (generic function with 1 method)

julia> f(STDOUT)

loooooong

julia> f(IOContext(STDOUT, :short => true))

short

source

Base.IOContext –Method.

IOContext(io::IO, context::IOContext)

Create an IOContext that wraps an alternate IO but inherits the properties of context.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2138-L2143
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/show.jl#L5-L12
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/show.jl#L54-L89
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/show.jl#L47-L51

55.2. TEXT I/O 803

55.2 Text I/O

Base.show –Method.

show(x)

Write an informative text representation of a value to the current output stream. New types should overload

show(io, x) where the first argument is a stream. The representation used by show generally includes Julia-

specific formatting and type information.

source

Base.showcompact – Function.

showcompact(x)

Show a compact representation of a value.

This is used for printing array elements without repeating type information (which would be redundant with that

printed once for the whole array), and without line breaks inside the representation of an element.

Toofferacompact representationdifferent fromits standardone, acustomtypeshould testget(io, :compact,

false) in its normal showmethod.

source

Base.showall – Function.

showall(x)

Similar to show, except shows all elements of arrays.

source

Base.summary – Function.

summary(x)

Return a string giving a brief description of a value. By default returns string(typeof(x)), e.g. Int64.

For arrays, returns a string of size and type info, e.g. 10-element Array{Int64,1}.

julia> summary(1)

"Int64"

julia> summary(zeros(2))

"2-element Array{Float64,1}"

source

Base.print – Function.

print(io::IO, x)

Write to io (or to the default output stream STDOUT if io is not given) a canonical (un-decorated) text representa-

tion of a value if there is one, otherwise call show. The representation used by print includesminimal formatting

and tries to avoid Julia-specific details.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1853-L1859
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L822-L833
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2095-L2099
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/show.jl#L1544-L1560

804 CHAPTER 55. I/O ANDNETWORK

julia> print("Hello World!")

Hello World!

julia> io = IOBuffer();

julia> print(io, "Hello World!")

julia> String(take!(io))

"Hello World!"

source

Base.println – Function.

println(io::IO, xs...)

Print (using print) xs followed by a newline. If io is not supplied, prints to STDOUT.

source

Base.print_with_color – Function.

print_with_color(color::Union{Symbol, Int}, [io], xs...; bold::Bool = false)

Print xs in a color specified as a symbol.

colormay take any of the values :normal, :default, :bold, :black, :blue, :cyan, :green, :light_black,

:light_blue, :light_cyan, :light_green, :light_magenta, :light_red, :light_yellow, :magenta,

:nothing, :red, :white, or :yellow or an integer between 0 and 255 inclusive. Note that not all terminals sup-

port 256 colors. If the keyword bold is given as true, the result will be printed in bold.

source

Base.info – Function.

info([io,] msg..., [prefix="INFO: "])

Displayan informationalmessage. Argumentmsg is astringdescribingthe informationtobedisplayed. Theprefix

keyword argument can be used to override the default prepending of msg.

julia> info("hello world")

INFO: hello world

julia> info("hello world"; prefix="MY INFO: ")

MY INFO: hello world

See also logging.

source

Base.warn – Function.

warn([io,] msg..., [prefix="WARNING: ", once=false, key=nothing, bt=nothing, filename=

nothing, lineno::Int=0])

Display awarning. Argument msg is a string describing thewarning to be displayed. Set once to true and specify a

key to only display msg the first time warn is called. If bt is not nothing a backtrace is displayed. If filename is

not nothing both it and lineno are displayed.

See also logging.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/io.jl#L6-L25
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/io.jl#L48-L53
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/util.jl#L408-L416
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/util.jl#L508-L525
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/util.jl#L543-L552

55.2. TEXT I/O 805

warn(msg)

Display a warning. Argument msg is a string describing the warning to be displayed.

julia> warn("Beep Beep")

WARNING: Beep Beep

source

Base.logging – Function.

logging(io [, m [, f]][; kind=:all])

logging([; kind=:all])

Stream output of informational, warning, and/or error messages to io, overriding what was otherwise specified.

Optionally, divert stream only for module m, or specifically function f within m. kind can be :all (the default),

:info, :warn, or :error. See Base.log_{info,warn,error}_to for the current set of redirections. Call

loggingwith no arguments (or just the kind) to reset everything.

source

Base.Printf.@printf –Macro.

@printf([io::IOStream], "%Fmt", args...)

PrintargsusingCprintf() style format specification string, with some caveats: Inf andNaN are printed consis-

tently as Inf and NaN for flags %a, %A, %e, %E, %f, %F, %g, and %G. Furthermore, if a floating point number is equally

close to the numeric values of two possible output strings, the output string further away from zero is chosen.

Optionally, an IOStreammay be passed as the first argument to redirect output.

Examples

julia> @printf("%f %F %f %F\n", Inf, Inf, NaN, NaN)

Inf Inf NaN NaN

julia> @printf "%.0f %.1f %f\n" 0.5 0.025 -0.0078125

1 0.0 -0.007813

source

Base.Printf.@sprintf –Macro.

@sprintf("%Fmt", args...)

Return @printf formatted output as string.

Examples

julia> s = @sprintf "this is a %s %15.1f" "test" 34.567;

julia> println(s)

this is a test 34.6

source

Base.sprint – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/util.jl#L579-L588
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/util.jl#L482-L492
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/printf.jl#L1196-L1218
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/printf.jl#L1229-L1242

806 CHAPTER 55. I/O ANDNETWORK

sprint(f::Function, args...)

Call the given functionwith an I/O streamand the supplied extra arguments. Everythingwritten to this I/O stream

is returned as a string.

julia> sprint(showcompact, 66.66666)

"66.6667"

source

Base.showerror – Function.

showerror(io, e)

Show a descriptive representation of an exception object.

source

Base.dump – Function.

dump(x)

Show every part of the representation of a value.

source

Base.readstring – Function.

readstring(stream::IO)

readstring(filename::AbstractString)

Read the entire contents of an I/O stream or a file as a string. The text is assumed to be encoded in UTF-8.

source

Base.readline – Function.

readline(stream::IO=STDIN; chomp::Bool=true)

readline(filename::AbstractString; chomp::Bool=true)

Read a single line of text from the given I/O stream or file (defaults to STDIN). When reading from a file, the text is

assumed to be encoded inUTF-8. Lines in the input endwith '\n' or "\r\n" or the end of an input stream. When

chomp is true (as it is by default), these trailing newline characters are removed from the line before it is returned.

When chomp is false, they are returned as part of the line.

source

Base.readuntil – Function.

readuntil(stream::IO, delim)

readuntil(filename::AbstractString, delim)

Read a string from an I/O stream or a file, up to and including the given delimiter byte. The text is assumed to be

encoded in UTF-8.

source

Base.readlines – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/strings/io.jl#L71-L81
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1754-L1758
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L530-L534
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L533-L539
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L172-L182
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L163-L169

55.2. TEXT I/O 807

readlines(stream::IO=STDIN; chomp::Bool=true)

readlines(filename::AbstractString; chomp::Bool=true)

Read all lines of an I/O stream or a file as a vector of strings. Behavior is equivalent to saving the result of reading

readline repeatedly with the same arguments and saving the resulting lines as a vector of strings.

source

Base.eachline – Function.

eachline(stream::IO=STDIN; chomp::Bool=true)

eachline(filename::AbstractString; chomp::Bool=true)

Createan iterableEachLineobject thatwill yieldeach line froman I/Ostreamorafile. Iterationcallsreadlineon

the stream argument repeatedly with chomp passed through, determiningwhether trailing end-of-line characters

are removed. When called with a file name, the file is opened once at the beginning of iteration and closed at the

end. If iteration is interrupted, the file will be closedwhen the EachLine object is garbage collected.

source

Base.DataFmt.readdlm –Method.

readdlm(source, delim::Char, T::Type, eol::Char; header=false, skipstart=0, skipblanks=true,

use_mmap, quotes=true, dims, comments=true, comment_char='#')

Read a matrix from the source where each line (separated by eol) gives one row, with elements separated by the

given delimiter. The source can be a text file, stream or byte array. Memory mapped files can be used by passing

the byte array representation of themapped segment as source.

If T is a numeric type, the result is an array of that type, with any non-numeric elements as NaN for floating-point

types, or zero. Other useful values of T include String, AbstractString, and Any.

If header is true, the first row of data will be read as header and the tuple (data_cells, header_cells) is

returned instead of only data_cells.

Specifying skipstartwill ignore the corresponding number of initial lines from the input.

If skipblanks is true, blank lines in the input will be ignored.

Ifuse_mmap istrue, thefile specifiedbysource ismemorymapped forpotential speedups. Default istrueexcept

onWindows. OnWindows, you may want to specify true if the file is large, and is only read once and not written

to.

If quotes is true, columns enclosed within double-quote (") characters are allowed to contain new lines and col-

umndelimiters. Double-quote characterswithin a quoted fieldmust be escapedwith another double-quote. Spec-

ifying dims as a tuple of the expected rows and columns (including header, if any) may speed up reading of large

files. If comments is true, lines beginning with comment_char and text following comment_char in any line are

ignored.

source

Base.DataFmt.readdlm –Method.

readdlm(source, delim::Char, eol::Char; options...)

If all data is numeric, the result will be a numeric array. If some elements cannot be parsed as numbers, a heteroge-

neous array of numbers and strings is returned.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L201-L208
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L554-L564
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/datafmt.jl#L84-L113
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/datafmt.jl#L75-L80

808 CHAPTER 55. I/O ANDNETWORK

Base.DataFmt.readdlm –Method.

readdlm(source, delim::Char, T::Type; options...)

The end of line delimiter is taken as \n.

source

Base.DataFmt.readdlm –Method.

readdlm(source, delim::Char; options...)

The end of line delimiter is taken as \n. If all data is numeric, the result will be a numeric array. If some elements

cannot be parsed as numbers, a heterogeneous array of numbers and strings is returned.

source

Base.DataFmt.readdlm –Method.

readdlm(source, T::Type; options...)

The columns are assumed to be separated by one ormore whitespaces. The end of line delimiter is taken as \n.

source

Base.DataFmt.readdlm –Method.

readdlm(source; options...)

Thecolumnsareassumed tobe separatedbyoneormorewhitespaces. Theendof linedelimiter is takenas\n. If all

data is numeric, the resultwill be a numeric array. If someelements cannot beparsed as numbers, a heterogeneous

array of numbers and strings is returned.

source

Base.DataFmt.writedlm – Function.

writedlm(f, A, delim='\t'; opts)

Write A (a vector, matrix, or an iterable collection of iterable rows) as text to f (either a filename string or an IO

stream) using the given delimiter delim (which defaults to tab, but can be any printable Julia object, typically a

Char or AbstractString).

For example, two vectors x and y of the same length can be written as two columns of tab-delimited text to f by

either writedlm(f, [x y]) or by writedlm(f, zip(x, y)).

source

Base.DataFmt.readcsv – Function.

readcsv(source, [T::Type]; options...)

Equivalent to readdlmwith delim set to comma, and type optionally defined by T.

source

Base.DataFmt.writecsv – Function.

writecsv(filename, A; opts)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/datafmt.jl#L49-L53
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/datafmt.jl#L66-L72
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/datafmt.jl#L41-L46
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/datafmt.jl#L56-L63
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/datafmt.jl#L687-L697
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1768-L1772

55.2. TEXT I/O 809

Equivalent to writedlmwith delim set to comma.

source

Base.Base64.Base64EncodePipe – Type.

Base64EncodePipe(ostream)

Returns anewwrite-only I/Ostream,which converts anybyteswritten to it intobase64-encodedASCII byteswrit-

tentoostream. CallingcloseontheBase64EncodePipestreamisnecessary tocomplete theencoding (butdoes

not close ostream).

julia> io = IOBuffer();

julia> iob64_encode = Base64EncodePipe(io);

julia> write(iob64_encode, "Hello!")

6

julia> close(iob64_encode);

julia> str = String(take!(io))

"SGVsbG8h"

julia> String(base64decode(str))

"Hello!"

source

Base.Base64.Base64DecodePipe – Type.

Base64DecodePipe(istream)

Returns a new read-only I/O stream, which decodes base64-encoded data read from istream.

julia> io = IOBuffer();

julia> iob64_decode = Base64DecodePipe(io);

julia> write(io, "SGVsbG8h")

8

julia> seekstart(io);

julia> String(read(iob64_decode))

"Hello!"

source

Base.Base64.base64encode – Function.

base64encode(writefunc, args...)

base64encode(args...)

Givenawrite-like functionwritefunc,whichtakesan I/Ostreamas itsfirstargument,base64encode(writefunc,

args...) callswritefunc towriteargs... toabase64-encodedstring, andreturns thestring. base64encode(args...)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/datafmt.jl#L700-L704
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/base64.jl#L17-L41
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/base64.jl#L205-L223

810 CHAPTER 55. I/O ANDNETWORK

isequivalent tobase64encode(write, args...): it converts itsarguments intobytesusingthestandardwrite

functions and returns the base64-encoded string.

See also base64decode.

source

Base.Base64.base64decode – Function.

base64decode(string)

Decodes the base64-encoded string and returns a Vector{UInt8} of the decoded bytes.

See also base64encode

julia> b = base64decode("SGVsbG8h")

6-element Array{UInt8,1}:

0x48

0x65

0x6c

0x6c

0x6f

0x21

julia> String(b)

"Hello!"

source

Base.displaysize – Function.

displaysize(io) -> (lines, columns)

Return the nominal size of the screen that may be used for rendering output to this io object

source

55.3 Multimedia I/O

Just as text output is performedbyprintanduser-defined types can indicate their textual representationbyoverload-

ing show, Julia provides a standardizedmechanism for richmultimedia output (such as images, formatted text, or even

audio and video), consisting of three parts:

• A function display(x) to request the richest available multimedia display of a Julia object x (with a plain-text

fallback).

• Overloading show allows one to indicate arbitrarymultimedia representations (keyed by standardMIME types)

of user-defined types.

• Multimedia-capable display backends may be registered by subclassing a generic Display type and pushing

them onto a stack of display backends via pushdisplay.

The base Julia runtime provides only plain-text display, but richer displaysmay be enabled by loading externalmodules

or by using graphical Julia environments (such as the IPython-based IJulia notebook).

Base.Multimedia.display – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/base64.jl#L182-L193
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/base64.jl#L257-L277
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stream.jl#L351-L353

55.3. MULTIMEDIA I/O 811

display(x)

display(d::Display, x)

display(mime, x)

display(d::Display, mime, x)

Displayxusing the topmost applicabledisplay in thedisplay stack, typically using the richest supportedmultimedia

output forx, withplain-textSTDOUToutput as a fallback. Thedisplay(d, x)variant attempts todisplayxon the

given display d only, throwing a MethodError if d cannot display objects of this type.

There are also two variants with a mime argument (a MIME type string, such as "image/png"), which attempt to

display x using the requestedMIME type only, throwing a MethodError if this type is not supported by either the

display(s) or by x. With these variants, one can also supply the "raw" data in the requestedMIME type by passing

x::AbstractString (for MIME types with text-based storage, such as text/html or application/postscript) or

x::Vector{UInt8} (for binaryMIME types).

source

Base.Multimedia.redisplay – Function.

redisplay(x)

redisplay(d::Display, x)

redisplay(mime, x)

redisplay(d::Display, mime, x)

Bydefault, theredisplay functionssimplycalldisplay. However, somedisplaybackendsmayoverrideredisplay

tomodify an existing display of x (if any). Using redisplay is also a hint to the backend that xmay be redisplayed

several times, and the backendmay choose to defer the display until (for example) the next interactive prompt.

source

Base.Multimedia.displayable – Function.

displayable(mime) -> Bool

displayable(d::Display, mime) -> Bool

Returns a boolean value indicatingwhether the given mime type (string) is displayable by any of the displays in the

current display stack, or specifically by the display d in the second variant.

source

Base.show –Method.

show(stream, mime, x)

Thedisplay functionsultimately callshow in order towrite anobjectxas agivenmime type toagiven I/Ostream

(usually a memory buffer), if possible. In order to provide a rich multimedia representation of a user-defined type

T, it is only necessary to define a new showmethod for T, via: show(stream, ::MIME"mime", x::T) = ...,

where mime is aMIME-type string and the function body calls write (or similar) to write that representation of x

to stream. (Note that the MIME"" notation only supports literal strings; to construct MIME types in amore flexible

manner use MIME{Symbol("")}.)

For example, if you define a MyImage type and know how to write it to a PNG file, you could define a function

show(stream, ::MIME"image/png", x::MyImage) = ... toallowyour imagestobedisplayedonanyPNG-

capable Display (such as IJulia). As usual, be sure to import Base.show in order to add new methods to the

built-in Julia function show.

The default MIME type is MIME"text/plain". There is a fallback definition for text/plain output that calls

show with 2 arguments. Therefore, this case should be handled by defining a 2-argument show(stream::IO,

x::MyType)method.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L544-L561
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L480-L492
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multimedia.jl#L128-L135

812 CHAPTER 55. I/O ANDNETWORK

Technically, the MIME"mime"macro defines a singleton type for the given mime string, which allows us to exploit

Julia's dispatchmechanisms in determining how to display objects of any given type.

The first argument toshow can be anIOContext specifying output format properties. SeeIOContext for details.

source

Base.Multimedia.mimewritable – Function.

mimewritable(mime, x)

Returns a boolean value indicating whether or not the object x can bewritten as the given mime type. (By default,

this is determined automatically by the existence of the corresponding showmethod for typeof(x).)

source

Base.Multimedia.reprmime – Function.

reprmime(mime, x)

Returns an AbstractString or Vector{UInt8} containing the representation of x in the requested mime type,

as written by show (throwing a MethodError if no appropriate show is available). An AbstractString is re-

turned for MIME types with textual representations (such as "text/html" or "application/postscript"),

whereas binary data is returned as Vector{UInt8}. (The function istextmime(mime) returns whether or not

Julia treats a given mime type as text.)

As a special case, if x is an AbstractString (for textual MIME types) or a Vector{UInt8} (for binary MIME

types), the reprmime function assumes that x is already in the requested mime format and simply returns x. This

special case does not apply to the "text/plain"MIME type. This is useful so that raw data can be passed to

display(m::MIME, x).

source

Base.Multimedia.stringmime – Function.

stringmime(mime, x)

Returns an AbstractString containing the representation of x in the requested mime type. This is similar to

reprmime except that binary data is base64-encoded as an ASCII string.

source

As mentioned above, one can also define new display backends. For example, a module that can display PNG images

in a window can register this capability with Julia, so that calling display(x) on types with PNG representations will

automatically display the image using themodule's window.

In order to define a new display backend, one should first create a subtype D of the abstract class Display. Then, for

eachMIMEtype (mimestring) thatcanbedisplayedonD, oneshoulddefinea functiondisplay(d::D, ::MIME"mime",

x) = ... that displays x as that MIME type, usually by calling reprmime(mime, x). A MethodError should be

thrown if x cannot be displayed as thatMIME type; this is automatic if one calls reprmime. Finally, one should define a

functiondisplay(d::D, x) that queriesmimewritable(mime, x) for themime types supported byD and displays

the "best" one; aMethodError should be thrown if no supportedMIME types are found forx. Similarly, some subtypes

may wish to override redisplay(d::D, ...). (Again, one should import Base.display to add new methods to

display.) The return values of these functions are up to the implementation (since in some cases it may be useful to

return a display "handle" of some type). The display functions for D can then be called directly, but they can also be

invoked automatically from display(x) simply by pushing a new display onto the display-backend stack with:

Base.Multimedia.pushdisplay – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1705-L1733
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multimedia.jl#L28-L34
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multimedia.jl#L44-L60
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multimedia.jl#L76-L82

55.4. MEMORY-MAPPED I/O 813

pushdisplay(d::Display)

Pushes a new display d on top of the global display-backend stack. Calling display(x) or display(mime, x)

will display x on the topmost compatible backend in the stack (i.e., the topmost backend that does not throw a

MethodError).

source

Base.Multimedia.popdisplay – Function.

popdisplay()

popdisplay(d::Display)

Pop the topmost backend off of the display-backend stack, or the topmost copy of d in the second variant.

source

Base.Multimedia.TextDisplay – Type.

TextDisplay(io::IO)

Returns aTextDisplay <: Display, which displays anyobject as the text/plainMIME type (by default), writing

the text representation to the given I/O stream. (This is how objects are printed in the Julia REPL.)

source

Base.Multimedia.istextmime – Function.

istextmime(m::MIME)

Determine whether aMIME type is text data. MIME types are assumed to be binary data except for a set of types

known to be text data (possibly Unicode).

source

55.4 Memory-mapped I/O

Base.Mmap.Anonymous – Type.

Mmap.Anonymous(name, readonly, create)

Create an IO-like object for creating zeroed-out mmapped-memory that is not tied to a file for use in Mmap.mmap.

Used by SharedArray for creating sharedmemory arrays.

source

Base.Mmap.mmap –Method.

Mmap.mmap(io::Union{IOStream,AbstractString,Mmap.AnonymousMmap}[, type::Type{Array{T,N}},

dims, offset]; grow::Bool=true, shared::Bool=true)

Mmap.mmap(type::Type{Array{T,N}}, dims)

CreateanArraywhosevalues are linked toafile, usingmemory-mapping. This providesa convenientwayofwork-

ing with data too large to fit in the computer's memory.

The type is an Array{T,N} with a bits-type element of T and dimension N that determines how the bytes of the

array are interpreted. Note that the file must be stored in binary format, and no format conversions are possible

(this is a limitation of operating systems, not Julia).

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1657-L1663
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1064-L1070
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multimedia.jl#L141-L147
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multimedia.jl#L88-L93
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L672-L677

814 CHAPTER 55. I/O ANDNETWORK

dims is a tuple or single Integer specifying the size or length of the array.

The file is passed via the stream argument, either as an open IOStream or filename string. When you initialize the

stream, use "r" for a "read-only" array, and "w+" to create a new array used to write values to disk.

If no type argument is specified, the default is Vector{UInt8}.

Optionally, you can specify an offset (in bytes) if, for example, youwant to skip over a header in the file. The default

value for the offset is the current stream position for an IOStream.

The grow keyword argument specifies whether the disk file should be grown to accommodate the requested size

of array (if the total file size is < requested array size). Write privileges are required to grow the file.

The shared keyword argument specifies whether the resulting Array and changes made to it will be visible to

other processes mapping the same file.

For example, the following code

Create a file for mmapping

(you could alternatively use mmap to do this step, too)

A = rand(1:20, 5, 30)

s = open("/tmp/mmap.bin", "w+")

We'll write the dimensions of the array as the first two Ints in the file

write(s, size(A,1))

write(s, size(A,2))

Now write the data

write(s, A)

close(s)

Test by reading it back in

s = open("/tmp/mmap.bin") # default is read-only

m = read(s, Int)

n = read(s, Int)

A2 = Mmap.mmap(s, Matrix{Int}, (m,n))

creates a m-by-n Matrix{Int}, linked to the file associated with stream s.

A more portable file would need to encode the word size – 32 bit or 64 bit – and endianness information in the

header. In practice, consider encoding binary data using standard formats like HDF5 (which can be used with

memory-mapping).

source

Base.Mmap.mmap –Method.

Mmap.mmap(io, BitArray, [dims, offset])

Create aBitArraywhose values are linked to a file, usingmemory-mapping; it has the samepurpose, works in the

sameway, and has the same arguments, as mmap, but the byte representation is different.

Example: B = Mmap.mmap(s, BitArray, (25,30000))

This would create a 25-by-30000 BitArray, linked to the file associated with stream s.

source

Base.Mmap.sync! – Function.

Mmap.sync!(array)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L240-L297
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L300-L310

55.5. NETWORK I/O 815

Forces synchronizationbetween the in-memoryversionof amemory-mappedArrayorBitArrayand theon-disk

version.

source

55.5 Network I/O

Base.connect –Method.

connect([host], port::Integer) -> TCPSocket

Connect to the host host on port port.

source

Base.connect –Method.

connect(path::AbstractString) -> PipeEndpoint

Connect to the named pipe / UNIX domain socket at path.

source

Base.listen –Method.

listen([addr,]port::Integer; backlog::Integer=BACKLOG_DEFAULT) -> TCPServer

Listenonportontheaddressspecifiedbyaddr. Bydefault this listensonlocalhostonly. To listenonall interfaces

passIPv4(0)orIPv6(0)asappropriate. backlogdetermineshowmanyconnections canbepending (nothaving

called accept) before the server will begin to reject them. The default value of backlog is 511.

source

Base.listen –Method.

listen(path::AbstractString) -> PipeServer

Create and listen on a named pipe / UNIX domain socket.

source

Base.getaddrinfo – Function.

getaddrinfo(host::AbstractString) -> IPAddr

Gets the IP address of the host (may have to do a DNS lookup)

source

Base.getsockname – Function.

getsockname(sock::Union{TCPServer, TCPSocket}) -> (IPAddr, UInt16)

Get the IP address and the port that the givenTCPSocket is connected to (or bound to, in the case ofTCPServer).

source

Base.IPv4 – Type.

IPv4(host::Integer) -> IPv4

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1454-L1459
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/socket.jl#L732-L736
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stream.jl#L990-L994
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/socket.jl#L760-L769
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stream.jl#L961-L965
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/socket.jl#L634-L638
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/socket.jl#L845-L850

816 CHAPTER 55. I/O ANDNETWORK

Returns an IPv4 object from ip address host formatted as an Integer.

julia> IPv4(3223256218)

ip"192.30.252.154"

source

Base.IPv6 – Type.

IPv6(host::Integer) -> IPv6

Returns an IPv6 object from ip address host formatted as an Integer.

julia> IPv6(3223256218)

ip"::c01e:fc9a"

source

Base.nb_available – Function.

nb_available(stream)

Returns the number of bytes available for reading before a read from this stream or buffer will block.

source

Base.accept – Function.

accept(server[,client])

Accepts a connection on the given server and returns a connection to the client. An uninitialized client streammay

be provided, in which case it will be used instead of creating a new stream.

source

Base.listenany – Function.

listenany([host::IPAddr,] port_hint) -> (UInt16, TCPServer)

Create a TCPServer on any port, using hint as a starting point. Returns a tuple of the actual port that the server

was created on and the server itself.

source

Base.Filesystem.poll_fd – Function.

poll_fd(fd, timeout_s::Real=-1; readable=false, writable=false)

Monitor a file descriptor fd for changes in the read or write availability, and with a timeout given by timeout_s

seconds.

The keyword arguments determine which of read and/or write status should be monitored; at least one of them

must be set to true.

The returned value is an object with boolean fields readable, writable, and timedout, giving the result of the

polling.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/socket.jl#L24-L33
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/socket.jl#L76-L85
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L130-L134
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L663-L669
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/socket.jl#L818-L823
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/poll.jl#L434-L445

55.5. NETWORK I/O 817

Base.Filesystem.poll_file – Function.

poll_file(path::AbstractString, interval_s::Real=5.007, timeout_s::Real=-1) -> (previous::

StatStruct, current::StatStruct)

Monitor afile for changesbypolling everyinterval_s secondsuntil a changeoccurs ortimeout_s secondshave

elapsed. The interval_s should be a long period; the default is 5.007 seconds.

Returns a pair of StatStruct objects (previous, current)when a change is detected.

To determine when a file was modified, compare mtime(prev) != mtime(current) to detect notification of

changes. However, using watch_file for this operation is preferred, since it is more reliable and efficient, al-

though in some situations it may not be available.

source

Base.Filesystem.watch_file – Function.

watch_file(path::AbstractString, timeout_s::Real=-1)

Watch file or directory path for changes until a change occurs or timeout_s seconds have elapsed.

Thereturnedvalue isanobjectwithbooleanfieldschanged,renamed, andtimedout, giving theresultofwatching

the file.

This behavior of this function varies slightly across platforms. See https://nodejs.org/api/fs.html#fs_caveats for

more detailed information.

source

Base.bind – Function.

bind(socket::Union{UDPSocket, TCPSocket}, host::IPAddr, port::Integer; ipv6only=false,

reuseaddr=false, kws...)

Bind socket to the given host:port. Note that 0.0.0.0will listen on all devices.

• The ipv6only parameter disables dual stackmode. If ipv6only=true, only an IPv6 stack is created.

• If reuseaddr=true, multiple threads or processes can bind to the same addresswithout error if they all set

reuseaddr=true, but only the last to bind will receive any traffic.

source

bind(chnl::Channel, task::Task)

Associates the lifetime of chnlwith a task. Channel chnl is automatically closed when the task terminates. Any

uncaught exception in the task is propagated to all waiters on chnl.

The chnl object can be explicitly closed independent of task termination. Terminating tasks have no effect on

already closed Channel objects.

When a channel is bound to multiple tasks, the first task to terminate will close the channel. Whenmultiple chan-

nels are bound to the same task, termination of the task will close all of the bound channels.

julia> c = Channel(0);

julia> task = @schedule foreach(i->put!(c, i), 1:4);

julia> bind(c,task);

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/poll.jl#L514-L526
https://nodejs.org/api/fs.html#fs_caveats
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/poll.jl#L474-L485
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/socket.jl#L415-L423

818 CHAPTER 55. I/O ANDNETWORK

julia> for i in c

@show i

end;

i = 1

i = 2

i = 3

i = 4

julia> isopen(c)

false

julia> c = Channel(0);

julia> task = @schedule (put!(c,1);error("foo"));

julia> bind(c,task);

julia> take!(c)

1

julia> put!(c,1);

ERROR: foo

Stacktrace:

[1] check_channel_state(::Channel{Any}) at ./channels.jl:131

[2] put!(::Channel{Any}, ::Int64) at ./channels.jl:261

source

Base.send – Function.

send(socket::UDPSocket, host, port::Integer, msg)

Send msg over socket to host:port.

source

Base.recv – Function.

recv(socket::UDPSocket)

Read a UDP packet from the specified socket, and return the bytes received. This call blocks.

source

Base.recvfrom – Function.

recvfrom(socket::UDPSocket) -> (address, data)

Read a UDP packet from the specified socket, returning a tuple of (address, data), where address will be

either IPv4 or IPv6 as appropriate.

source

Base.setopt – Function.

setopt(sock::UDPSocket; multicast_loop = nothing, multicast_ttl=nothing, enable_broadcast=

nothing, ttl=nothing)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/channels.jl#L151-L200
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/socket.jl#L551-L555
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/socket.jl#L480-L484
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/socket.jl#L490-L495

55.5. NETWORK I/O 819

Set UDP socket options.

• multicast_loop: loopback for multicast packets (default: true).

• multicast_ttl: TTL for multicast packets (default: nothing).

• enable_broadcast: flagmust be set totrue if socketwill be used for broadcastmessages, or else theUDP

systemwill return an access error (default: false).

• ttl: Time-to-live of packets sent on the socket (default: nothing).

source

Base.ntoh – Function.

ntoh(x)

Converts the endianness of a value fromNetwork byte order (big-endian) to that used by the Host.

source

Base.hton – Function.

hton(x)

Converts the endianness of a value from that used by the Host to Network byte order (big-endian).

source

Base.ltoh – Function.

ltoh(x)

Converts the endianness of a value from Little-endian to that used by the Host.

source

Base.htol – Function.

htol(x)

Converts the endianness of a value from that used by the Host to Little-endian.

source

Base.ENDIAN_BOM – Constant.

ENDIAN_BOM

The 32-bit byte-order-mark indicates the native byte order of the host machine. Little-endian machines will con-

tain the value 0x04030201. Big-endianmachines will contain the value 0x01020304.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/socket.jl#L451-L461
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L246-L250
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L253-L257
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L260-L264
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L267-L271
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/io.jl#L237-L243

Chapter 56

Punctuation

Extended documentation for mathematical symbols & functions is here.

821

822 CHAPTER 56. PUNCTUATION

symbol meaning

@m invokemacro m; followed by space-separated expressions

! prefix "not" operator

a!() at the end of a function name, ! indicates that a functionmodifies its argument(s)

begin single line comment

#= beginmulti-line comment (these are nestable)

=# endmulti-line comment

$ string and expression interpolation

% remainder operator

^ exponent operator

& bitwise and

&& short-circuiting boolean and

| bitwise or

|| short-circuiting boolean or

bitwise xor operator

* multiply, or matrix multiply

() the empty tuple

~ bitwise not operator

\ backslash operator

' complex transpose operator A

a[] array indexing

[,] vertical concatenation

[;] also vertical concatenation

[] with space-separated expressions, horizontal concatenation

T{ } parametric type instantiation

; statement separator

, separate function arguments or tuple components

? 3-argument conditional operator (conditional ? if_true : if_false)

"" delimit string literals

'' delimit character literals

` ` delimit external process (command) specifications

... splice arguments into a function call or declare a varargs function or type

. access named fields in objects/modules, also prefixes elementwise operator/function calls

a:b range a, a+1, a+2, ..., b

a:s:b range a, a+s, a+2s, ..., b

: index an entire dimension (1:end)

:: type annotation, depending on context

:() quoted expression

:a symbol a

<: subtype operator

>: supertype operator (reverse of subtype operator)

=== egal comparison operator

Chapter 57

Sorting and Related Functions

Julia has an extensive, flexible API for sorting and interacting with already-sorted arrays of values. By default, Julia

picks reasonable algorithms and sorts in standard ascending order:

julia> sort([2,3,1])

3-element Array{Int64,1}:

1

2

3

You can easily sort in reverse order as well:

julia> sort([2,3,1], rev=true)

3-element Array{Int64,1}:

3

2

1

To sort an array in-place, use the "bang" version of the sort function:

julia> a = [2,3,1];

julia> sort!(a);

julia> a

3-element Array{Int64,1}:

1

2

3

Instead of directly sorting an array, you can compute a permutation of the array's indices that puts the array into sorted

order:

julia> v = randn(5)

5-element Array{Float64,1}:

0.297288

0.382396

-0.597634

823

824 CHAPTER 57. SORTING AND RELATED FUNCTIONS

-0.0104452

-0.839027

julia> p = sortperm(v)

5-element Array{Int64,1}:

5

3

4

1

2

julia> v[p]

5-element Array{Float64,1}:

-0.839027

-0.597634

-0.0104452

0.297288

0.382396

Arrays can easily be sorted according to an arbitrary transformation of their values:

julia> sort(v, by=abs)

5-element Array{Float64,1}:

-0.0104452

0.297288

0.382396

-0.597634

-0.839027

Or in reverse order by a transformation:

julia> sort(v, by=abs, rev=true)

5-element Array{Float64,1}:

-0.839027

-0.597634

0.382396

0.297288

-0.0104452

If needed, the sorting algorithm can be chosen:

julia> sort(v, alg=InsertionSort)

5-element Array{Float64,1}:

-0.839027

-0.597634

-0.0104452

0.297288

0.382396

All the sorting and order related functions rely on a "less than" relation defining a total order on the values to bemanip-

ulated. The isless function is invoked by default, but the relation can be specified via the lt keyword.

57.1. SORTING FUNCTIONS 825

57.1 Sorting Functions

Base.sort! – Function.

sort!(v; alg::Algorithm=defalg(v), lt=isless, by=identity, rev::Bool=false, order::Ordering=

Forward)

Sort the vector v in place. QuickSort is used by default for numeric arrays while MergeSort is used for other

arrays. You can specify an algorithm to use via the alg keyword (see Sorting Algorithms for available algorithms).

The by keyword lets you provide a function that will be applied to each element before comparison; the lt key-

word allows providing a custom "less than" function; use rev=true to reverse the sorting order. These options

are independent and can be used together in all possible combinations: if both by and lt are specified, the lt

function is applied to the result of the by function; rev=true reverses whatever ordering specified via the by and

lt keywords.

Examples

julia> v = [3, 1, 2]; sort!(v); v

3-element Array{Int64,1}:

1

2

3

julia> v = [3, 1, 2]; sort!(v, rev = true); v

3-element Array{Int64,1}:

3

2

1

julia> v = [(1, "c"), (3, "a"), (2, "b")]; sort!(v, by = x -> x[1]); v

3-element Array{Tuple{Int64,String},1}:

(1, "c")

(2, "b")

(3, "a")

julia> v = [(1, "c"), (3, "a"), (2, "b")]; sort!(v, by = x -> x[2]); v

3-element Array{Tuple{Int64,String},1}:

(3, "a")

(2, "b")

(1, "c")

source

Base.sort – Function.

sort(v; alg::Algorithm=defalg(v), lt=isless, by=identity, rev::Bool=false, order::Ordering=

Forward)

Variant of sort! that returns a sorted copy of v leaving v itself unmodified.

Examples

julia> v = [3, 1, 2];

julia> sort(v)

3-element Array{Int64,1}:

1

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sort.jl#L439-L478

826 CHAPTER 57. SORTING AND RELATED FUNCTIONS

2

3

julia> v

3-element Array{Int64,1}:

3

1

2

source

sort(A, dim::Integer; alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=

false, order::Ordering=Forward, initialized::Bool=false)

Sort a multidimensional array A along the given dimension. See sort! for a description of possible keyword argu-

ments.

Examples

julia> A = [4 3; 1 2]

2×2 Array{Int64,2}:

4 3

1 2

julia> sort(A, 1)

2×2 Array{Int64,2}:

1 2

4 3

julia> sort(A, 2)

2×2 Array{Int64,2}:

3 4

1 2

source

Base.sortperm – Function.

sortperm(v; alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false, order::

Ordering=Forward)

Return a permutation vector of indices of v that puts it in sorted order. Specify alg to choose a particular sorting

algorithm (see Sorting Algorithms). MergeSort is used by default, and since it is stable, the resulting permutation

will be the lexicographically first one that puts the input array into sorted order – i.e. indices of equal elements ap-

pear in ascending order. If you choose a non-stable sorting algorithm such as QuickSort, a different permutation

that puts the array into order may be returned. The order is specified using the same keywords as sort!.

See also sortperm!.

Examples

julia> v = [3, 1, 2];

julia> p = sortperm(v)

3-element Array{Int64,1}:

2

3

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sort.jl#L523-L545
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sort.jl#L696-L721

57.1. SORTING FUNCTIONS 827

1

julia> v[p]

3-element Array{Int64,1}:

1

2

3

source

Base.Sort.sortperm! – Function.

sortperm!(ix, v; alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false,

order::Ordering=Forward, initialized::Bool=false)

Likesortperm, but accepts a preallocated index vectorix. Ifinitialized isfalse (the default),ix is initialized

to contain the values 1:length(v).

Examples

julia> v = [3, 1, 2]; p = zeros(Int, 3);

julia> sortperm!(p, v); p

3-element Array{Int64,1}:

2

3

1

julia> v[p]

3-element Array{Int64,1}:

1

2

3

source

Base.Sort.sortrows – Function.

sortrows(A; alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false, order::

Ordering=Forward)

Sort the rows of matrix A lexicographically. See sort! for a description of possible keyword arguments.

Examples

julia> sortrows([7 3 5; -1 6 4; 9 -2 8])

3×3 Array{Int64,2}:

-1 6 4

7 3 5

9 -2 8

julia> sortrows([7 3 5; -1 6 4; 9 -2 8], lt=(x,y)->isless(x[2],y[2]))

3×3 Array{Int64,2}:

9 -2 8

7 3 5

-1 6 4

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sort.jl#L573-L603
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sort.jl#L630-L653

828 CHAPTER 57. SORTING AND RELATED FUNCTIONS

julia> sortrows([7 3 5; -1 6 4; 9 -2 8], rev=true)

3×3 Array{Int64,2}:

9 -2 8

7 3 5

-1 6 4

source

Base.Sort.sortcols – Function.

sortcols(A; alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false, order::

Ordering=Forward)

Sort the columns of matrix A lexicographically. See sort! for a description of possible keyword arguments.

Examples

julia> sortcols([7 3 5; 6 -1 -4; 9 -2 8])

3×3 Array{Int64,2}:

3 5 7

-1 -4 6

-2 8 9

julia> sortcols([7 3 5; 6 -1 -4; 9 -2 8], alg=InsertionSort, lt=(x,y)->isless(x[2],y[2]))

3×3 Array{Int64,2}:

5 3 7

-4 -1 6

8 -2 9

julia> sortcols([7 3 5; 6 -1 -4; 9 -2 8], rev=true)

3×3 Array{Int64,2}:

7 5 3

6 -4 -1

9 8 -2

source

57.2 Order-Related Functions

Base.issorted – Function.

issorted(v, lt=isless, by=identity, rev:Bool=false, order::Ordering=Forward)

Testwhether a vector is in sortedorder. Thelt,byandrevkeywordsmodifywhatorder is considered tobe sorted

just as they do for sort.

Examples

julia> issorted([1, 2, 3])

true

julia> issorted([(1, "b"), (2, "a")], by = x -> x[1])

true

julia> issorted([(1, "b"), (2, "a")], by = x -> x[2])

false

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sort.jl#L753-L781
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sort.jl#L793-L821

57.2. ORDER-RELATED FUNCTIONS 829

julia> issorted([(1, "b"), (2, "a")], by = x -> x[2], rev=true)

true

source

Base.Sort.searchsorted – Function.

searchsorted(a, x, [by=<transform>,] [lt=<comparison>,] [rev=false])

Returns the rangeof indices ofawhich compare as equal tox (using binary search) according to theorder specified

by the by, lt and rev keywords, assuming that a is already sorted in that order. Returns an empty range located

at the insertion point if a does not contain values equal to x.

Examples

julia> a = [4, 3, 2, 1]

4-element Array{Int64,1}:

4

3

2

1

julia> searchsorted(a, 4)

5:4

julia> searchsorted(a, 4, rev=true)

1:1

source

Base.Sort.searchsortedfirst – Function.

searchsortedfirst(a, x, [by=<transform>,] [lt=<comparison>,] [rev=false])

Returns the indexof thefirstvalue inagreater thanorequal tox, accordingtothespecifiedorder. Returnslength(a)+1

if x is greater than all values in a. a is assumed to be sorted.

Examples

julia> searchsortedfirst([1, 2, 4, 5, 14], 4)

3

julia> searchsortedfirst([1, 2, 4, 5, 14], 4, rev=true)

1

julia> searchsortedfirst([1, 2, 4, 5, 14], 15)

6

source

Base.Sort.searchsortedlast – Function.

searchsortedlast(a, x, [by=<transform>,] [lt=<comparison>,] [rev=false])

Returns the index of the last value in a less than or equal to x, according to the specified order. Returns 0 if x is less

than all values in a. a is assumed to be sorted.

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/sort.jl#L60-L80
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L495-L519
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1351-L1370

830 CHAPTER 57. SORTING AND RELATED FUNCTIONS

julia> searchsortedlast([1, 2, 4, 5, 14], 4)

3

julia> searchsortedlast([1, 2, 4, 5, 14], 4, rev=true)

5

julia> searchsortedlast([1, 2, 4, 5, 14], -1)

0

source

Base.Sort.select! – Function.

select!(v, k, [by=<transform>,] [lt=<comparison>,] [rev=false])

Partially sort the vectorv in place, according to theorder specifiedbyby,lt andrev so that the value at indexk (or

range of adjacent values if k is a range) occurs at the position where it would appear if the array were fully sorted

via a non-stable algorithm. If k is a single index, that value is returned; if k is a range, an array of values at those

indices is returned. Note that select! does not fully sort the input array.

Examples

julia> a = [1, 2, 4, 3, 4]

5-element Array{Int64,1}:

1

2

4

3

4

julia> select!(a, 4)

4

julia> a

5-element Array{Int64,1}:

1

2

3

4

4

julia> a = [1, 2, 4, 3, 4]

5-element Array{Int64,1}:

1

2

4

3

4

julia> select!(a, 4, rev=true)

2

julia> a

5-element Array{Int64,1}:

4

4

3

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2026-L2045

57.3. SORTING ALGORITHMS 831

2

1

source

Base.Sort.select – Function.

select(v, k, [by=<transform>,] [lt=<comparison>,] [rev=false])

Variant of select! which copies v before partially sorting it, thereby returning the same thing as select! but

leaving v unmodified.

source

Base.Sort.selectperm – Function.

selectperm(v, k, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false])

Returnapartial permutationof thevectorv, according to theorder specifiedbyby,ltandrev, so thatv[output]

returns thefirstk (or rangeof adjacent values ifk is a range) values of a fully sorted versionofv. Ifk is a single index

(Integer), an array of the first k indices is returned; if k is a range, an array of those indices is returned. Note that

the handling of integer values for k is different from select in that it returns a vector of k elements instead of just

the k th element. Also note that this is equivalent to, but more efficient than, calling sortperm(...)[k].

source

Base.Sort.selectperm! – Function.

selectperm!(ix, v, k, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false,] [

initialized=false])

Like selectperm, but accepts a preallocated index vector ix. If initialized is false (the default), ix is initial-

ized to contain the values 1:length(ix).

source

57.3 Sorting Algorithms

There are currently four sorting algorithms available in base Julia:

• InsertionSort

• QuickSort

• PartialQuickSort(k)

• MergeSort

InsertionSort is anO(n^2)stablesortingalgorithm. It isefficient forverysmalln, and isused internallybyQuickSort.

QuickSort is an O(n log n) sorting algorithm which is in-place, very fast, but not stable – i.e. elements which are con-

sidered equal will not remain in the same order in which they originally appeared in the array to be sorted. QuickSort

is the default algorithm for numeric values, including integers and floats.

PartialQuickSort(k) is similar to QuickSort, but the output array is only sorted up to index k if k is an integer, or

in the range of k if k is an OrdinalRange. For example:

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L853-L904
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L655-L660
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1231-L1242
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1396-L1401

832 CHAPTER 57. SORTING AND RELATED FUNCTIONS

x = rand(1:500, 100)

k = 50

k2 = 50:100

s = sort(x; alg=QuickSort)

ps = sort(x; alg=PartialQuickSort(k))

qs = sort(x; alg=PartialQuickSort(k2))

map(issorted, (s, ps, qs)) # => (true, false, false)

map(x->issorted(x[1:k]), (s, ps, qs)) # => (true, true, false)

map(x->issorted(x[k2]), (s, ps, qs)) # => (true, false, true)

s[1:k] == ps[1:k] # => true

s[k2] == qs[k2] # => true

MergeSort is anO(n log n) stable sorting algorithm but is not in-place – it requires a temporary array of half the size of

the input array – and is typically not quite as fast as QuickSort. It is the default algorithm for non-numeric data.

The default sorting algorithms are chosen on the basis that they are fast and stable, or appear to be so. For numeric

types indeed, QuickSort is selected as it is faster and indistinguishable in this case from a stable sort (unless the array

records its mutations in some way). The stability property comes at a non-negligible cost, so if you don't need it, you

maywant to explicitly specify your preferred algorithm, e.g. sort!(v, alg=QuickSort).

The mechanism by which Julia picks default sorting algorithms is implemented via the Base.Sort.defalg function.

It allows a particular algorithm to be registered as the default in all sorting functions for specific arrays. For example,

here are the two default methods from sort.jl:

defalg(v::AbstractArray) = MergeSort

defalg{T<:Number}(v::AbstractArray{T}) = QuickSort

As for numeric arrays, choosing a non-stable default algorithm for array types for which the notion of a stable sort is

meaningless (i.e. when two values comparing equal can not be distinguished) maymake sense.

https://github.com/JuliaLang/julia/blob/master/base/sort.jl

Chapter 58

PackageManager Functions

All packagemanager functions are defined in the Pkgmodule. None of the Pkgmodule's functions are exported; to use

them, you'll need to prefix each function call with an explicit Pkg., e.g. Pkg.status() or Pkg.dir().

Functions for package development (e.g. tag, publish, etc.) have been moved to the PkgDev package. See PkgDev

README for the documentation of those functions.

Base.Pkg.dir – Function.

dir() -> AbstractString

Returns theabsolutepathof thepackagedirectory. Thisdefaults tojoinpath(homedir(),".julia","v$(VERSION.major).$(VERSION.minor)")

onall platforms (i.e. ~/.julia/v0.6 inUNIXshell syntax). If theJULIA_PKGDIRenvironmentvariable is set, then

thatpath isused in thereturnedvalueasjoinpath(ENV["JULIA_PKGDIR"],"v$(VERSION.major).$(VERSION.minor)").

If JULIA_PKGDIR is a relative path, it is interpreted relative to whatever the current working directory is.

source

dir(names...) -> AbstractString

Equivalent tonormpath(Pkg.dir(),names...) – i.e. it appendspathcomponents to thepackagedirectoryand

normalizes the resulting path. In particular, Pkg.dir(pkg) returns the path to the package pkg.

source

Base.Pkg.init – Function.

init(meta::AbstractString=DEFAULT_META, branch::AbstractString=META_BRANCH)

Initialize Pkg.dir() as a package directory. This will be done automatically when the JULIA_PKGDIR is not set

and Pkg.dir() uses its default value. As part of this process, clones a local METADATA git repository from the

site and branch specified by its arguments, which are typically not provided. Explicit (non-default) arguments can

be used to support a customMETADATA setup.

source

Base.Pkg.resolve – Function.

resolve()

Determines an optimal, consistent set of package versions to install or upgrade to. The optimal set of package

versions is based on the contents of Pkg.dir("REQUIRE") and the state of installed packages in Pkg.dir(),

Packages that are no longer required aremoved into Pkg.dir(".trash").

source

833

https://github.com/JuliaLang/PkgDev.jl
https://github.com/JuliaLang/PkgDev.jl/blob/master/README.md
https://github.com/JuliaLang/PkgDev.jl/blob/master/README.md
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L55-L64
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L67-L73
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L76-L84
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L230-L237

834 CHAPTER 58. PACKAGEMANAGER FUNCTIONS

Base.Pkg.edit – Function.

edit()

Opens Pkg.dir("REQUIRE") in the editor specified by the VISUAL or EDITOR environment variables; when the

editor command returns, it runs Pkg.resolve() to determine and install a new optimal set of installed package

versions.

source

Base.Pkg.add – Function.

add(pkg, vers...)

Adda requirement entry forpkg toPkg.dir("REQUIRE") and callPkg.resolve(). Ifvers are given, theymust

be VersionNumber objects and they specify acceptable version intervals for pkg.

source

Base.Pkg.rm – Function.

rm(pkg)

Remove all requirement entries for pkg from Pkg.dir("REQUIRE") and call Pkg.resolve().

source

Base.Pkg.clone – Function.

clone(pkg)

Ifpkg has aURL registered inPkg.dir("METADATA"), clone it from thatURL on the default branch. The package

does not need to have any registered versions.

source

clone(url, [pkg])

Cloneapackagedirectly fromthegitURLurl. Thepackagedoesnotneedtoberegistered inPkg.dir("METADATA").

Thepackage repo is clonedby thenamepkg if provided; if not provided,pkg is determinedautomatically fromurl.

source

Base.Pkg.setprotocol! – Function.

setprotocol!(proto)

Set the protocol used to access GitHub-hosted packages. Defaults to 'https', with a blank proto delegating the

choice to the package developer.

source

Base.Pkg.available – Function.

available() -> Vector{String}

Returns the names of available packages.

source

available(pkg) -> Vector{VersionNumber}

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L94-L100
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L110-L116
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L103-L107
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L163-L168
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L171-L177
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L285-L290
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L119-L123

835

Returns the version numbers available for package pkg.

source

Base.Pkg.installed – Function.

installed() -> Dict{String,VersionNumber}

Returns a dictionarymapping installed package names to the installed version number of each package.

source

installed(pkg) -> Void | VersionNumber

If pkg is installed, return the installed version number. If pkg is registered, but not installed, return nothing.

source

Base.Pkg.status – Function.

status()

Prints out a summary of what packages are installed andwhat version and state they're in.

source

status(pkg)

Prints out a summary of what version and state pkg, specifically, is in.

source

Base.Pkg.update – Function.

update(pkgs...)

Update the metadata repo – kept in Pkg.dir("METADATA") – then update any fixed packages that can safely be

pulled from their origin; then call Pkg.resolve() to determine a new optimal set of packages versions.

Without arguments, updates all installed packages. When one ormore package names are provided as arguments,

only those packages and their dependencies are updated.

source

Base.Pkg.checkout – Function.

checkout(pkg, [branch="master"]; merge=true, pull=true)

Checkout the Pkg.dir(pkg) repo to the branch branch. Defaults to checking out the "master" branch. To go

back to using the newest compatible released version, use Pkg.free(pkg). Changes are merged (fast-forward

only) if the keyword argument merge == true, and the latest version is pulled from the upstream repo if pull

== true.

source

Base.Pkg.pin – Function.

pin(pkg)

Pin pkg at the current version. To go back to using the newest compatible released version, use Pkg.free(pkg)

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L126-L130
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L133-L138
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L141-L146
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L149-L153
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L156-L160
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L218-L227
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L180-L187
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L203-L208

836 CHAPTER 58. PACKAGEMANAGER FUNCTIONS

pin(pkg, version)

Pin pkg at registered version version.

source

Base.Pkg.free – Function.

free(pkg)

Free thepackagepkg to bemanagedby thepackagemanager again. It callsPkg.resolve() to determineoptimal

package versions after. This is an inverse for both Pkg.checkout and Pkg.pin.

Youcanalsosupplyan iterablecollectionofpackagenames, e.g.,Pkg.free(("Pkg1", "Pkg2")) to freemultiple

packages at once.

source

Base.Pkg.build – Function.

build()

Run the build scripts for all installed packages in depth-first recursive order.

source

build(pkgs...)

Run the build script in deps/build.jl for each package in pkgs and all of their dependencies in depth-first re-

cursive order. This is called automatically by Pkg.resolve() on all installed or updated packages.

source

Base.Pkg.test – Function.

test(; coverage=false)

Run the tests for all installed packages ensuring that each package's test dependencies are installed for the dura-

tion of the test. A package is tested by running its test/runtests.jl file and test dependencies are specified in

test/REQUIRE. Coverage statistics for the packages may be generated by passing coverage=true. The default

behavior is not to run coverage.

source

test(pkgs...; coverage=false)

Run the tests for each package in pkgs ensuring that each package's test dependencies are installed for the dura-

tion of the test. A package is tested by running its test/runtests.jl file and test dependencies are specified in

test/REQUIRE. Coverage statistics for the packages may be generated by passing coverage=true. The default

behavior is not to run coverage.

source

Base.Pkg.dependents – Function.

dependents(pkg)

List the packages that have pkg as a dependency.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L211-L215
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L191-L200
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L240-L244
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L247-L253
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L256-L264
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L267-L275
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pkg/pkg.jl#L278-L282

Chapter 59

Dates and Time

59.1 Dates and Time Types

Base.Dates.Period – Type.

Period

Year

Month

Week

Day

Hour

Minute

Second

Millisecond

Microsecond

Nanosecond

Period types represent discrete, human representations of time.

source

Base.Dates.CompoundPeriod – Type.

CompoundPeriod

A CompoundPeriod is useful for expressing time periods that are not a fixed multiple of smaller periods. For ex-

ample, "a year and a day" is not a fixed number of days, but can be expressed using a CompoundPeriod. In fact, a

CompoundPeriod is automatically generated by addition of different period types, e.g. Year(1) + Day(1) pro-

duces a CompoundPeriod result.

source

Base.Dates.Instant – Type.

Instant

Instant types represent integer-based, machine representations of time as continuous timelines starting from

an epoch.

source

Base.Dates.UTInstant – Type.

837

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L5-L19
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/periods.jl#L152-L160
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L54-L59

838 CHAPTER 59. DATES AND TIME

UTInstant{T}

The UTInstant represents a machine timeline based on UT time (1 day = one revolution of the earth). The T is a

Period parameter that indicates the resolution or precision of the instant.

source

Base.Dates.TimeType – Type.

TimeType

TimeType typeswrapInstantmachine instances toprovidehumanrepresentationsof themachine instant. Time,

DateTime and Date are subtypes of TimeType.

source

Base.Dates.DateTime – Type.

DateTime

DateTimewraps a UTInstant{Millisecond} and interprets it according to the proleptic Gregorian calendar.

source

Base.Dates.Date – Type.

Date

Datewraps a UTInstant{Day} and interprets it according to the proleptic Gregorian calendar.

source

Base.Dates.Time – Type.

Time

Timewraps a Nanosecond and represents a specificmoment in a 24-hour day.

source

59.2 Dates Functions

All Dates functions are defined in the Dates module; note that only the Date, DateTime, and now functions are ex-

ported; touseallotherDates functions, you'll needtoprefixeachfunctioncallwithanexplicitDates., e.g. Dates.dayofweek(dt).

Alternatively, you can write using Base.Dates to bring all exported functions into Main to be used without the

Dates. prefix.

Base.Dates.DateTime –Method.

DateTime(y, [m, d, h, mi, s, ms]) -> DateTime

Construct a DateTime type by parts. Arguments must be convertible to Int64.

source

Base.Dates.DateTime –Method.

DateTime(periods::Period...) -> DateTime

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L62-L68
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L89-L94
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L97-L102
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L108-L112
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L118-L122
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L173-L177

59.2. DATES FUNCTIONS 839

Construct a DateTime type by Period type parts. Arguments may be in any order. DateTime parts not provided

will default to the value of Dates.default(period).

source

Base.Dates.DateTime –Method.

DateTime(f::Function, y[, m, d, h, mi, s]; step=Day(1), limit=10000) -> DateTime

Create a DateTime through the adjuster API. The starting point will be constructed from the provided y, m,

d... arguments, and will be adjusted until f::Function returns true. The step size in adjusting can be pro-

videdmanually through thestep keyword. limit provides a limit to themax number of iterations the adjustment

API will pursue before throwing an error (in the case that f::Function is never satisfied).

source

Base.Dates.DateTime –Method.

DateTime(dt::Date) -> DateTime

Converts a Date to a DateTime. The hour, minute, second, and millisecond parts of the new DateTime are as-

sumed to be zero.

source

Base.Dates.DateTime –Method.

DateTime(dt::AbstractString, format::AbstractString; locale="english") -> DateTime

Construct a DateTime by parsing the dt date string following the pattern given in the format string.

This method creates a DateFormat object each time it is called. If you are parsing many date strings of the same

format, consider creating a DateFormat object once and using that as the second argument instead.

source

Base.Dates.format –Method.

format(dt::TimeType, format::AbstractString; locale="english") -> AbstractString

Construct a string by using a TimeType object and applying the provided format. The following character codes

can be used to construct the format string:

Code Examples Comment

y 6 Numeric year with a fixedwidth

Y 1996 Numeric year with aminimumwidth

m 1, 12 Numeric month with aminimumwidth

u Jan Month name shortened to 3-chars according to the locale

U January Full month name according to the locale keyword

d 1, 31 Day of themonth with aminimumwidth

H 0, 23 Hour (24-hour clock) with aminimumwidth

M 0, 59 Minute with aminimumwidth

S 0, 59 Secondwith aminimumwidth

s 000, 500 Millisecondwith aminimumwidth of 3

e Mon, Tue Abbreviated days of the week

E Monday Full day of week name

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L253-L258
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L167-L175
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/conversions.jl#L14-L19
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/io.jl#L400-L409

840 CHAPTER 59. DATES AND TIME

The number of sequential code characters indicate the width of the code. A format of yyyy-mm specifies that the

codey should have awidth of fourwhilem awidth of two. Codes that yield numeric digits have an associatedmode:

fixed-width or minimum-width. The fixed-width mode left-pads the value with zeros when it is shorter than the

specifiedwidth and truncates the valuewhen longer. Minimum-widthmodeworks the same as fixed-width except

that it does not truncate values longer than the width.

When creating a format you can use any non-code characters as a separator. For example to generate the string

"1996-01-15T00:00:00" you could use format: "yyyy-mm-ddTHH:MM:SS". Note that if you need to use a code

character as a literal you canuse the escape character backslash. The string "1996y01m" canbeproducedwith the

format "yyyy\ymm\m".

source

Base.Dates.DateFormat – Type.

DateFormat(format::AbstractString, locale="english") -> DateFormat

Construct a date formatting object that can be used for parsing date strings or formatting a date object as a string.

The following character codes can be used to construct the format string:

Code Matches Comment

y 1996, 96 Returns year of 1996, 0096

Y 1996, 96 Returns year of 1996, 0096. Equivalent to y

m 1, 01 Matches 1 or 2-digit months

u Jan Matches abbreviatedmonths according to the locale keyword

U January Matches full month names according to the locale keyword

d 1, 01 Matches 1 or 2-digit days

H 00 Matches hours

M 00 Matchesminutes

S 00 Matches seconds

s .500 Matchesmilliseconds

e Mon, Tues Matches abbreviated days of the week

E Monday Matches full name days of the week

yyyymmdd 19960101 Matches fixed-width year, month, and day

Charactersnot listedabovearenormally treatedasdelimitersbetweendateand timeslots. Forexampleadt string

of "1996-01-15T00:00:00.0"wouldhaveaformat string like "y-m-dTH:M:S.s". If youneed tousea code character

as a delimiter you can escape it using backslash. The date "1995y01m"would have the format "y\ym\m".

Creating a DateFormat object is expensive. Whenever possible, create it once and use it many times or try the

dateformat"" string macro. Using this macro creates the DateFormat object once at macro expansion time and

reuses it later. see @dateformat_str.

See DateTime and format for how to use a DateFormat object to parse andwrite Date strings respectively.

source

Base.Dates.@dateformat_str –Macro.

dateformat"Y-m-d H:M:S"

Create aDateFormatobject. Similar toDateFormat("Y-m-d H:M:S")but creates theDateFormat object once

duringmacro expansion.

See DateFormat for details about format specifiers.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/io.jl#L459-L491
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/io.jl#L285-L319
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/io.jl#L376-L383

59.2. DATES FUNCTIONS 841

Base.Dates.DateTime –Method.

DateTime(dt::AbstractString, df::DateFormat) -> DateTime

Construct aDateTimebyparsing thedtdate string following the pattern given in theDateFormatobject. Similar

toDateTime(::AbstractString, ::AbstractString)butmoreefficientwhen repeatedlyparsing similarly

formatted date strings with a pre-created DateFormat object.

source

Base.Dates.Date –Method.

Date(y, [m, d]) -> Date

Construct a Date type by parts. Arguments must be convertible to Int64.

source

Base.Dates.Date –Method.

Date(period::Period...) -> Date

Construct aDate type byPeriod type parts. Argumentsmay be in any order. Date parts not providedwill default

to the value of Dates.default(period).

source

Base.Dates.Date –Method.

Date(f::Function, y[, m, d]; step=Day(1), limit=10000) -> Date

Create a Date through the adjuster API. The starting point will be constructed from the provided y, m, d argu-

ments, andwill be adjusted until f::Function returns true. The step size in adjusting can be providedmanually

through thestep keyword. limit provides a limit to themax number of iterations the adjustmentAPIwill pursue

before throwing an error (given that f::Function is never satisfied).

source

Base.Dates.Date –Method.

Date(dt::DateTime) -> Date

Converts a DateTime to a Date. The hour, minute, second, and millisecond parts of the DateTime are truncated,

so only the year, month and day parts are used in construction.

source

Base.Dates.Date –Method.

Date(dt::AbstractString, format::AbstractString; locale="english") -> Date

Construct a Date object by parsing a dt date string following the pattern given in the format string. Follows the

same conventions as DateTime(::AbstractString, ::AbstractString).

source

Base.Dates.Date –Method.

Date(dt::AbstractString, df::DateFormat) -> Date

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/io.jl#L414-L421
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L197-L201
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L274-L279
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L153-L161
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/conversions.jl#L5-L11
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/io.jl#L424-L430

842 CHAPTER 59. DATES AND TIME

Parse a date from a date string dt using a DateFormat object df.

source

Base.Dates.Time –Method.

Time(h, [mi, s, ms, us, ns]) -> Time

Construct a Time type by parts. Arguments must be convertible to Int64.

source

Base.Dates.Time –Method.

Time(period::TimePeriod...) -> Time

Construct aTime type byPeriod type parts. Argumentsmay be in any order. Time parts not providedwill default

to the value of Dates.default(period).

source

Base.Dates.Time –Method.

Time(f::Function, h, mi=0; step::Period=Second(1), limit::Int=10000)

Time(f::Function, h, mi, s; step::Period=Millisecond(1), limit::Int=10000)

Time(f::Function, h, mi, s, ms; step::Period=Microsecond(1), limit::Int=10000)

Time(f::Function, h, mi, s, ms, us; step::Period=Nanosecond(1), limit::Int=10000)

Create aTime through the adjusterAPI. The startingpointwill be constructed from theprovidedh, mi, s, ms,

us arguments, and will be adjusted until f::Function returns true. The step size in adjusting can be provided

manually through the step keyword. limit provides a limit to the max number of iterations the adjustment API

will pursue before throwing an error (in the case that f::Function is never satisfied). Note that the default step

will adjust to allow for greater precision for the given arguments; i.e. if hour, minute, and second arguments are

provided, the default step will be Millisecond(1) instead of Second(1).

source

Base.Dates.Time –Method.

Time(dt::DateTime) -> Time

Converts a DateTime to a Time. The hour, minute, second, and millisecond parts of the DateTime are used to

create the new Time. Microsecond and nanoseconds are zero by default.

source

Base.Dates.now –Method.

now() -> DateTime

Returns a DateTime corresponding to the user's system time including the system timezone locale.

source

Base.Dates.now –Method.

now(::Type{UTC}) -> DateTime

Returns a DateTime corresponding to the user's system time as UTC/GMT.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/io.jl#L435-L439
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L214-L218
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L290-L295
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L199-L212
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/conversions.jl#L22-L27
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/conversions.jl#L60-L65
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/conversions.jl#L79-L83

59.2. DATES FUNCTIONS 843

Base.eps – Function.

eps(::DateTime) -> Millisecond

eps(::Date) -> Day

eps(::Time) -> Nanosecond

Returns Millisecond(1) for DateTime values, Day(1) for Date values, and Nanosecond(1) for Time values.

source

Accessor Functions

Base.Dates.year – Function.

year(dt::TimeType) -> Int64

The year of a Date or DateTime as an Int64.

source

Base.Dates.month – Function.

month(dt::TimeType) -> Int64

Themonth of a Date or DateTime as an Int64.

source

Base.Dates.week – Function.

week(dt::TimeType) -> Int64

Return the ISOweek date of a Date or DateTime as an Int64. Note that the first week of a year is the week that

contains the first Thursday of the year which can result in dates prior to January 4th being in the last week of the

previous year. For example week(Date(2005,1,1)) is the 53rd week of 2004.

source

Base.Dates.day – Function.

day(dt::TimeType) -> Int64

The day of month of a Date or DateTime as an Int64.

source

Base.Dates.hour – Function.

hour(dt::DateTime) -> Int64

The hour of day of a DateTime as an Int64.

source

hour(t::Time) -> Int64

The hour of a Time as an Int64.

source

Base.Dates.minute – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L320-L326
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L74-L78
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L74-L78
https://en.wikipedia.org/wiki/ISO_week_date
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L82-L90
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L96-L100
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L104-L108
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L138-L142

844 CHAPTER 59. DATES AND TIME

minute(dt::DateTime) -> Int64

Theminute of a DateTime as an Int64.

source

minute(t::Time) -> Int64

Theminute of a Time as an Int64.

source

Base.Dates.second – Function.

second(dt::DateTime) -> Int64

The second of a DateTime as an Int64.

source

second(t::Time) -> Int64

The second of a Time as an Int64.

source

Base.Dates.millisecond – Function.

millisecond(dt::DateTime) -> Int64

Themillisecond of a DateTime as an Int64.

source

millisecond(t::Time) -> Int64

Themillisecond of a Time as an Int64.

source

Base.Dates.microsecond – Function.

microsecond(t::Time) -> Int64

Themicrosecond of a Time as an Int64.

source

Base.Dates.nanosecond – Function.

nanosecond(t::Time) -> Int64

The nanosecond of a Time as an Int64.

source

Base.Dates.Year –Method.

Year(v)

Construct a Year object with the given v value. Input must be losslessly convertible to an Int64.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L114-L118
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L138-L142
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L114-L118
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L138-L142
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L114-L118
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L138-L142
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L138-L142
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L138-L142
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/periods.jl#L32-L37

59.2. DATES FUNCTIONS 845

Base.Dates.Month –Method.

Month(v)

Construct a Month object with the given v value. Input must be losslessly convertible to an Int64.

source

Base.Dates.Week –Method.

Week(v)

Construct a Week object with the given v value. Input must be losslessly convertible to an Int64.

source

Base.Dates.Day –Method.

Day(v)

Construct a Day object with the given v value. Input must be losslessly convertible to an Int64.

source

Base.Dates.Hour –Method.

Hour(dt::DateTime) -> Hour

The hour part of a DateTime as a Hour.

source

Base.Dates.Minute –Method.

Minute(dt::DateTime) -> Minute

Theminute part of a DateTime as a Minute.

source

Base.Dates.Second –Method.

Second(dt::DateTime) -> Second

The second part of a DateTime as a Second.

source

Base.Dates.Millisecond –Method.

Millisecond(dt::DateTime) -> Millisecond

Themillisecond part of a DateTime as a Millisecond.

source

Base.Dates.Microsecond –Method.

Microsecond(dt::Time) -> Microsecond

Themicrosecond part of a Time as a Microsecond.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/periods.jl#L32-L37
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/periods.jl#L32-L37
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/periods.jl#L32-L37
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/periods.jl#L24-L28

846 CHAPTER 59. DATES AND TIME

Base.Dates.Nanosecond –Method.

Nanosecond(dt::Time) -> Nanosecond

The nanosecond part of a Time as a Nanosecond.

source

Base.Dates.yearmonth – Function.

yearmonth(dt::TimeType) -> (Int64, Int64)

Simultaneously return the year andmonth parts of a Date or DateTime.

source

Base.Dates.monthday – Function.

monthday(dt::TimeType) -> (Int64, Int64)

Simultaneously return themonth and day parts of a Date or DateTime.

source

Base.Dates.yearmonthday – Function.

yearmonthday(dt::TimeType) -> (Int64, Int64, Int64)

Simultaneously return the year, month and day parts of a Date or DateTime.

source

Query Functions

Base.Dates.dayname – Function.

dayname(dt::TimeType; locale="english") -> AbstractString

Return the full day name corresponding to the day of the week of the Date or DateTime in the given locale.

source

Base.Dates.dayabbr – Function.

dayabbr(dt::TimeType; locale="english") -> AbstractString

Return the abbreviated name corresponding to the day of theweek of theDate orDateTime in the givenlocale.

source

Base.Dates.dayofweek – Function.

dayofweek(dt::TimeType) -> Int64

Returns the day of the week as an Int64with 1 = Monday, 2 = Tuesday, etc..

source

Base.Dates.dayofmonth – Function.

dayofmonth(dt::TimeType) -> Int64

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L126-L131
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L126-L131
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L126-L131
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/query.jl#L116-L121
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/query.jl#L126-L131
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/query.jl#L101-L105

59.2. DATES FUNCTIONS 847

The day of month of a Date or DateTime as an Int64.

source

Base.Dates.dayofweekofmonth – Function.

dayofweekofmonth(dt::TimeType) -> Int

For the day ofweek of dt, returnswhich number it is in dt's month. So if the day of theweek of dt isMonday, then

1 = First Monday of the month, 2 = Second Monday of the month, etc. In the range 1:5.

source

Base.Dates.daysofweekinmonth – Function.

daysofweekinmonth(dt::TimeType) -> Int

For the day ofweek of dt, returns the total number of that day of theweek in dt's month. Returns 4 or 5. Useful in

temporal expressions for specifying the last day of a week in a month by including dayofweekofmonth(dt) ==

daysofweekinmonth(dt) in the adjuster function.

source

Base.Dates.monthname – Function.

monthname(dt::TimeType; locale="english") -> AbstractString

Return the full name of themonth of the Date or DateTime in the given locale.

source

Base.Dates.monthabbr – Function.

monthabbr(dt::TimeType; locale="english") -> AbstractString

Return the abbreviatedmonth name of the Date or DateTime in the given locale.

source

Base.Dates.daysinmonth – Function.

daysinmonth(dt::TimeType) -> Int

Returns the number of days in themonth of dt. Value will be 28, 29, 30, or 31.

source

Base.Dates.isleapyear – Function.

isleapyear(dt::TimeType) -> Bool

Returns true if the year of dt is a leap year.

source

Base.Dates.dayofyear – Function.

dayofyear(dt::TimeType) -> Int

Returns the day of the year for dtwith January 1st being day 1.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/accessors.jl#L96-L100
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/query.jl#L146-L152
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/query.jl#L164-L171
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/query.jl#L190-L194
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/query.jl#L199-L203
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/query.jl#L208-L212
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/query.jl#L216-L220
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/query.jl#L223-L227

848 CHAPTER 59. DATES AND TIME

Base.Dates.daysinyear – Function.

daysinyear(dt::TimeType) -> Int

Returns 366 if the year of dt is a leap year, otherwise returns 365.

source

Base.Dates.quarterofyear – Function.

quarterofyear(dt::TimeType) -> Int

Returns the quarter that dt resides in. Range of value is 1:4.

source

Base.Dates.dayofquarter – Function.

dayofquarter(dt::TimeType) -> Int

Returns the day of the current quarter of dt. Range of value is 1:92.

source

Adjuster Functions

Base.trunc –Method.

trunc(dt::TimeType, ::Type{Period}) -> TimeType

Truncates the value of dt according to the provided Period type. E.g. if dt is 1996-01-01T12:30:00, then

trunc(dt,Day) == 1996-01-01T00:00:00.

source

Base.Dates.firstdayofweek – Function.

firstdayofweek(dt::TimeType) -> TimeType

Adjusts dt to theMonday of its week.

source

Base.Dates.lastdayofweek – Function.

lastdayofweek(dt::TimeType) -> TimeType

Adjusts dt to the Sunday of its week.

source

Base.Dates.firstdayofmonth – Function.

firstdayofmonth(dt::TimeType) -> TimeType

Adjusts dt to the first day of its month.

source

Base.Dates.lastdayofmonth – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/query.jl#L89-L93
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/query.jl#L233-L237
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/query.jl#L244-L248
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L23-L28
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L32-L36
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L42-L46
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L52-L56

59.2. DATES FUNCTIONS 849

lastdayofmonth(dt::TimeType) -> TimeType

Adjusts dt to the last day of its month.

source

Base.Dates.firstdayofyear – Function.

firstdayofyear(dt::TimeType) -> TimeType

Adjusts dt to the first day of its year.

source

Base.Dates.lastdayofyear – Function.

lastdayofyear(dt::TimeType) -> TimeType

Adjusts dt to the last day of its year.

source

Base.Dates.firstdayofquarter – Function.

firstdayofquarter(dt::TimeType) -> TimeType

Adjusts dt to the first day of its quarter.

source

Base.Dates.lastdayofquarter – Function.

lastdayofquarter(dt::TimeType) -> TimeType

Adjusts dt to the last day of its quarter.

source

Base.Dates.tonext –Method.

tonext(dt::TimeType, dow::Int; same::Bool=false) -> TimeType

Adjustsdt to thenextdayofweekcorrespondingtodowwith1 = Monday, 2 = Tuesday, etc. Settingsame=true

allows the current dt to be considered as the next dow, allowing for no adjustment to occur.

source

Base.Dates.toprev –Method.

toprev(dt::TimeType, dow::Int; same::Bool=false) -> TimeType

Adjusts dt to the previous day of week corresponding to dowwith 1 = Monday, 2 = Tuesday, etc. Setting

same=true allows the current dt to be considered as the previous dow, allowing for no adjustment to occur.

source

Base.Dates.tofirst – Function.

tofirst(dt::TimeType, dow::Int; of=Month) -> TimeType

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L62-L66
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L75-L79
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L85-L89
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L98-L102
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L112-L116
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L242-L248
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L264-L270

850 CHAPTER 59. DATES AND TIME

Adjusts dt to the first dow of its month. Alternatively, of=Yearwill adjust to the first dow of the year.

source

Base.Dates.tolast – Function.

tolast(dt::TimeType, dow::Int; of=Month) -> TimeType

Adjusts dt to the last dow of its month. Alternatively, of=Yearwill adjust to the last dow of the year.

source

Base.Dates.tonext –Method.

tonext(func::Function, dt::TimeType; step=Day(1), limit=10000, same=false) -> TimeType

Adjusts dt by iterating at most limit iterations by step increments until func returns true. funcmust take a

single TimeType argument and return a Bool. same allows dt to be considered in satisfying func.

source

Base.Dates.toprev –Method.

toprev(func::Function, dt::TimeType; step=Day(-1), limit=10000, same=false) -> TimeType

Adjusts dt by iterating at most limit iterations by step increments until func returns true. funcmust take a

single TimeType argument and return a Bool. same allows dt to be considered in satisfying func.

source

Periods

Base.Dates.Period –Method.

Year(v)

Month(v)

Week(v)

Day(v)

Hour(v)

Minute(v)

Second(v)

Millisecond(v)

Microsecond(v)

Nanosecond(v)

Construct a Period type with the given v value. Input must be losslessly convertible to an Int64.

source

Base.Dates.CompoundPeriod –Method.

CompoundPeriod(periods) -> CompoundPeriod

Construct a CompoundPeriod from a Vector of Periods. All Periods of the same typewill be added together.

Examples

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L286-L291
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L298-L303
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L252-L258
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/adjusters.jl#L273-L279
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/types.jl#L37-L51

59.2. DATES FUNCTIONS 851

julia> Dates.CompoundPeriod(Dates.Hour(12), Dates.Hour(13))

25 hours

julia> Dates.CompoundPeriod(Dates.Hour(-1), Dates.Minute(1))

-1 hour, 1 minute

julia> Dates.CompoundPeriod(Dates.Month(1), Dates.Week(-2))

1 month, -2 weeks

julia> Dates.CompoundPeriod(Dates.Minute(50000))

50000 minutes

source

Base.Dates.default – Function.

default(p::Period) -> Period

Returns a sensible "default" value for the input Period by returning T(1) for Year, Month, and Day, and T(0) for

Hour, Minute, Second, andMillisecond.

source

Rounding Functions

Date and DateTime values can be rounded to a specified resolution (e.g., 1month or 15minutes) with floor, ceil, or

round.

Base.floor –Method.

floor(dt::TimeType, p::Period) -> TimeType

Returns the nearest Date or DateTime less than or equal to dt at resolution p.

For convenience, p may be a type instead of a value: floor(dt, Dates.Hour) is a shortcut for floor(dt,

Dates.Hour(1)).

julia> floor(Date(1985, 8, 16), Dates.Month)

1985-08-01

julia> floor(DateTime(2013, 2, 13, 0, 31, 20), Dates.Minute(15))

2013-02-13T00:30:00

julia> floor(DateTime(2016, 8, 6, 12, 0, 0), Dates.Day)

2016-08-06T00:00:00

source

Base.ceil –Method.

ceil(dt::TimeType, p::Period) -> TimeType

Returns the nearest Date or DateTime greater than or equal to dt at resolution p.

Forconvenience,pmaybeatype insteadofavalue: ceil(dt, Dates.Hour) is ashortcut forceil(dt, Dates.Hour(1)).

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/periods.jl#L195-L215
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/periods.jl#L50-L55
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/rounding.jl#L79-L97

852 CHAPTER 59. DATES AND TIME

julia> ceil(Date(1985, 8, 16), Dates.Month)

1985-09-01

julia> ceil(DateTime(2013, 2, 13, 0, 31, 20), Dates.Minute(15))

2013-02-13T00:45:00

julia> ceil(DateTime(2016, 8, 6, 12, 0, 0), Dates.Day)

2016-08-07T00:00:00

source

Base.round –Method.

round(dt::TimeType, p::Period, [r::RoundingMode]) -> TimeType

Returns theDateorDateTimenearest todt at resolutionp. By default (RoundNearestTiesUp), ties (e.g., round-

ing 9:30 to the nearest hour) will be rounded up.

For convenience, p may be a type instead of a value: round(dt, Dates.Hour) is a shortcut for round(dt,

Dates.Hour(1)).

julia> round(Date(1985, 8, 16), Dates.Month)

1985-08-01

julia> round(DateTime(2013, 2, 13, 0, 31, 20), Dates.Minute(15))

2013-02-13T00:30:00

julia> round(DateTime(2016, 8, 6, 12, 0, 0), Dates.Day)

2016-08-07T00:00:00

Valid roundingmodes forround(::TimeType, ::Period, ::RoundingMode)areRoundNearestTiesUp (de-

fault), RoundDown (floor), and RoundUp (ceil).

source

The following functions are not exported:

Base.Dates.floorceil – Function.

floorceil(dt::TimeType, p::Period) -> (TimeType, TimeType)

Simultaneously return thefloor andceilof aDateorDateTime at resolutionp. Moreefficient than calling both

floor and ceil individually.

source

Base.Dates.epochdays2date – Function.

epochdays2date(days) -> Date

Takesthenumberofdayssincetheroundingepoch (0000-01-01T00:00:00) andreturns thecorrespondingDate.

source

Base.Dates.epochms2datetime – Function.

epochms2datetime(milliseconds) -> DateTime

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/rounding.jl#L100-L118
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/rounding.jl#L135-L157
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/rounding.jl#L124-L129
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/rounding.jl#L10-L15

59.2. DATES FUNCTIONS 853

Takes thenumberofmilliseconds since the roundingepoch (0000-01-01T00:00:00) and returns thecorrespond-

ing DateTime.

source

Base.Dates.date2epochdays – Function.

date2epochdays(dt::Date) -> Int64

Takes the given Date and returns the number of days since the rounding epoch (0000-01-01T00:00:00) as an

Int64.

source

Base.Dates.datetime2epochms – Function.

datetime2epochms(dt::DateTime) -> Int64

TakesthegivenDateTimeandreturns thenumberofmillisecondssincetheroundingepoch (0000-01-01T00:00:00)

as an Int64.

source

Conversion Functions

Base.Dates.today – Function.

today() -> Date

Returns the date portion of now().

source

Base.Dates.unix2datetime – Function.

unix2datetime(x) -> DateTime

Takesthenumberofsecondssinceunixepoch1970-01-01T00:00:00andconverts to thecorrespondingDateTime.

source

Base.Dates.datetime2unix – Function.

datetime2unix(dt::DateTime) -> Float64

Takes the given DateTime and returns the number of seconds since the unix epoch 1970-01-01T00:00:00 as a

Float64.

source

Base.Dates.julian2datetime – Function.

julian2datetime(julian_days) -> DateTime

Takes the number of Julian calendar days since epoch -4713-11-24T12:00:00 and returns the corresponding

DateTime.

source

Base.Dates.datetime2julian – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/rounding.jl#L18-L23
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/rounding.jl#L26-L31
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/rounding.jl#L34-L39
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/conversions.jl#L72-L76
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/conversions.jl#L42-L47
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/conversions.jl#L52-L57
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/conversions.jl#L104-L109

854 CHAPTER 59. DATES AND TIME

datetime2julian(dt::DateTime) -> Float64

TakesthegivenDateTimeandreturns thenumberofJuliancalendardayssincethe julianepoch-4713-11-24T12:00:00

as a Float64.

source

Base.Dates.rata2datetime – Function.

rata2datetime(days) -> DateTime

Takes thenumberofRataDiedayssinceepoch0000-12-31T00:00:00andreturns thecorrespondingDateTime.

source

Base.Dates.datetime2rata – Function.

datetime2rata(dt::TimeType) -> Int64

Returns the number of Rata Die days since epoch from the given Date or DateTime.

source

Constants

Days of theWeek:

Variable Abbr. Value (Int)

Monday Mon 1

Tuesday Tue 2

Wednesday Wed 3

Thursday Thu 4

Friday Fri 5

Saturday Sat 6

Sunday Sun 7

Months of the Year:

Variable Abbr. Value (Int)

January Jan 1

February Feb 2

March Mar 3

April Apr 4

May May 5

June Jun 6

July Jul 7

August Aug 8

September Sep 9

October Oct 10

November Nov 11

December Dec 12

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/conversions.jl#L115-L120
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/conversions.jl#L86-L91
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/dates/conversions.jl#L94-L98

Chapter 60

Iteration utilities

Base.Iterators.zip – Function.

zip(iters...)

For a set of iterable objects, returns an iterable of tuples, where the ith tuple contains the ith component of each

input iterable.

Note that zip is its own inverse: collect(zip(zip(a...)...)) == collect(a).

Example

julia> a = 1:5

1:5

julia> b = ["e","d","b","c","a"]

5-element Array{String,1}:

"e"

"d"

"b"

"c"

"a"

julia> c = zip(a,b)

Base.Iterators.Zip2{UnitRange{Int64},Array{String,1}}(1:5, String["e", "d", "b", "c", "a"])

julia> length(c)

5

julia> first(c)

(1, "e")

source

Base.Iterators.enumerate – Function.

enumerate(iter)

An iterator that yields (i, x)where i is a counter starting at 1, and x is the ith value from the given iterator. It's

useful when you need not only the values x over which you are iterating, but also the number of iterations so far.

Note that imay not be valid for indexing iter; it's also possible that x != iter[i], if iter has indices that do

not start at 1. See the enumerate(IndexLinear(), iter)method if youwant to ensure that i is an index.

Example

855

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iterators.jl#L201-L232

856 CHAPTER 60. ITERATIONUTILITIES

julia> a = ["a", "b", "c"];

julia> for (index, value) in enumerate(a)

println("$index $value")

end

1 a

2 b

3 c

source

enumerate(IndexLinear(), A)

enumerate(IndexCartesian(), A)

enumerate(IndexStyle(A), A)

An iterator that accesses each element of the array A, returning (i, x), where i is the index for the element and

x = A[i]. This is similar to enumerate(A), except iwill always be a valid index for A.

Specifying IndexLinear() ensures that iwill be an integer; specifying IndexCartesian() ensures that iwill

be a CartesianIndex; specifying IndexStyle(A) chooses whichever has been defined as the native indexing

style for array A.

Examples

julia> A = ["a" "d"; "b" "e"; "c" "f"];

julia> for (index, value) in enumerate(IndexStyle(A), A)

println("$index $value")

end

1 a

2 b

3 c

4 d

5 e

6 f

julia> S = view(A, 1:2, :);

julia> for (index, value) in enumerate(IndexStyle(S), S)

println("$index $value")

end

CartesianIndex{2}((1, 1)) a

CartesianIndex{2}((2, 1)) b

CartesianIndex{2}((1, 2)) d

CartesianIndex{2}((2, 2)) e

Note that enumerate(A) returns i as a counter (always starting at 1), whereas enumerate(IndexLinear(),

A) returns i as an index (starting at the first linear index of A, whichmay ormay not be 1).

See also: IndexStyle, indices.

source

Base.Iterators.rest – Function.

rest(iter, state)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iterators.jl#L35-L58
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iterators.jl#L80-L127

857

An iterator that yields the same elements as iter, but starting at the given state.

source

Base.Iterators.countfrom – Function.

countfrom(start=1, step=1)

An iterator that counts forever, starting at start and incrementing by step.

source

Base.Iterators.take – Function.

take(iter, n)

An iterator that generates at most the first n elements of iter.

Example

julia> a = 1:2:11

1:2:11

julia> collect(a)

6-element Array{Int64,1}:

1

3

5

7

9

11

julia> collect(Iterators.take(a,3))

3-element Array{Int64,1}:

1

3

5

source

Base.Iterators.drop – Function.

drop(iter, n)

An iterator that generates all but the first n elements of iter.

Example

julia> a = 1:2:11

1:2:11

julia> collect(a)

6-element Array{Int64,1}:

1

3

5

7

9

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iterators.jl#L312-L316
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iterators.jl#L337-L341
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iterators.jl#L361-L387

858 CHAPTER 60. ITERATIONUTILITIES

11

julia> collect(Iterators.drop(a,4))

2-element Array{Int64,1}:

9

11

source

Base.Iterators.cycle – Function.

cycle(iter)

An iterator that cycles through iter forever.

source

Base.Iterators.repeated – Function.

repeated(x[, n::Int])

Aniterator thatgenerates thevaluex forever. Ifn is specified, generatesx thatmanytimes (equivalent totake(repeated(x),

n)).

Example

julia> a = Iterators.repeated([1 2], 4);

julia> collect(a)

4-element Array{Array{Int64,2},1}:

[1 2]

[1 2]

[1 2]

[1 2]

source

Base.Iterators.product – Function.

product(iters...)

Returns an iterator over the product of several iterators. Each generated element is a tuple whose ith element

comes from the ith argument iterator. The first iterator changes the fastest. Example:

Example

julia> collect(Iterators.product(1:2,3:5))

2×3 Array{Tuple{Int64,Int64},2}:

(1, 3) (1, 4) (1, 5)

(2, 3) (2, 4) (2, 5)

source

Base.Iterators.flatten – Function.

flatten(iter)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iterators.jl#L418-L443
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iterators.jl#L477-L481
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iterators.jl#L512-L530
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iterators.jl#L602-L617

859

Given an iterator that yields iterators, return an iterator that yields the elements of those iterators. Put differently,

the elements of the argument iterator are concatenated.

Example

julia> collect(Iterators.flatten((1:2, 8:9)))

4-element Array{Int64,1}:

1

2

8

9

source

Base.Iterators.partition – Function.

partition(collection, n)

Iterate over a collection n elements at a time.

Example

julia> collect(Iterators.partition([1,2,3,4,5], 2))

3-element Array{Array{Int64,1},1}:

[1, 2]

[3, 4]

[5]

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iterators.jl#L681-L698
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/iterators.jl#L738-L752

Chapter 61

Unit Testing

61.1 Testing Base Julia

Julia is under rapid development and has an extensive test suite to verify functionality acrossmultiple platforms. If you

build Julia from source, you can run this test suite with make test. In a binary install, you can run the test suite using

Base.runtests().

Base.runtests – Function.

runtests([tests=["all"] [, numcores=ceil(Int, Sys.CPU_CORES / 2)]])

Run the Julia unit tests listed in tests, which can be either a string or an array of strings, using numcores proces-

sors. (not exported)

source

61.2 Basic Unit Tests

The Base.Testmodule provides simple unit testing functionality. Unit testing is a way to see if your code is correct by

checking that the results arewhat you expect. It can be helpful to ensure your code still works after youmake changes,

and can be usedwhen developing as a way of specifying the behaviors your code should havewhen complete.

Simple unit testing can be performedwith the @test() and @test_throws()macros:

Base.Test.@test –Macro.

@test ex

@test f(args...) key=val ...

Tests that the expressionex evaluates totrue. Returns aPassResult if it does, aFailResult if it isfalse, and

an Error Result if it could not be evaluated.

The@test f(args...) key=val... form is equivalent towriting@test f(args..., key=val...) which

can be useful when the expression is a call using infix syntax such as approximate comparisons:

@test a ≈ b atolε=

This is equivalent to the uglier test @test ≈(a, b, atol=ε). It is an error to supply more than one expression

unless the first is a call expression and the rest are assignments (k=v).

source

Base.Test.@test_throws –Macro.

861

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/interactiveutil.jl#L673-L678
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/test.jl#L230-L247

862 CHAPTER 61. UNIT TESTING

@test_throws extype ex

Tests that the expression ex throws an exception of type extype. Note that @test_throws does not support a

trailing keyword form.

source

For example, suppose wewant to check our new function foo(x)works as expected:

julia> using Base.Test

julia> foo(x) = length(x)^2

foo (generic function with 1 method)

If the condition is true, a Pass is returned:

julia> @test foo("bar") == 9

Test Passed

julia> @test foo("fizz") >= 10

Test Passed

If the condition is false, then a Fail is returned and an exception is thrown:

julia> @test foo("f") == 20

Test Failed

Expression: foo("f") == 20

Evaluated: 1 == 20

ERROR: There was an error during testing

If the condition could not be evaluated because an exceptionwas thrown, which occurs in this case because length()

is not defined for symbols, an Error object is returned and an exception is thrown:

julia> @test foo(:cat) == 1

Error During Test

Test threw an exception of type MethodError

Expression: foo(:cat) == 1

MethodError: no method matching length(::Symbol)

Closest candidates are:

length(::SimpleVector) at essentials.jl:256

length(::Base.MethodList) at reflection.jl:521

length(::MethodTable) at reflection.jl:597

...

Stacktrace:

[...]

ERROR: There was an error during testing

If we expect that evaluating an expression should throw an exception, thenwe can use @test_throws() to check that

this occurs:

julia> @test_throws MethodError foo(:cat)

Test Passed

Thrown: MethodError

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/test.jl#L369-L374

61.3. WORKINGWITH TEST SETS 863

61.3 Workingwith Test Sets

Typically a large number of tests are used to make sure functions work correctly over a range of inputs. In the event a

test fails, the default behavior is to throw an exception immediately. However, it is normally preferable to run the rest

of the tests first to get a better picture of howmany errors there are in the code being tested.

The @testset()macro can be used to group tests into sets. All the tests in a test set will be run, and at the end of the

test set a summary will be printed. If any of the tests failed, or could not be evaluated due to an error, the test set will

then throw a TestSetException.

Base.Test.@testset –Macro.

@testset [CustomTestSet] [option=val ...] ["description"] begin ... end

@testset [CustomTestSet] [option=val ...] ["description $v"] for v in (...) ... end

@testset [CustomTestSet] [option=val ...] ["description $v, $w"] for v in (...), w in (...)

... end

Starts a new test set, or multiple test sets if a for loop is provided.

If no custom testset type is given it defaults to creating a DefaultTestSet. DefaultTestSet records all the

results and, if there are anyFails or Errors, throws an exception at the end of the top-level (non-nested) test set,

along with a summary of the test results.

Anycustomtestset type (subtypeofAbstractTestSet) canbegivenand itwill alsobeusedforanynested@testset

invocations. The given options are only applied to the test set where they are given. The default test set type does

not take any options.

The description string accepts interpolation from the loop indices. If no description is provided, one is constructed

based on the variables.

Bydefault the@testsetmacrowill return the testsetobject itself, though thisbehavior canbecustomized inother

testset types. If a for loop is used then the macro collects and returns a list of the return values of the finish

method, which by default will return a list of the testset objects used in each iteration.

source

We can put our tests for the foo(x) function in a test set:

julia> @testset "Foo Tests" begin

@test foo("a") == 1

@test foo("ab") == 4

@test foo("abc") == 9

end;

Test Summary: | Pass Total

Foo Tests | 3 3

Test sets can also be nested:

julia> @testset "Foo Tests" begin

@testset "Animals" begin

@test foo("cat") == 9

@test foo("dog") == foo("cat")

end

@testset "Arrays $i" for i in 1:3

@test foo(zeros(i)) == i^2

@test foo(ones(i)) == i^2

end

end;

Test Summary: | Pass Total

Foo Tests | 8 8

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/test.jl#L792-L817

864 CHAPTER 61. UNIT TESTING

In the event that a nested test set has no failures, as happened here, it will be hidden in the summary. If we do have a

test failure, only the details for the failed test sets will be shown:

julia> @testset "Foo Tests" begin

@testset "Animals" begin

@testset "Felines" begin

@test foo("cat") == 9

end

@testset "Canines" begin

@test foo("dog") == 9

end

end

@testset "Arrays" begin

@test foo(zeros(2)) == 4

@test foo(ones(4)) == 15

end

end

Arrays: Test Failed

Expression: foo(ones(4)) == 15

Evaluated: 16 == 15

Stacktrace:

[...]

Test Summary: | Pass Fail Total

Foo Tests | 3 1 4

Animals | 2 2

Arrays | 1 1 2

ERROR: Some tests did not pass: 3 passed, 1 failed, 0 errored, 0 broken.

61.4 Other TestMacros

As calculations on floating-point values can be imprecise, you can perform approximate equality checks using either

@test a ≈ b (where ≈, typed via tab completion of \approx, is the isapprox() function) or use isapprox() di-

rectly.

julia> @test 1 ≈ 0.999999999

Test Passed

julia> @test 1 ≈ 0.999999

Test Failed

Expression: 1 ≈ 0.999999

Evaluated: 1 ≈ 0.999999

ERROR: There was an error during testing

Base.Test.@inferred –Macro.

@inferred f(x)

Tests that the call expression f(x) returns a value of the same type inferred by the compiler. It is useful to check

for type stability.

f(x) can be any call expression. Returns the result of f(x) if the types match, and an Error Result if it finds

different types.

61.4. OTHER TESTMACROS 865

julia> using Base.Test

julia> f(a,b,c) = b > 1 ? 1 : 1.0

f (generic function with 1 method)

julia> typeof(f(1,2,3))

Int64

julia> @code_warntype f(1,2,3)

Variables:

#self# <optimized out>

a <optimized out>

b::Int64

c <optimized out>

Body:

begin

unless (Base.slt_int)(1, b::Int64)::Bool goto 3

return 1

3:

return 1.0

end::UNION{FLOAT64, INT64}

julia> @inferred f(1,2,3)

ERROR: return type Int64 does not match inferred return type Union{Float64, Int64}

Stacktrace:

[1] error(::String) at ./error.jl:21

julia> @inferred max(1,2)

2

source

Base.Test.@test_warn –Macro.

@test_warn msg expr

Test whether evaluating expr results in STDERR output that contains the msg string or matches the msg regular

expression. Ifmsg is aboolean function, testswhethermsg(output) returnstrue. Ifmsg is a tupleorarray, checks

that the error output contains/matches each item in msg. Returns the result of evaluating expr.

See also @test_nowarn to check for the absence of error output.

source

Base.Test.@test_nowarn –Macro.

@test_nowarn expr

Testwhether evaluatingexpr results in emptySTDERRoutput (nowarnings or othermessages). Returns the result

of evaluating expr.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/test.jl#L1023-L1065
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/test.jl#L412-L422
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/test.jl#L443-L448

866 CHAPTER 61. UNIT TESTING

61.5 Broken Tests

If a test fails consistently it can be changed to use the @test_broken()macro. This will denote the test as Broken if

the test continues to fail and alerts the user via an Error if the test succeeds.

Base.Test.@test_broken –Macro.

@test_broken ex

@test_broken f(args...) key=val ...

Indicates a test that should pass but currently consistently fails. Tests that the expression ex evaluates to false

or causes an exception. Returns a Broken Result if it does, or an Error Result if the expression evaluates to

true.

The @test_broken f(args...) key=val... formworks as for the @testmacro.

source

@test_skip() is also available to skip a testwithout evaluation, but counting the skipped test in the test set reporting.

The test will not run but gives a Broken Result.

Base.Test.@test_skip –Macro.

@test_skip ex

@test_skip f(args...) key=val ...

Marks a test that should not be executed but should be included in test summary reporting as Broken. This can be

useful for tests that intermittently fail, or tests of not-yet-implemented functionality.

The @test_skip f(args...) key=val... formworks as for the @testmacro.

source

61.6 Creating Custom AbstractTestSet Types

Packages can create their own AbstractTestSet subtypes by implementing the record and finishmethods. The

subtype should have a one-argument constructor taking a description string, with any options passed in as keyword

arguments.

Base.Test.record – Function.

record(ts::AbstractTestSet, res::Result)

Record a result to a testset. This function is called by the @testset infrastructure each time a contained @test

macro completes, and is given the test result (which could be an Error). Thiswill also be calledwith an Error if an

exception is thrown inside the test block but outside of a @test context.

source

Base.Test.finish – Function.

finish(ts::AbstractTestSet)

Do any final processing necessary for the given testset. This is called by the @testset infrastructure after a test

blockexecutes. Onecommonuse for this function is torecordthetestset to theparent's results list, usingget_testset.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/test.jl#L255-L265
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/test.jl#L274-L283
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/test.jl#L464-L471
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/test.jl#L474-L481

61.6. CREATING CUSTOM ABSTRACTTESTSET TYPES 867

Base.Test takes responsibility formaintaining a stack of nested testsets as they are executed, but any result accumu-

lation is the responsibility of the AbstractTestSet subtype. You can access this stack with the get_testset and

get_testset_depthmethods. Note that these functions are not exported.

Base.Test.get_testset – Function.

get_testset()

Retrieve the active test set from the task's local storage. If no test set is active, use the fallback default test set.

source

Base.Test.get_testset_depth – Function.

get_testset_depth()

Returns the number of active test sets, not including the defaut test set

source

Base.Test alsomakes sure that nested @testset invocations use the same AbstractTestSet subtype as their par-

ent unless it is set explicitly. It does not propagate any properties of the testset. Option inheritance behavior can be

implemented by packages using the stack infrastructure that Base.Test provides.

Defining a basic AbstractTestSet subtypemight look like:

import Base.Test: record, finish

using Base.Test: AbstractTestSet, Result, Pass, Fail, Error

using Base.Test: get_testset_depth, get_testset

struct CustomTestSet <: Base.Test.AbstractTestSet

description::AbstractString

foo::Int

results::Vector

constructor takes a description string and options keyword arguments

CustomTestSet(desc; foo=1) = new(desc, foo, [])

end

record(ts::CustomTestSet, child::AbstractTestSet) = push!(ts.results, child)

record(ts::CustomTestSet, res::Result) = push!(ts.results, res)

function finish(ts::CustomTestSet)

just record if we're not the top-level parent

if get_testset_depth() > 0

record(get_testset(), ts)

end

ts

end

And using that testset looks like:

@testset CustomTestSet foo=4 "custom testset inner 2" begin

this testset should inherit the type, but not the argument.

@testset "custom testset inner" begin

@test true

end

end

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/test.jl#L977-L982
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/test.jl#L1012-L1016

Chapter 62

C Interface

ccall – Keyword.

ccall((symbol, library) or function_pointer, ReturnType, (ArgumentType1, ...), ArgumentValue1

, ...)

Call function in C-exported shared library, specified by (function name, library) tuple, where each compo-

nent is a string or symbol.

Note that the argument type tuple must be a literal tuple, and not a tuple-valued variable or expression. Alterna-

tively, ccallmay also be used to call a function pointer, such as one returned by dlsym.

Each ArgumentValue to the ccallwill be converted to the corresponding ArgumentType, by automatic inser-

tionof calls tounsafe_convert(ArgumentType, cconvert(ArgumentType, ArgumentValue)). (See also

the documentation for each of these functions for further details.) In most cases, this simply results in a call to

convert(ArgumentType, ArgumentValue).

source

Core.Intrinsics.cglobal – Function.

cglobal((symbol, library) [, type=Void])

Obtainapointer toaglobalvariable inaC-exportedshared library, specifiedexactlyas inccall. ReturnsaPtr{Type},

defaulting to Ptr{Void} if no Type argument is supplied. The values can be read or written by unsafe_load or

unsafe_store!, respectively.

source

Base.cfunction – Function.

cfunction(function::Function, ReturnType::Type, ArgumentTypes::Type)

Generate C-callable function pointer from Julia function. Type annotation of the return value in the callback func-

tion is a must for situations where Julia cannot infer the return type automatically.

Examples

julia> function foo(x::Int, y::Int)

return x + y

end

julia> cfunction(foo, Int, Tuple{Int,Int})

Ptr{Void} @0x000000001b82fcd0

869

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/basedocs.jl#L557-L572
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1073-L1082

870 CHAPTER 62. C INTERFACE

source

Base.unsafe_convert – Function.

unsafe_convert(T,x)

Convert x to a value of type T

In cases where convert would need to take a Julia object and turn it into a Ptr, this function should be used to

define and perform that conversion.

Be careful to ensure that a Julia reference to x exists as long as the result of this functionwill be used. Accordingly,

theargumentx to this function shouldneverbeanexpression, only avariablenameorfield reference. Forexample,

x=a.b.c is acceptable, but x=[a,b,c] is not.

Theunsafe prefix on this function indicates that using the result of this function after thex argument to this func-

tion is no longer accessible to the program may cause undefined behavior, including program corruption or seg-

faults, at any later time.

source

Base.cconvert – Function.

cconvert(T,x)

Convert x to a value of type T, typically by calling convert(T,x)

In caseswherex cannot be safely converted toT, unlikeconvert, cconvertmay return an object of a type differ-

ent from T, which however is suitable for unsafe_convert to handle.

Neither convert nor cconvert should take a Julia object and turn it into a Ptr.

source

Base.unsafe_load – Function.

unsafe_load(p::Ptr{T}, i::Integer=1)

Load a value of type T from the address of the ith element (1-indexed) starting at p. This is equivalent to the C

expression p[i-1].

The unsafe prefix on this function indicates that no validation is performed on the pointer p to ensure that it is

valid. Incorrect usagemay segfault your program or return garbage answers, in the samemanner as C.

source

Base.unsafe_store! – Function.

unsafe_store!(p::Ptr{T}, x, i::Integer=1)

Store a value of type T to the address of the ith element (1-indexed) starting at p. This is equivalent to the C ex-

pression p[i-1] = x.

The unsafe prefix on this function indicates that no validation is performed on the pointer p to ensure that it is

valid. Incorrect usagemay corrupt or segfault your program, in the samemanner as C.

source

Base.unsafe_copy! –Method.

unsafe_copy!(dest::Ptr{T}, src::Ptr{T}, N)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/c.jl#L7-L23
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L1037-L1054
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L169-L179
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pointer.jl#L73-L82
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pointer.jl#L85-L94

871

Copy N elements from a source pointer to a destination, with no checking. The size of an element is determined by

the type of the pointers.

Theunsafeprefixonthis function indicates thatnovalidation isperformedonthepointersdestandsrc toensure

that they are valid. Incorrect usagemay corrupt or segfault your program, in the samemanner as C.

source

Base.unsafe_copy! –Method.

unsafe_copy!(dest::Array, do, src::Array, so, N)

Copy N elements from a source array to a destination, starting at offset so in the source and do in the destination

(1-indexed).

The unsafe prefix on this function indicates that no validation is performed to ensure thatN is inbounds on either

array. Incorrect usagemay corrupt or segfault your program, in the samemanner as C.

source

Base.copy! –Method.

copy!(dest, src) -> dest

Copy all elements from collection src to array dest.

source

Base.copy! –Method.

copy!(dest, do, src, so, N)

Copy N elements from collection src starting at offset so, to array dest starting at offset do. Returns dest.

source

Base.pointer – Function.

pointer(array [, index])

Get the native address of an array or string element. Be careful to ensure that a Julia reference to a exists as long

as this pointer will be used. This function is "unsafe" like unsafe_convert.

Calling Ref(array[, index]) is generally preferable to this function.

source

Base.unsafe_wrap –Method.

unsafe_wrap(Array, pointer::Ptr{T}, dims, own=false)

Wrap a Julia Array object around the data at the address given by pointer, without making a copy. The pointer

element type T determines the array element type. dims is either an integer (for a 1d array) or a tuple of the ar-

ray dimensions. own optionally specifies whether Julia should take ownership of the memory, calling free on the

pointer when the array is no longer referenced.

This function is labelled "unsafe" because it will crash if pointer is not a valid memory address to data of the re-

quested length.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L197-L206
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L209-L218
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/multidimensional.jl#L848-L852
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L2273-L2278
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/helpdb/Base.jl#L47-L55
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pointer.jl#L48-L59

872 CHAPTER 62. C INTERFACE

Base.pointer_from_objref – Function.

pointer_from_objref(x)

Get the memory address of a Julia object as a Ptr. The existence of the resulting Ptr will not protect the object

from garbage collection, so you must ensure that the object remains referenced for the whole time that the Ptr

will be used.

source

Base.unsafe_pointer_to_objref – Function.

unsafe_pointer_to_objref(p::Ptr)

Convert a Ptr to an object reference. Assumes the pointer refers to a valid heap-allocated Julia object. If this is

not the case, undefined behavior results, hence this function is considered "unsafe" and should be usedwith care.

source

Base.disable_sigint – Function.

disable_sigint(f::Function)

Disable Ctrl-C handler during execution of a function on the current task, for calling external code that may call

julia code that is not interrupt safe. Intended to be called using do block syntax as follows:

disable_sigint() do

interrupt-unsafe code

...

end

This is not needed on worker threads (Threads.threadid() != 1) since the InterruptExceptionwill only

be delivered to the master thread. External functions that do not call julia code or julia runtime automatically dis-

able sigint during their execution.

source

Base.reenable_sigint – Function.

reenable_sigint(f::Function)

Re-enable Ctrl-C handler during execution of a function. Temporarily reverses the effect of disable_sigint.

source

Base.systemerror – Function.

systemerror(sysfunc, iftrue)

Raises a SystemError for errnowith the descriptive string sysfunc if iftrue is true

source

Core.Ptr – Type.

Ptr{T}

Amemory address referring to data of type T. However, there is no guarantee that thememory is actually valid, or

that it actually represents data of the specified type.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pointer.jl#L108-L114
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pointer.jl#L99-L105
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/c.jl#L321-L337
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/c.jl#L346-L351
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/error.jl#L59-L63
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/pointer.jl#L3-L8

873

Core.Ref – Type.

Ref{T}

An object that safely references data of type T. This type is guaranteed to point to valid, Julia-allocatedmemory of

the correct type. The underlying data is protected from freeing by the garbage collector as long as the Ref itself is

referenced.

When passed as a ccall argument (either as a Ptr or Ref type), a Ref object will be converted to a native pointer

to the data it references.

There is no invalid (NULL) Ref.

source

Base.Cchar – Type.

Cchar

Equivalent to the native char c-type.

source

Base.Cuchar – Type.

Cuchar

Equivalent to the native unsigned char c-type (UInt8).

source

Base.Cshort – Type.

Cshort

Equivalent to the native signed short c-type (Int16).

source

Base.Cushort – Type.

Cushort

Equivalent to the native unsigned short c-type (UInt16).

source

Base.Cint – Type.

Cint

Equivalent to the native signed int c-type (Int32).

source

Base.Cuint – Type.

Cuint

Equivalent to the native unsigned int c-type (UInt32).

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/refpointer.jl#L3-L14
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/c.jl#L31-L35
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/ctypes.jl#L6-L10
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/ctypes.jl#L14-L18
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/ctypes.jl#L22-L26
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/ctypes.jl#L30-L34
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/ctypes.jl#L38-L42

874 CHAPTER 62. C INTERFACE

Base.Clong – Type.

Clong

Equivalent to the native signed long c-type.

source

Base.Culong – Type.

Culong

Equivalent to the native unsigned long c-type.

source

Base.Clonglong – Type.

Clonglong

Equivalent to the native signed long long c-type (Int64).

source

Base.Culonglong – Type.

Culonglong

Equivalent to the native unsigned long long c-type (UInt64).

source

Base.Cintmax_t – Type.

Cintmax_t

Equivalent to the native intmax_t c-type (Int64).

source

Base.Cuintmax_t – Type.

Cuintmax_t

Equivalent to the native uintmax_t c-type (UInt64).

source

Base.Csize_t – Type.

Csize_t

Equivalent to the native size_t c-type (UInt).

source

Base.Cssize_t – Type.

Cssize_t

Equivalent to the native ssize_t c-type.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/c.jl#L48-L52
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/c.jl#L55-L59
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/ctypes.jl#L86-L90
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/ctypes.jl#L94-L98
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/ctypes.jl#L70-L74
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/ctypes.jl#L78-L82
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/ctypes.jl#L54-L58
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/ctypes.jl#L62-L66

875

Base.Cptrdiff_t – Type.

Cptrdiff_t

Equivalent to the native ptrdiff_t c-type (Int).

source

Base.Cwchar_t – Type.

Cwchar_t

Equivalent to the native wchar_t c-type (Int32).

source

Base.Cfloat – Type.

Cfloat

Equivalent to the native float c-type (Float32).

source

Base.Cdouble – Type.

Cdouble

Equivalent to the native double c-type (Float64).

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/ctypes.jl#L46-L50
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/c.jl#L62-L66
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/ctypes.jl#L102-L106
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/ctypes.jl#L110-L114

Chapter 63

LLVM Interface

Core.Intrinsics.llvmcall – Function.

llvmcall(IR::String, ReturnType, (ArgumentType1, ...), ArgumentValue1, ...)

llvmcall((declarations::String, IR::String), ReturnType, (ArgumentType1, ...), ArgumentValue1

, ...)

Call LLVM IR string in the first argument. Similar to an LLVM function define block, arguments are available as

consecutive unnamed SSA variables (%0, %1, etc.).

Theoptional declarations string contains external functions declarations that are necessary for llvm to compile the

IR string. Multiple declarations can be passed in by separating themwith line breaks.

Note that the argument type tuple must be a literal tuple, and not a tuple-valued variable or expression.

Each ArgumentValue to llvmcallwill be converted to the corresponding ArgumentType, by automatic inser-

tion of calls tounsafe_convert(ArgumentType, cconvert(ArgumentType, ArgumentValue)). (see also

the documentation for each of these functions for further details). In most cases, this simply results in a call to

convert(ArgumentType, ArgumentValue).

See test/llvmcall.jl for usage examples.

source

877

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/docs/basedocs.jl#L575-L596

Chapter 64

C Standard Library

Base.Libc.malloc – Function.

malloc(size::Integer) -> Ptr{Void}

Call malloc from the C standard library.

source

Base.Libc.calloc – Function.

calloc(num::Integer, size::Integer) -> Ptr{Void}

Call calloc from the C standard library.

source

Base.Libc.realloc – Function.

realloc(addr::Ptr, size::Integer) -> Ptr{Void}

Call realloc from the C standard library.

Seewarning in the documentation forfree regarding only using this onmemory originally obtained frommalloc.

source

Base.Libc.free – Function.

free(addr::Ptr)

Call free from the C standard library. Only use this on memory obtained from malloc, not on pointers retrieved

from other C libraries. Ptr objects obtained from C libraries should be freed by the free functions defined in that

library, to avoid assertion failures if multiple libc libraries exist on the system.

source

Base.Libc.errno – Function.

errno([code])

Get the value of the C library's errno. If an argument is specified, it is used to set the value of errno.

Thevalueoferrno is only valid immediately after accall to aC library routine that sets it. Specifically, youcannot

call errno at the next prompt in a REPL, because lots of code is executed between prompts.

source

879

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L323-L327
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L340-L344
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L330-L337
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L313-L320
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L254-L263

880 CHAPTER 64. C STANDARD LIBRARY

Base.Libc.strerror – Function.

strerror(n=errno())

Convert a system call error code to a descriptive string

source

Base.Libc.GetLastError – Function.

GetLastError()

Call theWin32 GetLastError function [only available onWindows].

source

Base.Libc.FormatMessage – Function.

FormatMessage(n=GetLastError())

Convert aWin32 system call error code to a descriptive string [only available onWindows].

source

Base.Libc.time –Method.

time(t::TmStruct)

Converts a TmStruct struct to a number of seconds since the epoch.

source

Base.Libc.strftime – Function.

strftime([format], time)

Convert time, given as a number of seconds since the epoch or a TmStruct, to a formatted string using the given

format. Supported formats are the same as those in the standard C library.

source

Base.Libc.strptime – Function.

strptime([format], timestr)

Parse a formatted time string into a TmStruct giving the seconds, minute, hour, date, etc. Supported formats are

the sameas those in the standardC library. On someplatforms, timezoneswill not be parsed correctly. If the result

of this function will be passed to time to convert it to seconds since the epoch, the isdst field should be filled in

manually. Setting it to -1will tell the C library to use the current system settings to determine the timezone.

source

Base.Libc.TmStruct – Type.

TmStruct([seconds])

Convert a number of seconds since the epoch to broken-down format, with fields sec, min, hour, mday, month,

year, wday, yday, and isdst.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L267-L271
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L275-L279
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L282-L286
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L217-L221
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L163-L169
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L182-L191
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L128-L133

881

Base.Libc.flush_cstdio – Function.

flush_cstdio()

Flushes the C stdout and stderr streams (whichmay have beenwritten to by external C code).

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libc.jl#L95-L99

Chapter 65

Dynamic Linker

The names in Base.Libdl are not exported and need to be called e.g. as Libdl.dlopen().

Base.Libdl.dlopen – Function.

dlopen(libfile::AbstractString [, flags::Integer])

Load a shared library, returning an opaque handle.

The extension given by the constantdlext (.so,.dll, or.dylib) can be omitted from thelibfile string, as it is

automaticallyappended ifneeded. Iflibfile isnotanabsolutepathname, thenthepaths in thearrayDL_LOAD_PATH

are searched for libfile, followed by the system load path.

Theoptionalflagsargument isabitwise-orofzeroormoreofRTLD_LOCAL,RTLD_GLOBAL,RTLD_LAZY,RTLD_NOW,

RTLD_NODELETE, RTLD_NOLOAD, RTLD_DEEPBIND, and RTLD_FIRST. These are converted to the corresponding

flags of the POSIX (and/or GNU libc and/or MacOS) dlopen command, if possible, or are ignored if the specified

functionality is not available on the current platform. The default flags are platform specific. On MacOS the de-

fault dlopen flags are RTLD_LAZY|RTLD_DEEPBIND|RTLD_GLOBAL while on other platforms the defaults are

RTLD_LAZY|RTLD_DEEPBIND|RTLD_LOCAL. An important usage of these flags is to specify non default behav-

ior for when the dynamic library loader binds library references to exported symbols and if the bound references

are put into process local or global scope. For instance RTLD_LAZY|RTLD_DEEPBIND|RTLD_GLOBAL allows the

library's symbols to be available for usage in other shared libraries, addressing situations where there are depen-

dencies between shared libraries.

source

Base.Libdl.dlopen_e – Function.

dlopen_e(libfile::AbstractString [, flags::Integer])

Similar to dlopen, except returns a NULL pointer instead of raising errors.

source

Base.Libdl.RTLD_NOW – Constant.

RTLD_DEEPBIND

RTLD_FIRST

RTLD_GLOBAL

RTLD_LAZY

RTLD_LOCAL

RTLD_NODELETE

RTLD_NOLOAD

RTLD_NOW

883

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libdl.jl#L68-L91
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libdl.jl#L100-L104

884 CHAPTER 65. DYNAMIC LINKER

Enum constant for dlopen. See your platformman page for details, if applicable.

source

Base.Libdl.dlsym – Function.

dlsym(handle, sym)

Look up a symbol from a shared library handle, return callable function pointer on success.

source

Base.Libdl.dlsym_e – Function.

dlsym_e(handle, sym)

Look up a symbol from a shared library handle, silently return NULL pointer on lookup failure.

source

Base.Libdl.dlclose – Function.

dlclose(handle)

Close shared library referenced by handle.

source

Base.Libdl.dlext – Constant.

dlext

File extension for dynamic libraries (e.g. dll, dylib, so) on the current platform.

source

Base.Libdl.find_library – Function.

find_library(names, locations)

Searches for the first library in names in the paths in the locations list, DL_LOAD_PATH, or system library paths

(in thatorder)whichcansuccessfullybedlopen'd. Onsuccess, the returnvaluewill beoneof thenames (potentially

prefixed by one of the paths in locations). This string can be assigned to a global const and used as the library

name in future ccall's. On failure, it returns the empty string.

source

Base.Libdl.DL_LOAD_PATH – Constant.

DL_LOAD_PATH

When callingdlopen, the paths in this listwill be searched first, in order, before searching the system locations for

a valid library handle.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libdl.jl#L32-L44
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libdl.jl#L48-L52
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libdl.jl#L58-L62
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libdl.jl#L113-L117
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libdl.jl#L175-L179
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libdl.jl#L122-L130
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libdl.jl#L9-L14

Chapter 66

Profiling

Base.Profile.@profile –Macro.

@profile

@profile <expression> runs your expression while taking periodic backtraces. These are appended to an in-

ternal buffer of backtraces.

source

Themethods in Base.Profile are not exported and need to be called e.g. as Profile.print().

Base.Profile.clear – Function.

clear()

Clear any existing backtraces from the internal buffer.

source

Base.Profile.print – Function.

print([io::IO = STDOUT,] [data::Vector]; kwargs...)

Prints profiling results to io (by default, STDOUT). If you do not supply a data vector, the internal buffer of accu-

mulated backtraces will be used.

The keyword arguments can be any combination of:

• format –Determineswhether backtraces are printedwith (default, :tree) or without (:flat) indentation

indicating tree structure.

• C – If true, backtraces fromC and Fortran code are shown (normally they are excluded).

• combine – If true (default), instruction pointers aremerged that correspond to the same line of code.

• maxdepth – Limits the depth higher than maxdepth in the :tree format.

• sortedby–Controls theorder in:flat format. :filefuncline (default) sortsby thesource line,whereas

:count sorts in order of number of collected samples.

• noisefloor–Limits framesthatexceedtheheuristicnoisefloorof thesample (onlyapplies to format:tree).

Asuggestedvaluetotry for this is2.0 (thedefault is0). Thisparameterhidessamples forwhichn <= noisefloor

* √N, where n is the number of samples on this line, and N is the number of samples for the callee.

• mincount – Limits the printout to only those lines with at least mincount occurrences.

885

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/profile.jl#L10-L15
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/profile.jl#L69-L73

886 CHAPTER 66. PROFILING

source

print([io::IO = STDOUT,] data::Vector, lidict::LineInfoDict; kwargs...)

Prints profiling results to io. This variant is used to examine results exported by a previous call to retrieve. Sup-

ply the vector data of backtraces and a dictionary lidict of line information.

See Profile.print([io], data) for an explanation of the valid keyword arguments.

source

Base.Profile.init – Function.

init(; n::Integer, delay::Float64)

Configure the delay between backtraces (measured in seconds), and the number n of instruction pointers that

may be stored. Each instruction pointer corresponds to a single line of code; backtraces generally consist of a long

list of instruction pointers. Default settings can be obtained by calling this function with no arguments, and each

can be set independently using keywords or in the order (n, delay).

source

Base.Profile.fetch – Function.

fetch() -> data

Returns a reference to the internal buffer of backtraces. Note that subsequent operations, like clear, can affect

data unless you first make a copy. Note that the values in data have meaning only on this machine in the current

session, because it depends on the exact memory addresses used in JIT-compiling. This function is primarily for

internal use; retrievemay be a better choice for most users.

source

Base.Profile.retrieve – Function.

retrieve() -> data, lidict

"Exports"profiling results in aportable format, returning the setof all backtraces (data) andadictionary thatmaps

the (session-specific) instruction pointers indata toLineInfo values that store the file name, function name, and

line number. This function allows you to save profiling results for future analysis.

source

Base.Profile.callers – Function.

callers(funcname, [data, lidict], [filename=<filename>], [linerange=<start:stop>]) -> Vector{

Tuple{count, lineinfo}}

Given a previous profiling run, determine who called a particular function. Supplying the filename (and optionally,

range of line numbers over which the function is defined) allows you to disambiguate an overloaded method. The

returned value is a vector containing a count of the number of calls and line information about the caller. One can

optionally supply backtrace data obtained from retrieve; otherwise, the current internal profile buffer is used.

source

Base.Profile.clear_malloc_data – Function.

clear_malloc_data()

Clearsanystoredmemoryallocationdatawhenrunning juliawith--track-allocation. Executethecommand(s)

youwant to test (to force JIT-compilation), then call clear_malloc_data. Then execute your command(s) again,

quit Julia, and examine the resulting *.mem files.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/profile.jl#L97-L123
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/profile.jl#L152-L160
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/profile.jl#L34-L42
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/profile.jl#L292-L300
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/profile.jl#L164-L171
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/profile.jl#L226-L235
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/profile.jl#L262-L269

Chapter 67

StackTraces

Base.StackTraces.StackFrame – Type.

StackFrame

Stack information representing execution context, with the following fields:

• func::Symbol

The name of the function containing the execution context.

• linfo::Nullable{Core.MethodInstance}

TheMethodInstance containing the execution context (if it could be found).

• file::Symbol

The path to the file containing the execution context.

• line::Int

The line number in the file containing the execution context.

• from_c::Bool

True if the code is fromC.

• inlined::Bool

True if the code is from an inlined frame.

• pointer::UInt64

Representation of the pointer to the execution context as returned by backtrace.

source

Base.StackTraces.StackTrace – Type.

StackTrace

Analias forVector{StackFrame}providedforconvenience; returnedbycalls tostacktraceandcatch_stacktrace.

source

Base.StackTraces.stacktrace – Function.

stacktrace([trace::Vector{Ptr{Void}},] [c_funcs::Bool=false]) -> StackTrace

Returns a stack trace in the form of a vector of StackFrames. (By default stacktrace doesn't return C functions,

but this can be enabled.) When called without specifying a trace, stacktrace first calls backtrace.

source

887

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stacktraces.jl#L11-L44
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stacktraces.jl#L64-L69
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stacktraces.jl#L143-L149

888 CHAPTER 67. STACKTRACES

Base.StackTraces.catch_stacktrace – Function.

catch_stacktrace([c_funcs::Bool=false]) -> StackTrace

Returns the stack trace for themost recent error thrown, rather than the current execution context.

source

Thefollowingmethodsandtypes inBase.StackTracesarenotexportedandneedtobecallede.g. asStackTraces.lookup(ptr).

Base.StackTraces.lookup – Function.

lookup(pointer::Union{Ptr{Void}, UInt}) -> Vector{StackFrame}

Given a pointer to an execution context (usually generated by a call to backtrace), looks up stack frame context

information. Returns an array of frame information for all functions inlined at that point, innermost function first.

source

Base.StackTraces.remove_frames! – Function.

remove_frames!(stack::StackTrace, name::Symbol)

Takes a StackTrace (a vector of StackFrames) and a function name (a Symbol) and removes the StackFrame

specified by the function name from the StackTrace (also removing all frames above the specified function). Pri-

marily used to remove StackTraces functions from the StackTrace prior to returning it.

source

remove_frames!(stack::StackTrace, m::Module)

Returns the StackTracewith all StackFrames from the provided Module removed.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stacktraces.jl#L171-L176
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stacktraces.jl#L117-L123
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stacktraces.jl#L179-L186
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/stacktraces.jl#L197-L201

Chapter 68

SIMD Support

TypeVecElement{T} is intended forbuilding librariesof SIMDoperations. Practical useof it requiresusingllvmcall.

The type is defined as:

struct VecElement{T}

value::T

end

It has a special compilation rule: a homogeneous tuple of VecElement{T}maps to an LLVM vector type when T is a

primitive bits type and the tuple length is in the set {2-6,8-10,16}.

At-O3, thecompilermightautomaticallyvectorizeoperationsonsuchtuples. Forexample, the followingprogram,when

compiled with julia -O3 generates two SIMD addition instructions (addps) on x86 systems:

const m128 = NTuple{4,VecElement{Float32}}

function add(a::m128, b::m128)

(VecElement(a[1].value+b[1].value),

VecElement(a[2].value+b[2].value),

VecElement(a[3].value+b[3].value),

VecElement(a[4].value+b[4].value))

end

triple(c::m128) = add(add(c,c),c)

code_native(triple,(m128,))

However, sincetheautomaticvectorizationcannotbereliedupon, futureusewillmostlybevia libraries thatusellvmcall.

889

Part V

Developer Documentation

891

Chapter 69

Reflection and introspection

Julia provides a variety of runtime reflection capabilities.

69.1 Module bindings

The exported names for a Module are available using names(m::Module), which will return an array of Symbol ele-

ments representing the exported bindings. names(m::Module, true) returns symbols for all bindings in m, regard-

less of export status.

69.2 DataType fields

ThenamesofDataTypefieldsmaybe interrogatedusingfieldnames(). Forexample, giventhe followingtype,fieldnames(Point)

returns an arrays of Symbol elements representing the field names:

julia> struct Point

x::Int

y

end

julia> fieldnames(Point)

2-element Array{Symbol,1}:

:x

:y

The type of each field in a Point object is stored in the types field of the Point variable itself:

julia> Point.types

svec(Int64, Any)

While x is annotated as an Int, ywas unannotated in the type definition, therefore y defaults to the Any type.

Types are themselves represented as a structure called DataType:

julia> typeof(Point)

DataType

Note that fieldnames(DataType) gives the names for each field of DataType itself, and one of these fields is the

types field observed in the example above.

893

894 CHAPTER 69. REFLECTION AND INTROSPECTION

69.3 Subtypes

Thedirect subtypesofanyDataTypemaybe listedusingsubtypes(). Forexample, theabstractDataTypeAbstractFloat

has four (concrete) subtypes:

julia> subtypes(AbstractFloat)

4-element Array{Union{DataType, UnionAll},1}:

BigFloat

Float16

Float32

Float64

Any abstract subtype will also be included in this list, but further subtypes thereof will not; recursive application of

subtypes()may be used to inspect the full type tree.

69.4 DataType layout

The internal representation of a DataType is critically important when interfacing with C code and several functions

are available to inspect these details. isbits(T::DataType) returns true if T is storedwith C-compatible alignment.

fieldoffset(T::DataType, i::Integer) returns the (byte) offset for field i relative to the start of the type.

69.5 Functionmethods

The methods of any generic function may be listed using methods(). The method dispatch table may be searched for

methods accepting a given type using methodswith().

69.6 Expansion and lowering

As discussed in theMetaprogramming section, the macroexpand() function gives the unquoted and interpolated ex-

pression (Expr) form for a givenmacro. To use macroexpand, quote the expression block itself (otherwise, themacro

will be evaluated and the result will be passed instead!). For example:

julia> macroexpand(:(@edit println("")))

:((Base.edit)(println, (Base.typesof)("")))

The functions Base.Meta.show_sexpr() and dump() are used to display S-expr style views and depth-nested detail

views for any expression.

Finally, theexpand() functiongives thelowered formof anyexpressionand is of particular interest for understanding

bothmacros and top-level statements such as function declarations and variable assignments:

julia> expand(:(f() = 1))

:(begin

$(Expr(:method, :f))

$(Expr(:method, :f, :((Core.svec)((Core.svec)((Core.Typeof)(f)), (Core.svec)())),

CodeInfo(:(begin # none, line 1:↪→

return 1

end)), false))

return f

end)

69.7. INTERMEDIATE AND COMPILED REPRESENTATIONS 895

69.7 Intermediate and compiled representations

Inspecting the lowered formfor functions requires selectionof thespecificmethodtodisplay, becausegeneric functions

mayhavemanymethodswithdifferent typesignatures. For thispurpose,method-specificcode-lowering isavailableus-

ingcode_lowered(f::Function, (Argtypes...)), andthetype-inferred formisavailableusingcode_typed(f::Function,

(Argtypes...)). code_warntype(f::Function, (Argtypes...)) addshighlighting totheoutputofcode_typed()

(see @code_warntype).

Closer to themachine, theLLVMintermediaterepresentationofa functionmaybeprintedusingbycode_llvm(f::Function,

(Argtypes...)), andfinally thecompiledmachinecode isavailableusingcode_native(f::Function, (Argtypes...))

(this will trigger JIT compilation/code generation for any function which has not previously been called).

For convenience, there aremacro versions of the above functions which take standard function calls and expand argu-

ment types automatically:

julia> @code_llvm +(1,1)

; Function Attrs: sspreq

define i64 @"julia_+_130862"(i64, i64) #0 {

top:

%2 = add i64 %1, %0, !dbg !8

ret i64 %2, !dbg !8

}

(likewise @code_typed, @code_warntype, @code_lowered, and @code_native)

Chapter 70

Documentation of Julia’s Internals

70.1 Initialization of the Julia runtime

How does the Julia runtime execute julia -e 'println("Hello World!")' ?

main()

Execution starts at main() in ui/repl.c.

main()callslibsupport_init() toset theC library localeandto initialize the"ios" library (seeios_init_stdstreams()

and Legacy ios.c library).

Nextparse_opts() is called to process command line options. Note thatparse_opts() only dealswith options that

affectcodegenerationorearly initialization. Otheroptionsarehandled laterbyprocess_options() inbase/client.jl.

parse_opts() stores command line options in the global jl_options struct.

julia_init()

julia_init() in task.c is called by main() and calls _julia_init() in init.c.

_julia_init() begins by calling libsupport_init() again (it does nothing the second time).

restore_signals() is called to zero the signal handler mask.

jl_resolve_sysimg_location() searches configured paths for the base system image. See Building the Julia sys-

tem image.

jl_gc_init() sets up allocation pools and lists for weak refs, preserved values and finalization.

jl_init_frontend() loads and initializes a pre-compiled femtolisp image containing the scanner/parser.

jl_init_types() creates jl_datatype_t type description objects for the built-in types defined in julia.h. e.g.

jl_any_type = jl_new_abstracttype(jl_symbol("Any"), NULL, jl_null);

jl_any_type->super = jl_any_type;

jl_type_type = jl_new_abstracttype(jl_symbol("Type"), jl_any_type, jl_null);

jl_int32_type = jl_new_bitstype(jl_symbol("Int32"),

jl_any_type, jl_null, 32);

jl_init_tasks()creates thejl_datatype_t* jl_task_typeobject; initializes theglobaljl_root_taskstruct;

and sets jl_current_task to the root task.

897

https://github.com/JuliaLang/julia/blob/master/ui/repl.c
https://github.com/JuliaLang/julia/blob/master/src/support/libsupportinit.c
https://github.com/JuliaLang/julia/blob/master/src/support/ios.c
https://github.com/JuliaLang/julia/blob/master/ui/repl.c
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/task.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/jltypes.c
https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/task.c

898 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

jl_init_codegen() initializes the LLVM library.

jl_init_serializer() initializes 8-bit serialization tags for 256 frequently used jl_value_t values. The serial-

izationmechanism uses these tags as shorthand (in lieu of storing whole objects) to save storage space.

If there is no sysimg file (!jl_options.image_file) then the Core and Mainmodules are created and boot.jl is

evaluated:

jl_core_module = jl_new_module(jl_symbol("Core")) creates the Julia Coremodule.

jl_init_intrinsic_functions()createsanewJuliamoduleIntrinsicscontainingconstantjl_intrinsic_type

symbols. These define an integer code for each intrinsic function. emit_intrinsic() translates these symbols into

LLVM instructions during code generation.

jl_init_primitives() hooks C functions up to Julia function symbols. e.g. the symbol Base.is() is bound to C

function pointer jl_f_is() by calling add_builtin_func("eval", jl_f_top_eval).

jl_new_main_module()creates theglobal "Main"moduleandsetsjl_current_task->current_module = jl_main_module.

Note: _julia_init() then sets jl_root_task->current_module = jl_core_module. jl_root_task is an

alias of jl_current_task at this point, so the current_module set by jl_new_main_module() above is overwrit-

ten.

jl_load("boot.jl", sizeof("boot.jl"))callsjl_parse_eval_allwhichrepeatedlycallsjl_toplevel_eval_flex()

to execute boot.jl. <!– TODO– drill down into eval? –>

jl_get_builtin_hooks() initializes global C pointers to Julia globals defined in boot.jl.

jl_init_box_caches() pre-allocates global boxed integer value objects for values up to 1024. This speeds up allo-

cation of boxed ints later on. e.g.:

jl_value_t *jl_box_uint8(uint32_t x)

{

return boxed_uint8_cache[(uint8_t)x];

}

_julia_init() iteratesover thejl_core_module->bindings.table looking forjl_datatype_tvaluesandsets

the type name's module prefix to jl_core_module.

jl_add_standard_imports(jl_main_module) does "using Base" in the "Main" module.

Note: _julia_init()nowreverts tojl_root_task->current_module = jl_main_moduleas itwasbeforebe-

ing set to jl_core_module above.

Platform specific signal handlers are initialized for SIGSEGV (OSX, Linux), and SIGFPE (Windows).

Other signals (SIGINFO, SIGBUS, SIGILL, SIGTERM, SIGABRT, SIGQUIT, SIGSYS andSIGPIPE) are hooked

up to sigdie_handler()which prints a backtrace.

jl_init_restored_modules() calls jl_module_run_initializer() for each deserialized module to run the

__init__() function.

Finally sigint_handler() is hooked up to SIGINT and calls jl_throw(jl_interrupt_exception).

_julia_init() then returns back tomain() inui/repl.c andmain() callstrue_main(argc, (char**)argv).

sysimg

If there is a sysimg file, it contains a pre-cooked image of the Core and Mainmodules (and whatever else

is created by boot.jl). See Building the Julia system image.

jl_restore_system_image() deserializes the saved sysimg into the current Julia runtime environ-

ment and initialization continues after jl_init_box_caches() below...

Note: jl_restore_system_image() (and dump.c in general) uses the Legacy ios.c library.

https://github.com/JuliaLang/julia/blob/master/src/codegen.cpp
http://llvm.org
https://github.com/JuliaLang/julia/blob/master/src/dump.c
https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/base/boot.jl
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/datatype.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c
https://github.com/JuliaLang/julia/blob/master/src/dump.c
https://github.com/JuliaLang/julia/blob/master/src/module.c
https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c
https://github.com/JuliaLang/julia/blob/master/ui/repl.c
https://github.com/JuliaLang/julia/blob/master/src/dump.c
https://github.com/JuliaLang/julia/blob/master/src/dump.c

70.2. JULIA ASTS 899

true_main()

true_main() loads the contents of argv[] into Base.ARGS.

If a.jl "program"filewassuppliedonthecommand line, thenexec_program()callsjl_load(program,len)which

calls jl_parse_eval_allwhich repeatedly calls jl_toplevel_eval_flex() to execute the program.

However, inourexample (julia -e 'println("Hello World!")'),jl_get_global(jl_base_module, jl_symbol("_start"))

looks up Base._start and jl_apply() executes it.

Base._start

Base._startcallsBase.process_optionswhichcallsjl_parse_input_line("println("Hello World!")")

to create an expression object and Base.eval() to execute it.

Base.eval

Base.eval()wasmapped to jl_f_top_eval by jl_init_primitives().

jl_f_top_eval()callsjl_toplevel_eval_in(jl_main_module, ex),whereex is theparsedexpressionprintln("Hello

World!").

jl_toplevel_eval_in() calls jl_toplevel_eval_flex()which calls eval() in interpreter.c.

The stack dump below shows how the interpreter works its way through various methods of Base.println() and

Base.print() before arriving at write(s::IO, a::Array{T}) where Twhich does ccall(jl_uv_write()).

jl_uv_write() calls uv_write() to write "HelloWorld!" to JL_STDOUT. See Libuv wrappers for stdio.:

Hello World!

Since our example has just one function call, which has done its job of printing "Hello World!", the stack now rapidly

unwinds back to main().

jl_atexit_hook()

main() calls jl_atexit_hook(). This calls _atexit for each module, then calls jl_gc_run_all_finalizers()

and cleans up libuv handles.

julia_save()

Finally, main() calls julia_save(), which if requested on the command line, saves the runtime state to a new system

image. See jl_compile_all() and jl_save_system_image().

70.2 Julia ASTs

Julia has two representations of code. First there is a surface syntaxAST returnedby theparser (e.g. theparse() func-

tion), andmanipulatedbymacros. It isastructuredrepresentationofcodeas it iswritten, constructedbyjulia-parser.scm

from a character stream. Next there is a lowered form, or IR (intermediate representation), which is used by type

inference and code generation. In the lowered form there are fewer types of nodes, all macros are expanded, and

all control flow is converted to explicit branches and sequences of statements. The lowered form is constructed by

julia-syntax.scm.

First we will focus on the lowered form, since it is more important to the compiler. It is also less obvious to the human,

since it results from a significant rearrangement of the input syntax.

https://github.com/JuliaLang/julia/blob/master/ui/repl.c
https://github.com/JuliaLang/julia/blob/master/ui/repl.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/module.c
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/interpreter.c
https://github.com/JuliaLang/julia/blob/master/base/stream.jl
https://github.com/JuliaLang/julia/blob/master/src/jl_uv.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gf.c
https://github.com/JuliaLang/julia/blob/master/src/dump.c

900 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Stack frame Source code Notes

jl_uv_write() jl_uv.c called though ccall

julia_write_282942 stream.jl function write!(s::IO, a::Array{T}) where T

julia_print_284639 ascii.jl print(io::IO, s::String) = (write(io, s);

nothing)

jlcall_print_284639

jl_apply() julia.h

jl_trampoline() builtins.c

jl_apply() julia.h

jl_apply_generic() gf.c Base.print(Base.TTY, String)

jl_apply() julia.h

jl_trampoline() builtins.c

jl_apply() julia.h

jl_apply_generic() gf.c Base.print(Base.TTY, String, Char, Char...)

jl_apply() julia.h

jl_f_apply() builtins.c

jl_apply() julia.h

jl_trampoline() builtins.c

jl_apply() julia.h

jl_apply_generic() gf.c Base.println(Base.TTY, String, String...)

jl_apply() julia.h

jl_trampoline() builtins.c

jl_apply() julia.h

jl_apply_generic() gf.c Base.println(String,)

jl_apply() julia.h

do_call() interpreter.c

eval() interpreter.c

jl_interpret_toplevel_expr()interpreter.c

jl_toplevel_eval_flex() toplevel.c

jl_toplevel_eval() toplevel.c

jl_toplevel_eval_in() builtins.c

jl_f_top_eval() builtins.c

Lowered form

The following data types exist in lowered form:

• Expr

Has a node type indicated by the head field, and an args field which is a Vector{Any} of subexpressions.

• Slot

Identifiesargumentsand localvariablesbyconsecutivenumbering. Slot is anabstract typewithsubtypesSlotNumber

and TypedSlot. Both types have an integer-valued id field giving the slot index. Most slots have the same type

at all uses, and so are represented with SlotNumber. The types of these slots are found in the slottypes field

of theirMethodInstanceobject. Slots that require per-use typeannotations are representedwithTypedSlot,

which has a typ field.

• CodeInfo

Wraps the IR of amethod.

70.2. JULIA ASTS 901

• LineNumberNode

Contains a single number, specifying the line number the next statement came from.

• LabelNode

Branch target, a consecutively-numbered integer starting at 0.

• GotoNode

Unconditional branch.

• QuoteNode

Wraps an arbitrary value to reference as data. For example, the function f() = :a contains a QuoteNode

whose value field is the symbol a, in order to return the symbol itself instead of evaluating it.

• GlobalRef

Refers to global variable name in module mod.

• SSAValue

Refers to a consecutively-numbered (starting at 0) static single assignment (SSA) variable inserted by the com-

piler.

• NewvarNode

Marks a point where a variable is created. This has the effect of resetting a variable to undefined.

Expr types

These symbols appear in the head field of Exprs in lowered form.

• call

Function call (dynamic dispatch). args[1] is the function to call, args[2:end] are the arguments.

• invoke

Function call (static dispatch). args[1] is theMethodInstance to call, args[2:end] are the arguments (includ-

ing the function that is being called, at args[2]).

• static_parameter

Reference a static parameter by index.

• line

Line number and file namemetadata. Unlike a LineNumberNode, can also contain a file name.

• gotoifnot

Conditional branch. If args[1] is false, goes to label identified in args[2].

• =

Assignment.

• method

Adds amethod to a generic function and assigns the result if necessary.

Has a 1-argument form and a 4-argument form. The 1-argument form arises from the syntax function foo

end. In the 1-argument form, the argument is a symbol. If this symbol already names a function in the current

902 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

scope, nothing happens. If the symbol is undefined, a new function is created and assigned to the identifier speci-

fied by the symbol. If the symbol is defined but names a non-function, an error is raised. The definition of "names

a function" is that the binding is constant, and refers to an object of singleton type. The rationale for this is that

an instance of a singleton type uniquely identifies the type to add the method to. When the type has fields, it

wouldn't be clear whether themethodwas being added to the instance or its type.

The 4-argument form has the following arguments:

– args[1]

A function name, or false if unknown. If a symbol, then the expression first behaves like the 1-argument

form above. This argument is ignored from then on. When this is false, it means amethod is being added

strictly by type, (::T)(x) = x.

– args[2]

A SimpleVector of argument type data. args[2][1] is a SimpleVector of the argument types, and

args[2][2] is a SimpleVector of type variables corresponding to themethod's static parameters.

– args[3]

ACodeInfoof themethod itself. For "outof scope"methoddefinitions (addingamethod toa function that

also hasmethods defined in different scopes) this is an expression that evaluates to a:lambda expression.

– args[4]

true or false, identifying whether themethod is staged (@generated function).

• const

Declares a (global) variable as constant.

• null

Has no arguments; simply yields the value nothing.

• new

Allocates a new struct-like object. First argument is the type. The new pseudo-function is lowered to this, and

the type is always inserted by the compiler. This is very much an internal-only feature, and does no checking.

Evaluating arbitrary new expressions can easily segfault.

• return

Returns its argument as the value of the enclosing function.

• the_exception

Yields thecaughtexception insideacatchblock. This is thevalueof theruntimesystemvariablejl_exception_in_transit.

• enter

Enters an exception handler (setjmp). args[1] is the label of the catch block to jump to on error.

• leave

Pop exception handlers. args[1] is the number of handlers to pop.

• inbounds

Controls turning bounds checks on or off. A stack is maintained; if the first argument of this expression is true

or false (truemeans bounds checks are disabled), it is pushed onto the stack. If the first argument is :pop, the

stack is popped.

• boundscheck

Indicates the beginning or end of a section of code that performs a bounds check. Like inbounds, a stack is

maintained, and the second argument can be one of: true, false, or :pop.

70.2. JULIA ASTS 903

• copyast

Partof the implementationofquasi-quote. Theargument isasurfacesyntaxASTthat is simplycopiedrecursively

and returned at run time.

• meta

Metadata. args[1] is typically a symbol specifying the kindofmetadata, and the rest of the arguments are free-

form. The following kinds of metadata are commonly used:

– :inline and :noinline: Inlining hints.

– :push_loc: enters a sequence of statements from a specified source location.

* args[2] specifies a filename, as a symbol.

* args[3] optionally specifies the name of an (inlined) function that originally contained the code.

– :pop_loc: returns to the source location before thematching :push_loc.

Method

A unique'd container describing the sharedmetadata for a single method.

• name, module, file, line, sig

Metadata to uniquely identify themethod for the computer and the human.

• ambig

Cache of other methods that may be ambiguous with this one.

• specializations

Cache of all MethodInstance ever created for this Method, used to ensure uniqueness. Uniqueness is required

for efficiency, especially for incremental precompile and tracking of method invalidation.

• source

The original source code (usually compressed).

• roots

Pointers to non-AST things that have been interpolated into the AST, required by compression of the AST, type-

inference, or the generation of native code.

• nargs, isva, called, isstaged, pure

Descriptive bit-fields for the source code of thisMethod.

• min_world / max_world

The range of world ages for which this method is visible to dispatch.

MethodInstance

A unique'd container describing a single callable signature for a Method. See especially Proper maintenance and care

of multi-threading locks for important details on how tomodify these fields safely.

• specTypes

Theprimary key for thisMethodInstance. Uniqueness is guaranteed through adef.specializations lookup.

904 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

• def

The Method that this function describes a specialization of. Or #undef, if this is a top-level Lambda that is not

part of aMethod.

• sparam_vals

The values of the static parameters in specTypes indexed by def.sparam_syms. For the MethodInstance

at Method.unspecialized, this is the empty SimpleVector. But for a runtime MethodInstance from the

MethodTable cache, this will always be defined and indexable.

• rettype

The inferred return type for the specFunctionObject field, which (in most cases) is also the computed return

type for the function in general.

• inferred

Maycontain a cacheof the inferred source for this function, or other information about the inference result such

as a constant return valuemay be put here (if jlcall_api == 2), or it could be set to nothing to just indicate

rettype is inferred.

• ftpr

The generic jlcall entry point.

• jlcall_api

The ABI to use when calling fptr. Some significant ones include:

– 0 - Not compiled yet

– 1-JL_CALLABLEjl_value_t *(*)(jl_function_t *f, jl_value_t *args[nargs], uint32_t

nargs)

– 2 - Constant (value stored in inferred)

– 3 - With Static-parameters forwarded jl_value_t *(*)(jl_svec_t *sparams, jl_function_t

*f, jl_value_t *args[nargs], uint32_t nargs)

– 4-Run in interpreterjl_value_t *(*)(jl_method_instance_t *meth, jl_function_t *f, jl_value_t

*args[nargs], uint32_t nargs)

• min_world / max_world

The range of world ages for which this method instance is valid to be called.

CodeInfo

A temporary container for holding lowered source code.

• code

An Any array of statements

• slotnames

An array of symbols giving the name of each slot (argument or local variable).

• slottypes

An array of types for the slots.

• slotflags

A UInt8 array of slot properties, represented as bit flags:

70.2. JULIA ASTS 905

– 2 - assigned (only false if there are no assignment statements with this var on the left)

– 8 - const (currently unused for local variables)

– 16 - statically assigned once

– 32 - might be used before assigned. This flag is only valid after type inference.

• ssavaluetypes

Either an array or an Int.

If an Int, it gives the number of compiler-inserted temporary locations in the function. If an array, specifies a

type for each location.

Boolean properties:

• inferred

Whether this has been produced by type inference.

• inlineable

Whether this should be inlined.

• propagate_inbounds

Whether this shouldshouldpropagate@inboundswhen inlined for thepurposeofeliding@boundscheckblocks.

• pure

Whether this is known to be a pure function of its arguments, without respect to the state of themethod caches

or other mutable global state.

Surface syntax AST

Front end ASTs consist entirely of Exprs and atoms (e.g. symbols, numbers). There is generally a different expression

head for each visually distinct syntactic form. Examples will be given in s-expression syntax. Each parenthesized list

corresponds to an Expr, where the first element is the head. For example (call f x) corresponds to Expr(:call,

:f, :x) in Julia.

Calls

Input AST

f(x) (call f x)

f(x, y=1, z=2) (call f x (kw y 1) (kw z 2))

f(x; y=1) (call f (parameters (kw y 1)) x)

f(x...) (call f (... x))

do syntax:

f(x) do a,b

body

end

parses as (call f (-> (tuple a b) (block body)) x).

906 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Operators

Most uses of operators are just function calls, so they are parsed with the head call. However some operators are

special forms (not necessarily function calls), and in those cases the operator itself is the expression head. In julia-

parser.scm these are referred to as "syntactic operators". Some operators (+ and *) use N-ary parsing; chained calls

are parsed as a single N-argument call. Finally, chains of comparisons have their own special expression structure.

Input AST

x+y (call + x y)

a+b+c+d (call + a b c d)

2x (call * 2 x)

a&&b (&& a b)

x += 1 (+= x 1)

a ? 1 : 2 (if a 1 2)

a:b (: a b)

a:b:c (: a b c)

a,b (tuple a b)

a==b (call == a b)

1<i<=n (comparison 1 < i <= n)

a.b (. a (quote b))

a.(b) (. a b)

Bracketed forms

Input AST

a[i] (ref a i)

t[i;j] (typed_vcat t i j)

t[i j] (typed_hcat t i j)

t[a b; c d] (typed_vcat t (row a b) (row c d))

a{b} (curly a b)

a{b;c} (curly a (parameters c) b)

[x] (vect x)

[x,y] (vect x y)

[x;y] (vcat x y)

[x y] (hcat x y)

[x y; z t] (vcat (row x y) (row z t))

[x for y in z, a in b] (comprehension x (= y z) (= a b))

T[x for y in z] (typed_comprehension T x (= y z))

(a, b, c) (tuple a b c)

(a; b; c) (block a (block b c))

Macros

Input AST

@m x y (macrocall @m x y)

Base.@m x y (macrocall (. Base (quote @m)) x y)

@Base.m x y (macrocall (. Base (quote @m)) x y)

70.2. JULIA ASTS 907

Input AST

"a" "a"

x"y" (macrocall @x_str "y")

x"y"z (macrocall @x_str "y" "z")

"x = $x" (string "x = " x)

`a b c` (macrocall @cmd "a b c")

Strings

Doc string syntax:

"some docs"

f(x) = x

parses as (macrocall (|.| Core '@doc) "some docs" (= (call f x) (block x))).

Imports and such

Input AST

import a (import a)

import a.b.c (import a b c)

import ...a (import . . . a)

import a.b, c.d (toplevel (import a b) (import c d))

import Base: x (import Base x)

import Base: x, y (toplevel (import Base x) (import Base y))

export a, b (export a b)

Numbers

Julia supports more number types thanmany scheme implementations, so not all numbers are represented directly as

scheme numbers in the AST.

Input AST

11111111111111111111 (macrocall @int128_str "11111111111111111111")

0xfffffffffffffffff (macrocall @uint128_str "0xfffffffffffffffff")

1111...many digits... (macrocall @big_str "1111....")

Block forms

A block of statements is parsed as (block stmt1 stmt2 ...).

If statement:

if a

b

elseif c

d

else e

f

end

908 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

parses as:

(if a (block (line 2) b)

(block (line 3) (if c (block (line 4) d)

(block (line 5) e (line 6) f))))

A while loop parses as (while condition body).

A for loop parses as (for (= var iter) body). If there is more than one iteration specification, they are parsed

as a block: (for (block (= v1 iter1) (= v2 iter2)) body).

break and continue are parsed as 0-argument expressions (break) and (continue).

let is parsed as (let body (= var1 val1) (= var2 val2) ...).

A basic function definition is parsed as (function (call f x) body). A more complex example:

function f{T}(x::T; k = 1)

return x+1

end

parses as:

(function (call (curly f T) (parameters (kw k 1))

(:: x T))

(block (line 2 file.jl) (return (call + x 1))))

Type definition:

mutable struct Foo{T<:S}

x::T

end

parses as:

(type #t (curly Foo (<: T S))

(block (line 2 none) (:: x T)))

The first argument is a boolean telling whether the type is mutable.

try blocks parse as (try try_block var catch_block finally_block). If no variable is present after catch,

var is #f. If there is no finally clause, then the last argument is not present.

70.3 More about types

If you've used Julia for awhile, you understand the fundamental role that types play. Herewe try to get under the hood,

focusing particularly on Parametric Types.

Types and sets (and Any and Union{}/Bottom)

It's perhaps easiest to conceive of Julia's type system in terms of sets. While programs manipulate individual values, a

type refers to a set of values. This is not the same thing as a collection; for example a Set of values is itself a single Set

value. Rather, a type describes a set of possible values, expressing uncertainty about which value we have.

A concrete typeT describes the set of valueswhose direct tag, as returned by the typeof function, is T. An abstract type

describes some possibly-larger set of values.

70.3. MORE ABOUT TYPES 909

Any describes the entire universe of possible values. Integer is a subset of Any that includes Int, Int8, and other

concrete types. Internally, Julia also makes heavy use of another type known as Bottom, which can also be written as

Union{}. This corresponds to the empty set.

Julia's types support the standard operations of set theory: you can ask whether T1 is a "subset" (subtype) of T2with

T1 <: T2. Likewise, you intersect two types using typeintersect, take their unionwith Union, and compute a type

that contains their union with typejoin:

julia> typeintersect(Int, Float64)

Union{}

julia> Union{Int, Float64}

Union{Float64, Int64}

julia> typejoin(Int, Float64)

Real

julia> typeintersect(Signed, Union{UInt8, Int8})

Int8

julia> Union{Signed, Union{UInt8, Int8}}

Union{Signed, UInt8}

julia> typejoin(Signed, Union{UInt8, Int8})

Integer

julia> typeintersect(Tuple{Integer,Float64}, Tuple{Int,Real})

Tuple{Int64,Float64}

julia> Union{Tuple{Integer,Float64}, Tuple{Int,Real}}

Union{Tuple{Int64,Real}, Tuple{Integer,Float64}}

julia> typejoin(Tuple{Integer,Float64}, Tuple{Int,Real})

Tuple{Integer,Real}

While these operationsmay seem abstract, they lie at the heart of Julia. For example, method dispatch is implemented

by stepping through the items in a method list until reaching one for which the type of the argument tuple is a subtype

of themethod signature. For this algorithm towork, it's important that methods be sorted by their specificity, and that

the search begins with the most specific methods. Consequently, Julia also implements a partial order on types; this is

achieved by functionality that is similar to <:, but with differences that will be discussed below.

UnionAll types

Julia's type system can also express an iterated union of types: a union of types over all values of some variable. This is

needed to describe parametric types where the values of some parameters are not known.

For example, :obj:Array has twoparameters as inArray{Int,2}. If we did not know the element type, we couldwrite

Array{T,2} where T,which is theunionofArray{T,2} forall valuesofT:Union{Array{Int8,2}, Array{Int16,2},

...}.

Such a type is represented by a UnionAll object, which contains a variable (T in this example, of type TypeVar), and a

wrapped type (Array{T,2} in this example).

Consider the followingmethods:

910 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

f1(A::Array) = 1

f2(A::Array{Int}) = 2

f3(A::Array{T}) where {T<:Any} = 3

f4(A::Array{Any}) = 4

The signature of f3 is a UnionAll type wrapping a tuple type. All but f4 can be called with a = [1,2]; all but f2 can

be called with b = Any[1,2].

Let's look at these types a little more closely:

julia> dump(Array)

UnionAll

var: TypeVar

name: Symbol T

lb: Core.TypeofBottom Union{}

ub: Any

body: UnionAll

var: TypeVar

name: Symbol N

lb: Core.TypeofBottom Union{}

ub: Any

body: Array{T,N} <: DenseArray{T,N}

This indicates that Array actually names a UnionAll type. There is one UnionAll type for each parameter, nested.

ThesyntaxArray{Int,2} is equivalent toArray{Int}{2}; internallyeachUnionAll is instantiatedwithaparticular

variable value, one at a time, outermost-first. This gives a natural meaning to the omission of trailing type parameters;

Array{Int} gives a type equivalent to Array{Int,N} where N.

ATypeVar is not itself a type, but rather should be considered part of the structure of aUnionAll type. Type variables

have lower and upper bounds on their values (in the fields lb and ub). The symbol name is purely cosmetic. Internally,

TypeVars are compared by address, so they are defined asmutable types to ensure that "different" type variables can

be distinguished. However, by convention they should not bemutated.

One can construct TypeVars manually:

julia> TypeVar(:V, Signed, Real)

Signed<:V<:Real

There are convenience versions that allow you to omit any of these arguments except the name symbol.

The syntax Array{T} where T<:Integer is lowered to

let T = TypeVar(:T,Integer)

UnionAll(T, Array{T})

end

so it is seldom necessary to construct a TypeVarmanually (indeed, this is to be avoided).

Free variables

Theconceptof a free typevariable is extremely important in the type system. Wesay that avariableV is free in typeT ifT

doesnotcontain theUnionAll that introducesvariableV. Forexample, thetypeArray{Array{V} where V<:Integer}

has no free variables, but the Array{V} part inside of it does have a free variable, V.

70.3. MORE ABOUT TYPES 911

A type with free variables is, in some sense, not really a type at all. Consider the type Array{Array{T}} where T,

which refers to all homogeneous arrays of arrays. The inner type Array{T}, seen by itself, might seem to refer to any

kind of array. However, every element of the outer array must have the same array type, so Array{T} cannot refer to

just any old array. One could say that Array{T} effectively "occurs" multiple times, and Tmust have the same value

each "time".

For this reason, the function jl_has_free_typevars in the C API is very important. Types for which it returns true

will not givemeaningful answers in subtyping and other type functions.

TypeNames

The following two Array types are functionally equivalent, yet print differently:

julia> TV, NV = TypeVar(:T), TypeVar(:N)

(T, N)

julia> Array

Array

julia> Array{TV,NV}

Array{T,N}

These can be distinguished by examining the name field of the type, which is an object of type TypeName:

julia> dump(Array{Int,1}.name)

TypeName

name: Symbol Array

module: Module Core

names: empty SimpleVector

wrapper: UnionAll

var: TypeVar

name: Symbol T

lb: Core.TypeofBottom Union{}

ub: Any

body: UnionAll

var: TypeVar

name: Symbol N

lb: Core.TypeofBottom Union{}

ub: Any

body: Array{T,N} <: DenseArray{T,N}

cache: SimpleVector

...

linearcache: SimpleVector

...

hash: Int64 -7900426068641098781

mt: MethodTable

name: Symbol Array

defs: Void nothing

cache: Void nothing

max_args: Int64 0

kwsorter: #undef

module: Module Core

: Int64 0

: Int64 0

912 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

In this case, the relevant field is wrapper, which holds a reference to the top-level type used tomake new Array types.

julia> pointer_from_objref(Array)

Ptr{Void} @0x00007fcc7de64850

julia> pointer_from_objref(Array.body.body.name.wrapper)

Ptr{Void} @0x00007fcc7de64850

julia> pointer_from_objref(Array{TV,NV})

Ptr{Void} @0x00007fcc80c4d930

julia> pointer_from_objref(Array{TV,NV}.name.wrapper)

Ptr{Void} @0x00007fcc7de64850

The wrapper field of Array points to itself, but for Array{TV,NV} it points back to the original definition of the type.

What about the other fields? hash assigns an integer to each type. To examine thecachefield, it's helpful to pick a type

that is less heavily used than Array. Let's first create our own type:

julia> struct MyType{T,N} end

julia> MyType{Int,2}

MyType{Int64,2}

julia> MyType{Float32, 5}

MyType{Float32,5}

julia> MyType.body.body.name.cache

svec(MyType{Float32,5}, MyType{Int64,2}, #undef, #undef, #undef, #undef, #undef, #undef)

(The cache is pre-allocated to have length 8, but only the first two entries are populated.) Consequently, when you

instantiate a parametric type, each concrete type gets saved in a type cache. However, instances containing free type

variables are not cached.

Tuple types

Tuple types constitute an interesting special case. For dispatch to work on declarations like x::Tuple, the type has to

be able to accommodate any tuple. Let's check the parameters:

julia> Tuple

Tuple

julia> Tuple.parameters

svec(Vararg{Any,N} where N)

Unlike other types, tuple types are covariant in their parameters, so this definition permits Tuple tomatch any type of

tuple:

julia> typeintersect(Tuple, Tuple{Int,Float64})

Tuple{Int64,Float64}

julia> typeintersect(Tuple{Vararg{Any}}, Tuple{Int,Float64})

Tuple{Int64,Float64}

70.3. MORE ABOUT TYPES 913

However, if a variadic (Vararg) tuple type has free variables it can describe different kinds of tuples:

julia> typeintersect(Tuple{Vararg{T} where T}, Tuple{Int,Float64})

Tuple{Int64,Float64}

julia> typeintersect(Tuple{Vararg{T}} where T, Tuple{Int,Float64})

Union{}

Notice that when T is free with respect to the Tuple type (i.e. its binding UnionAll type is outside the Tuple type),

only one T valuemust work over the whole type. Therefore a heterogeneous tuple does not match.

Finally, it's worth noting that Tuple{} is distinct:

julia> Tuple{}

Tuple{}

julia> Tuple{}.parameters

svec()

julia> typeintersect(Tuple{}, Tuple{Int})

Union{}

What is the "primary" tuple-type?

julia> pointer_from_objref(Tuple)

Ptr{Void} @0x00007f5998a04370

julia> pointer_from_objref(Tuple{})

Ptr{Void} @0x00007f5998a570d0

julia> pointer_from_objref(Tuple.name.wrapper)

Ptr{Void} @0x00007f5998a04370

julia> pointer_from_objref(Tuple{}.name.wrapper)

Ptr{Void} @0x00007f5998a04370

so Tuple == Tuple{Vararg{Any}} is indeed the primary type.

Diagonal types

Consider the type Tuple{T,T} where T. A methodwith this signature would look like:

f(x::T, y::T) where {T} = ...

According to the usual interpretation of aUnionAll type, thisT ranges over all types, includingAny, so this type should

be equivalent to Tuple{Any,Any}. However, this interpretation causes some practical problems.

First, a value of T needs to be available inside the method definition. For a call like f(1, 1.0), it's not clear what T

should be. It could be Union{Int,Float64}, or perhaps Real. Intuitively, we expect the declaration x::T to mean

T === typeof(x). Tomake sure that invariant holds, we need typeof(x) === typeof(y) === T in this method.

That implies themethod should only be called for arguments of the exact same type.

914 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

It turns out that being able to dispatch on whether two values have the same type is very useful (this is used by the

promotion system for example), sowe havemultiple reasons towant a different interpretation ofTuple{T,T} where

T. Tomake this workwe add the following rule to subtyping: if a variable occursmore than once in covariant position, it

is restricted to ranging over only concrete types. ("Covariant position" means that only Tuple and Union types occur

between an occurrence of a variable and the UnionAll type that introduces it.) Such variables are called "diagonal

variables" or "concrete variables".

So forexample,Tuple{T,T} where TcanbeseenasUnion{Tuple{Int8,Int8}, Tuple{Int16,Int16}, ...},

whereT rangesoverall concrete types. Thisgivesrise tosome interestingsubtypingresults. ForexampleTuple{Real,Real}

is not a subtypeofTuple{T,T} where T, because it includes some types likeTuple{Int8,Int16}where the twoel-

ementshavedifferent types. Tuple{Real,Real}andTuple{T,T} where Thavethenon-trivial intersectionTuple{T,T}

where T<:Real. However,Tuple{Real} isasubtypeofTuple{T} where T, because in that caseToccursonlyonce

and so is not diagonal.

Next consider a signature like the following:

f(a::Array{T}, x::T, y::T) where {T} = ...

In this case,Toccurs in invariantposition insideArray{T}. Thatmeanswhatever typeof array is passedunambiguously

determines the value ofT –-we sayT has an equality constraint on it. Therefore in this case the diagonal rule is not really

necessary, since the array determinesT andwe can then allowx andy to be of any subtypes ofT. So variables that occur

in invariant position are never considered diagonal. This choice of behavior is slightly controversial –- some feel this

definition should bewritten as

f(a::Array{T}, x::S, y::S) where {T, S<:T} = ...

to clarifywhetherx andyneed tohave the same type. In this versionof the signature theywould, orwe could introduce

a third variable for the type of y if x and y can have different types.

The next complication is the interaction of unions and diagonal variables, e.g.

f(x::Union{Void,T}, y::T) where {T} = ...

Consider what this declarationmeans. y has type T. x then can have either the same type T, or else be of type Void. So

all of the following calls shouldmatch:

f(1, 1)

f("", "")

f(2.0, 2.0)

f(nothing, 1)

f(nothing, "")

f(nothing, 2.0)

These examples are telling us something: when x is nothing::Void, there are no extra constraints on y. It is as if the

method signature had y::Any. This means that whether a variable is diagonal is not a static property based on where

it appears in a type. Rather, it depends on where a variable appears when the subtyping algorithm uses it. When x has

type Void, we don't need to use the T in Union{Void,T}, so T does not "occur". Indeed, we have the following type

equivalence:

(Tuple{Union{Void,T},T} where T) == Union{Tuple{Void,Any}, Tuple{T,T} where T}

70.3. MORE ABOUT TYPES 915

Subtyping diagonal variables

The subtyping algorithm for diagonal variables has two components: (1) identifying variable occurrences, and (2) en-

suring that diagonal variables range over concrete types only.

The first task is accomplished by keeping counters occurs_inv and occurs_cov (in src/subtype.c) for each vari-

able in theenvironment, tracking thenumberof invariantandcovariantoccurrences, respectively. Avariable isdiagonal

when occurs_inv == 0 && occurs_cov > 1.

The second task is accomplished by imposing a condition on a variable's lower bound. As the subtyping algorithm runs,

it narrows the bounds of each variable (raising lower bounds and lowering upper bounds) to keep track of the range of

variable values for which the subtype relation would hold. Whenwe are done evaluating the body of a UnionAll type

whosevariable isdiagonal,we lookat thefinal valuesof thebounds. Since thevariablemustbeconcrete, a contradiction

occurs if its lower bound could not be a subtype of a concrete type. For example, an abstract type like AbstractArray

cannot be a subtype of a concrete type, but a concrete type like Int can be, and the empty type Bottom can be as well.

If a lower bound fails this test the algorithm stops with the answer false.

For example, in the problem Tuple{Int,String} <: Tuple{T,T} where T, we derive that this would be true if T

were a supertype of Union{Int,String}. However, Union{Int,String} is an abstract type, so the relation does

not hold.

Thisconcreteness test isdonebythe functionis_leaf_bound. Note that this test is slightlydifferent fromjl_is_leaf_type,

since it also returnstrue forBottom. Currently this function is heuristic, anddoesnot catchall possible concrete types.

The difficulty is that whether a lower bound is concretemight depend on the values of other type variable bounds. For

example, Vector{T} is equivalent to the concrete type Vector{Int} only if both the upper and lower bounds of T

equal Int. We have not yet worked out a complete algorithm for this.

Introduction to the internal machinery

Most operations for dealing with types are found in the files jltypes.c and subtype.c. A good way to start is to

watch subtyping in action. Build Julia with make debug and fire up Julia within a debugger. gdb debugging tips has

some tips whichmay be useful.

Because the subtyping code is used heavily in the REPL itself–and hence breakpoints in this code get triggered often–it

will be easiest if youmake the following definition:

julia> function mysubtype(a,b)

ccall(:jl_breakpoint, Void, (Any,), nothing)

issubtype(a, b)

end

and then set a breakpoint in jl_breakpoint. Once this breakpoint gets triggered, you can set breakpoints in other

functions.

As a warm-up, try the following:

mysubtype(Tuple{Int,Float64}, Tuple{Integer,Real})

We canmake it more interesting by trying amore complex case:

mysubtype(Tuple{Array{Int,2}, Int8}, Tuple{Array{T}, T} where T)

916 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Subtyping andmethod sorting

The type_morespecific functions are used for imposing a partial order on functions in method tables (from most-

to-least specific). Specificity is strict; if a is more specific than b, then a does not equal b and b is not more specific than

a.

Ifa is a strict subtypeofb, then it is automatically consideredmore specific. Fromthere,type_morespecificemploys

some less formal rules. For example, subtype is sensitive to the number of arguments, but type_morespecificmay

not be. In particular, Tuple{Int,AbstractFloat} is more specific than Tuple{Integer}, even though it is not a

subtype. (OfTuple{Int,AbstractFloat}andTuple{Integer,Float64}, neither ismore specific than theother.)

Likewise, Tuple{Int,Vararg{Int}} is not a subtype of Tuple{Integer}, but it is considered more specific. How-

ever,morespecificdoesgetabonus for length: inparticular,Tuple{Int,Int} ismorespecific thanTuple{Int,Vararg{Int}}.

If you're debugging howmethods get sorted, it can be convenient to define the function:

type_morespecific(a, b) = ccall(:jl_type_morespecific, Cint, (Any,Any), a, b)

which allows you to test whether tuple type a is more specific than tuple type b.

70.4 Memory layout of Julia Objects

Object layout (jl_value_t)

Thejl_value_t struct is the name for a block ofmemory ownedby the JuliaGarbageCollector, representing the data

associated with a Julia object in memory. Absent any type information, it is simply an opaque pointer:

typedef struct jl_value_t* jl_pvalue_t;

Each jl_value_t struct is contained in a jl_typetag_t struct that contains metadata information about the Julia

object, such as its type and garbage collector (gc) reachability:

typedef struct {

opaque metadata;

jl_value_t value;

} jl_typetag_t;

The type of any Julia object is an instance of a leaf jl_datatype_t object. The jl_typeof() function can be used to

query for it:

jl_value_t *jl_typeof(jl_value_t *v);

The layout of the object depends on its type. Reflection methods can be used to inspect that layout. A field can be

accessed by calling one of the get-fieldmethods:

jl_value_t *jl_get_nth_field_checked(jl_value_t *v, size_t i);

jl_value_t *jl_get_field(jl_value_t *o, char *fld);

If the field types are known, a priori, to be all pointers, the values can also be extracted directly as an array access:

jl_value_t *v = value->fieldptr[n];

As an example, a "boxed" uint16_t is stored as follows:

struct {

opaque metadata;

struct {

uint16_t data; // -- 2 bytes

} jl_value_t;

};

70.4. MEMORY LAYOUTOF JULIA OBJECTS 917

This object is created by jl_box_uint16(). Note that the jl_value_t pointer references the data portion, not the

metadata at the top of the struct.

A value may be stored "unboxed" in many circumstances (just the data, without the metadata, and possibly not even

stored but just kept in registers), so it is unsafe to assume that the address of a box is a unique identifier. The "egal" test

(corresponding to the === function in Julia), should instead be used to compare two unknown objects for equivalence:

int jl_egal(jl_value_t *a, jl_value_t *b);

This optimization should be relatively transparent to the API, since the object will be "boxed" on-demand, whenever a

jl_value_t pointer is needed.

Note thatmodification of a jl_value_t pointer inmemory is permitted only if the object ismutable. Otherwise, mod-

ification of the value may corrupt the program and the result will be undefined. The mutability property of a value can

be queried for with:

int jl_is_mutable(jl_value_t *v);

If the object being stored is a jl_value_t, the Julia garbage collector must be notified also:

void jl_gc_wb(jl_value_t *parent, jl_value_t *ptr);

However, the Embedding Julia section of the manual is also required reading at this point, for covering other details of

boxing and unboxing various types, and understanding the gc interactions.

Mirror structs for someof thebuilt-in typesaredefined injulia.h. Thecorrespondingglobaljl_datatype_tobjects

are created by jl_init_types in jltypes.c.

Garbage collectormark bits

The garbage collector uses several bits from the metadata portion of the jl_typetag_t to track each object in the

system. Further details about this algorithm can be found in the comments of the garbage collector implementation in

gc.c.

Object allocation

Most new objects are allocated by jl_new_structv():

jl_value_t *jl_new_struct(jl_datatype_t *type, ...);

jl_value_t *jl_new_structv(jl_datatype_t *type, jl_value_t **args, uint32_t na);

Although, isbits objects can be also constructed directly frommemory:

jl_value_t *jl_new_bits(jl_value_t *bt, void *data)

And some objects have special constructors that must be used instead of the above functions:

Types:

jl_datatype_t *jl_apply_type(jl_datatype_t *tc, jl_tuple_t *params);

jl_datatype_t *jl_apply_array_type(jl_datatype_t *type, size_t dim);

jl_uniontype_t *jl_new_uniontype(jl_tuple_t *types);

While these are the most commonly used options, there are more low-level constructors too, which you can find de-

clared in julia.h. These are used in jl_init_types() to create the initial types needed to bootstrap the creation

of the Julia system image.

Tuples:

https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/jltypes.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/blob/master/src/julia.h

918 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

jl_tuple_t *jl_tuple(size_t n, ...);

jl_tuple_t *jl_tuplev(size_t n, jl_value_t **v);

jl_tuple_t *jl_alloc_tuple(size_t n);

Therepresentationof tuples ishighlyunique in theJuliaobject representationecosystem. Insomecases, aBase.tuple()

object may be an array of pointers to the objects contained by the tuple equivalent to:

typedef struct {

size_t length;

jl_value_t *data[length];

} jl_tuple_t;

However, in other cases, the tuple may be converted to an anonymous isbits type and stored unboxed, or it may not

stored at all (if it is not being used in a generic context as a jl_value_t*).

Symbols:

jl_sym_t *jl_symbol(const char *str);

Functions andMethodInstance:

jl_function_t *jl_new_generic_function(jl_sym_t *name);

jl_method_instance_t *jl_new_method_instance(jl_value_t *ast, jl_tuple_t *sparams);

Arrays:

jl_array_t *jl_new_array(jl_value_t *atype, jl_tuple_t *dims);

jl_array_t *jl_new_arrayv(jl_value_t *atype, ...);

jl_array_t *jl_alloc_array_1d(jl_value_t *atype, size_t nr);

jl_array_t *jl_alloc_array_2d(jl_value_t *atype, size_t nr, size_t nc);

jl_array_t *jl_alloc_array_3d(jl_value_t *atype, size_t nr, size_t nc, size_t z);

jl_array_t *jl_alloc_vec_any(size_t n);

Note that many of these have alternative allocation functions for various special-purposes. The list here reflects the

more common usages, but amore complete list can be found by reading the julia.h header file.

Internal to Julia, storage is typically allocated by newstruct() (or newobj() for the special types):

jl_value_t *newstruct(jl_value_t *type);

jl_value_t *newobj(jl_value_t *type, size_t nfields);

And at the lowest level, memory is getting allocated by a call to the garbage collector (in gc.c), then tagged with its

type:

jl_value_t *jl_gc_allocobj(size_t nbytes);

void jl_set_typeof(jl_value_t *v, jl_datatype_t *type);

Note that all objects are allocated in multiples of 4 bytes and aligned to the platform pointer size. Memory is allocated

from a pool for smaller objects, or directly with malloc() for large objects.

Singleton Types

Singleton types have only one instance and no data fields. Singleton instances have a size of 0 bytes, and

consist only of their metadata. e.g. nothing::Void.

See Singleton Types andNothingness andmissing values

https://github.com/JuliaLang/julia/blob/master/src/julia.h

70.5. EVAL OF JULIA CODE 919

70.5 Eval of Julia code

Oneof thehardestparts about learninghowtheJulia Language runscode is learninghowall of thepieceswork together

to execute a block of code.

Each chunk of code typically makes a trip through many steps with potentially unfamiliar names, such as (in no partic-

ular order): flisp, AST, C++, LLVM, eval, typeinf, macroexpand, sysimg (or system image), bootstrapping, compile,

parse, execute, JIT, interpret, box, unbox, intrinsic function, and primitive function, before turning into the desired re-

sult (hopefully).

Definitions

• REPL

REPL stands for Read-Eval-Print Loop. It's just what we call the command line environment for

short.

• AST

Abstract Syntax Tree The AST is the digital representation of the code structure. In this form the

code has been tokenized for meaning so that it is more suitable for manipulation and execution.

Julia Execution

The 10,000 foot view of the whole process is as follows:

1. The user starts julia.

2. The C function main() from ui/repl.c gets called. This function processes the command line arguments, fill-

ing in the jl_options struct and setting the variable ARGS. It then initializes Julia (by calling julia_init in

task.c,whichmay loadapreviouslycompiledsysimg). Finally, itpassesoff control toJuliabycallingBase._start().

3. When _start() takes over control, the subsequent sequence of commands depends on the command line ar-

guments given. For example, if a filenamewas supplied, itwill proceed to execute that file. Otherwise, itwill start

an interactive REPL.

4. Skipping the details about how the REPL interacts with the user, let's just say the program ends up with a block

of code that it wants to run.

5. If theblockof code to run is in afile,jl_load(char *filename) gets invoked to load thefile andparse it. Each

fragment of code is then passed to eval to execute.

6. Each fragment of code (or AST), is handed off to eval() to turn into results.

7. eval() takes each code fragment and tries to run it in jl_toplevel_eval_flex().

8. jl_toplevel_eval_flex()decideswhether the code is a "toplevel" action (such asusingormodule), which

would be invalid inside a function. If so, it passes off the code to the toplevel interpreter.

9. jl_toplevel_eval_flex() then expands the code to eliminate anymacros and to "lower" theAST tomake it

simpler to execute.

10. jl_toplevel_eval_flex() then uses some simple heuristics to decidewhether to JIT compiler theAST or to

interpret it directly.

11. The bulk of the work to interpret code is handled by eval in interpreter.c.

https://github.com/JuliaLang/julia/blob/master/src/task.c
https://github.com/JuliaLang/julia/blob/master/src/task.c
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/interpreter.c

920 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

12. If instead, the code is compiled, the bulk of the work is handled by codegen.cpp. Whenever a Julia function

is called for the first time with a given set of argument types, type inference will be run on that function. This

information is used by the codegen step to generate faster code.

13. Eventually, the user quits the REPL, or the end of the program is reached, and the _start()method returns.

14. Just before exiting,main() callsjl_atexit_hook(exit_code). This callsBase._atexit() (which calls any

functions registered to atexit() inside Julia). Then it calls jl_gc_run_all_finalizers(). Finally, it grace-

fully cleans up all libuv handles andwaits for them to flush and close.

Parsing

The Julia parser is a small lisp program written in femtolisp, the source-code for which is distributed inside Julia in sr-

c/flisp.

The interface functions for this are primarily defined in jlfrontend.scm. The code in ast.c handles this handoff on

the Julia side.

Theother relevantfiles at this stage arejulia-parser.scm, whichhandles tokenizing Julia codeand turning it into an

AST, and julia-syntax.scm, which handles transforming complex AST representations into simpler, "lowered" AST

representations which aremore suitable for analysis and execution.

Macro Expansion

When eval() encounters a macro, it expands that AST node before attempting to evaluate the expression. Macro

expansion involves a handoff from eval() (in Julia), to the parser function jl_macroexpand() (written in flisp) to

the Julia macro itself (written in - what else - Julia) via fl_invoke_julia_macro(), and back.

Typically, macro expansion is invoked as a first step during a call to expand()/jl_expand(), although it can also be

invoked directly by a call to macroexpand()/jl_macroexpand().

Type Inference

Type inference is implemented in Julia by typeinf() in inference.jl. Type inference is the process of examining

a Julia function and determining bounds for the types of each of its variables, as well as bounds on the type of the re-

turn value from the function. This enables many future optimizations, such as unboxing of known immutable values,

and compile-time hoisting of various run-time operations such as computing field offsets and function pointers. Type

inferencemay also include other steps such as constant propagation and inlining.

MoreDefinitions

• JIT

Just-In-Time Compilation The process of generating native-machine code into memory right when

it is needed.

• LLVM

Low-Level Virtual Machine (a compiler) The Julia JIT compiler is a program/library called libLLVM.

Codegen in Julia refers both to the process of taking a Julia AST and turning it into LLVM instruc-

tions, and the process of LLVMoptimizing that and turning it into native assembly instructions.

• C++

The programming language that LLVM is implemented in, which means that codegen is also imple-

mented in this language. The rest of Julia's library is implemented in C, in part because its smaller

feature set makes it more usable as a cross-language interface layer.

https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/tree/master/src/flisp
https://github.com/JuliaLang/julia/tree/master/src/flisp
https://github.com/JuliaLang/julia/blob/master/src/jlfrontend.scm
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm
https://github.com/JuliaLang/julia/blob/master/src/julia-syntax.scm
https://github.com/JuliaLang/julia/blob/master/base/inference.jl

70.5. EVAL OF JULIA CODE 921

• box

This term is used to describe the process of taking a value and allocating awrapper around the data

that is tracked by the garbage collector (gc) and is taggedwith the object's type.

• unbox

The reverse of boxing a value. This operation enablesmore efficientmanipulation of datawhen the

type of that data is fully known at compile-time (through type inference).

• generic function

A Julia function composed of multiple "methods" that are selected for dynamic dispatch based on

the argument type-signature

• anonymous function or "method"

A Julia function without a name andwithout type-dispatch capabilities

• primitive function

A function implemented in C but exposed in Julia as a named function "method" (albeit without

generic function dispatch capabilities, similar to a anonymous function)

• intrinsic function

A low-level operation exposed as a function in Julia. These pseudo-functions implement operations

on raw bits such as add and sign extend that cannot be expressed directly in any other way. Since

they operate on bits directly, they must be compiled into a function and surrounded by a call to

Core.Intrinsics.box(T, ...) to reassign type information to the value.

JIT Code Generation

Codegen is the process of turning a Julia AST into nativemachine code.

The JIT environment is initialized by an early call to jl_init_codegen in codegen.cpp.

Ondemand, aJuliamethod isconverted intoanative functionbythe functionemit_function(jl_method_instance_t*).

(note, when using theMCJIT (in LLVM v3.4+), each function must be JIT into a newmodule.) This function recursively

calls emit_expr() until the entire function has been emitted.

Much of the remaining bulk of this file is devoted to various manual optimizations of specific code patterns. For exam-

ple, emit_known_call() knows how to inline many of the primitive functions (defined in builtins.c) for various

combinations of argument types.

Other parts of codegen are handled by various helper files:

• debuginfo.cpp

Handles backtraces for JIT functions

• ccall.cpp

Handles the ccall and llvmcall FFI, along with various abi_*.cpp files

• intrinsics.cpp

Handles the emission of various low-level intrinsic functions

Bootstrapping

The process of creating a new system image is called "bootstrapping".

Theetymologyof thiswordcomes fromthephrase "pullingoneselfupby thebootstraps", andrefers to the

idea of starting from a very limited set of available functions and definitions and endingwith the creation

of a full-featured environment.

https://github.com/JuliaLang/julia/blob/master/src/codegen.cpp
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/debuginfo.cpp
https://github.com/JuliaLang/julia/blob/master/src/ccall.cpp
https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp

922 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

System Image

Thesystem image is aprecompiledarchiveof a setof Juliafiles. Thesys.jifiledistributedwith Julia is one suchsystem

image, generated by executing the file sysimg.jl, and serializing the resulting environment (including Types, Func-

tions, Modules, and all other defined values) into a file. Therefore, it contains a frozen version of the Main, Core, and

Basemodules (and whatever else was in the environment at the end of bootstrapping). This serializer/deserializer is

implemented by jl_save_system_image/jl_restore_system_image in dump.c.

If there is no sysimg file (jl_options.image_file == NULL), this also implies that --buildwas given on the com-

mand line, so the final result should be a new sysimg file. During Julia initialization, minimal Core and Mainmodules

are created. Then a file named boot.jl is evaluated from the current directory. Julia then evaluates any file given as a

command line argument until it reaches the end. Finally, it saves the resulting environment to a "sysimg" file for use as

a starting point for a future Julia run.

70.6 Calling Conventions

Julia uses three calling conventions for four distinct purposes:

Name Prefix Purpose

Native julia_ Speed via specialized signatures

JL Call jlcall_ Wrapper for generic calls

JL Call jl_ Builtins

C ABI jlcapi_ Wrapper callable fromC

Julia Native Calling Convention

The native calling convention is designed for fast non-generic calls. It usually uses a specialized signature.

• LLVM ghosts (zero-length types) are omitted.

• LLVM scalars and vectors are passed by value.

• LLVM aggregates (arrays and structs) are passed by reference.

A small return values is returned as LLVM return values. A large return values is returned via the "structure return"

(sret) convention, where the caller provides a pointer to a return slot.

An argument or return values thta is a homogeneous tuple is sometimes represented as an LLVM vector instead of an

LLVM array.

JL Call Convention

The JL Call convention is for builtins and generic dispatch. Hand-written functions using this convention are declared

via themacro JL_CALLABLE. The convention uses exactly 3 parameters:

• F - Julia representation of function that is being applied

• args - pointer to array of pointers to boxes

• nargs - length of the array

The return value is a pointer to a box.

https://github.com/JuliaLang/julia/blob/master/base/sysimg.jl
https://github.com/JuliaLang/julia/blob/master/src/dump.c

70.7. HIGH-LEVEL OVERVIEWOF THE NATIVE-CODE GENERATION PROCESS 923

CABI

CABI wrappers enable calling Julia fromC. Thewrapper calls a function using the native calling convention.

Tuples are always represented as C arrays.

70.7 High-level Overview of the Native-Code Generation Process

Representation of Pointers

When emitting code to an object file, pointers will be emitted as relocations. The deserialization code will ensure any

object that pointed to one of these constants gets recreated and contains the right runtime pointer.

Otherwise, they will be emitted as literal constants.

To emit one of these objects, call literal_pointer_val. It'll handle tracking the Julia value and the LLVM global,

ensuring they are valid both for the current runtime and after deserialization.

When emitted into the object file, these globals are stored as references in a large gvals table. This allows the deseri-

alizer to reference themby index, and implement a custommanualmechanism similar to aGlobalOffset Table (GOT) to

restore them.

Function pointers are handled similarly. They are stored as values in a large fvals table. Like globals, this allows the

deserializer to reference them by index.

Note that extern functions are handled separately, with names, via the usual symbol resolution mechanism in the

linker.

Note too that ccall functions are also handled separately, via a manual GOT and Procedure Linkage Table (PLT).

Representation of Intermediate Values

Values are passed around in a jl_cgval_t struct. This represents an R-value, and includes enough information to

determine how to assign or pass it somewhere.

Theyarecreatedviaoneof thehelperconstructors, usually: mark_julia_type (for immediatevalues)andmark_julia_slot

(for pointers to values).

The function convert_julia_type can transform between any two types. It returns an R-valuewith cgval.typ set

to typ. It'll cast the object to the requested representation, making heap boxes, allocating stack copies, and computing

tagged unions as needed to change the representation.

By contrast update_julia_typewill change cgval.typ to typ, only if it can be done at zero-cost (i.e. without emit-

ting any code).

Union representation

Inferred union typesmay be stack allocated via a tagged type representation.

The primitive routines that need to be able to handle tagged unions are:

• mark-type

• load-local

• store-local

• isa

924 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

• is

• emit_typeof

• emit_sizeof

• boxed

• unbox

• specialized cc-ret

Everything else should be possible to handle in inference by using these primitives to implement union-splitting.

The representationof the tagged-union is as apair of< void* union, byte selector >. The selector is fixed-size

as byte & 0x7f, andwill union-tag the first 126 isbits. It records the one-based depth-first count into the type-union

of the isbitsobjects inside. An indexof zero indicates that theunion* is actuallya taggedheap-allocatedjl_value_t*,

and needs to be treated as normal for a boxed object rather than as a tagged union.

Thehighbitof theselector (byte & 0x80) canbetestedtodetermine if thevoid* is actuallyaheap-allocated (jl_value_t*)

box, thus avoiding the cost of re-allocating abox,whilemaintaining theability toefficiently handleunion-splittingbased

on the low bits.

It is guaranteed that byte & 0x7f is an exact test for the type, if the value can be represented by a tag – it will never

bemarked byte = 0x80. It is not necessary to also test the type-tag when testing isa.

The union*memory regionmay be allocated at any size. The only constraint is that it is big enough to contain the data

currently specified by selector. It might not be big enough to contain the union of all types that could be stored there

according to the associated Union type field. Use appropriate care when copying.

Specialized Calling Convention Signature Representation

A jl_returninfo_t object describes the calling convention details of any callable.

If any of the arguments or return type of a method can be represented unboxed, and the method is not varargs, it'll be

given an optimized calling convention signature based on its specTypes and rettype fields.

The general principles are that:

• Primitive types get passed in int/float registers.

• Tuples of VecElement types get passed in vector registers.

• Structs get passed on the stack.

• Return values are handle similarly to arguments, with a size-cutoff at which they will instead be returned via a

hidden sret argument.

The total logic for this is implemented by get_specsig_function and deserves_sret.

Additionally, if the return type is a union, it may be returned as a pair of values (a pointer and a tag). If the union values

can be stack-allocated, then sufficient space to store themwill also be passed as a hidden first argument. It is up to the

callee whether the returned pointer will point to this space, a boxed object, or even other constant memory.

70.8 Julia Functions

This document will explain how functions, method definitions, andmethod tables work.

70.8. JULIA FUNCTIONS 925

Method Tables

Every function inJulia isageneric function. Ageneric function is conceptuallyasingle function, butconsistsofmanydef-

initions, ormethods. Themethodsofageneric functionarestored inamethodtable. Methodtables (typeMethodTable)

areassociatedwithTypeNames. ATypeNamedescribesa familyofparameterizedtypes. ForexampleComplex{Float32}

and Complex{Float64} share the same Complex type name object.

All objects in Julia are potentially callable, because every object has a type, which in turn has a TypeName.

Function calls

Giventhecallf(x,y), the followingstepsareperformed: first, themethodtable touse isaccessedastypeof(f).name.mt.

Second, anargument tuple type is formed,Tuple{typeof(f), typeof(x), typeof(y)}. Note that the typeof the

function itself is thefirst element. This is because the typemight haveparameters, and soneeds to takepart in dispatch.

This tuple type is looked up in themethod table.

This dispatch process is performed by jl_apply_generic, which takes two arguments: a pointer to an array of the

values f, x, and y, and the number of values (in this case 3).

Throughout the system, there are two kinds of APIs that handle functions and argument lists: those that accept the

function and arguments separately, and those that accept a single argument structure. In the first kind of API, the "ar-

guments" part does not contain information about the function, since that is passed separately. In the second kind of

API, the function is the first element of the argument structure.

For example, the following function for performing a call accepts just an args pointer, so the first element of the args

array will be the function to call:

jl_value_t *jl_apply(jl_value_t **args, uint32_t nargs)

This entry point for the same functionality accepts the function separately, so theargs array does not contain the func-

tion:

jl_value_t *jl_call(jl_function_t *f, jl_value_t **args, int32_t nargs);

Addingmethods

Given the above dispatch process, conceptually all that is needed to add a newmethod is (1) a tuple type, and (2) code

for the body of the method. jl_method_def implements this operation. jl_first_argument_datatype is called

to extract the relevantmethod table fromwhatwould be the type of the first argument. This ismuchmore complicated

than the corresponding procedure during dispatch, since the argument tuple type might be abstract. For example, we

can define:

(::Union{Foo{Int},Foo{Int8}})(x) = 0

which works since all possible matchingmethods would belong to the samemethod table.

Creating generic functions

Sinceeveryobject is callable, nothingspecial isneededtocreateageneric function. Thereforejl_new_generic_function

simply creates a new singleton (0 size) subtype of Function and returns its instance. A function can have amnemonic

"display name" which is used in debug info and when printing objects. For example the name of Base.sin is sin. By

convention, the name of the created type is the same as the function name, with a # prepended. So typeof(sin) is

Base.#sin.

926 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Closures

A closure is simply a callable object with field names corresponding to captured variables. For example, the following

code:

function adder(x)

return y->x+y

end

is lowered to (roughly):

struct ##1{T}

x::T

end

(_::##1)(y) = _.x + y

function adder(x)

return ##1(x)

end

Constructors

Aconstructor call is just a call toa type. The typeofmost types isDataType, so themethod table forDataType contains

most constructor definitions. Onewrinkle is the fallback definition that makes all types callable via convert:

(::Type{T}){T}(args...) = convert(T, args...)::T

In this definition the function type is abstract, which is not normally supported. Tomake this work, all subtypes of Type

(Type, UnionAll, Union, and DataType) currently share amethod table via special arrangement.

Builtins

The "builtin" functions, defined in the Coremodule, are:

=== typeof sizeof issubtype isa typeassert throw tuple getfield setfield! fieldtype

nfields isdefined arrayref arrayset arraysize applicable invoke apply_type _apply

_expr svec

These are all singleton objects whose types are subtypes of Builtin, which is a subtype of Function. Their purpose

is to expose entry points in the run time that use the "jlcall" calling convention:

jl_value_t *(jl_value_t*, jl_value_t**, uint32_t)

Themethodtablesofbuiltinsareempty. Instead, theyhaveasinglecatch-allmethodcacheentry (Tuple{Vararg{Any}})

whose jlcall fptr points to the correct function. This is kind of a hack but works reasonably well.

Keyword arguments

Keyword arguments work by associating a special, hidden function object with each method table that has definitions

with keyword arguments. This function is called the "keyword argument sorter" or "keyword sorter", or "kwsorter",

and is stored in the kwsorter field of MethodTable objects. Every definition in the kwsorter function has the same

arguments as some definition in the normal method table, except with a single Array argument prepended. This array

contains alternating symbols and values that represent the passed keyword arguments. The kwsorter's job is to move

70.8. JULIA FUNCTIONS 927

keyword arguments into their canonical positions based on name, plus evaluate and substite any needed default value

expressions. The result is a normal positional argument list, which is then passed to yet another function.

The easiest way to understand the process is to look at how a keyword argument method definition is lowered. The

code:

function circle(center, radius; color = black, fill::Bool = true, options...)

draw

end

actually produces three method definitions. The first is a function that accepts all arguments (including keywords) as

positional arguments, and includes the code for themethod body. It has an auto-generated name:

function #circle#1(color, fill::Bool, options, circle, center, radius)

draw

end

Thesecondmethod is anordinarydefinition for theoriginalcircle function,whichhandles thecasewherenokeyword

arguments are passed:

function circle(center, radius)

#circle#1(black, true, Any[], circle, center, radius)

end

This simply dispatches to the first method, passing along default values. Finally there is the kwsorter definition:

function (::Core.kwftype(typeof(circle)))(kw::Array, circle, center, radius)

options = Any[]

color = arg associated with :color, or black if not found

fill = arg associated with :fill, or true if not found

push remaining elements of kw into options array

#circle#1(color, fill, options, circle, center, radius)

end

The front end generates code to loop over the kw array and pick out arguments in the right order, evaluating default

expressions when an argument is not found.

The function Core.kwftype(t) fetches (and creates, if necessary) the field t.name.mt.kwsorter.

This design has the feature that call sites that don't use keyword arguments require no special handling; everything

works as if they were not part of the language at all. Call sites that do use keyword arguments are dispatched directly

to the called function's kwsorter. For example the call:

circle((0,0), 1.0, color = red; other...)

is lowered to:

kwfunc(circle)(Any[:color,red,other...], circle, (0,0), 1.0)

The unpacking procedure represented here as other... actually further unpacks each element of other, expecting

eachonetocontain twovalues (asymbolandavalue). kwfunc (also inCore) fetches thekwsorter for thecalled function.

Notice that the original circle function is passed through, to handle closures.

928 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Compiler efficiency issues

Generating a new type for every function has potentially serious consequences for compiler resource use when com-

bined with Julia's "specialize on all arguments by default" design. Indeed, the initial implementation of this design suf-

fered frommuch longer build and test times, highermemory use, and a system image nearly 2x larger than the baseline.

In a naive implementation, the problem is badenough tomake the systemnearly unusable. Several significant optimiza-

tions were needed tomake the design practical.

The first issue is excessive specialization of functions for different values of function-valued arguments. Many func-

tions simply "pass through" an argument to somewhere else, e.g. to another function or to a storage location. Such

functions do not need to be specialized for every closure thatmight be passed in. Fortunately this case is easy to distin-

guish by simply considering whether a function calls one of its arguments (i.e. the argument appears in "head position"

somewhere). Performance-critical higher-order functions like map certainly call their argument function and so will

still be specialized as expected. This optimization is implemented by recording which arguments are called during the

analyze-variables pass in the front end. When cache_method sees an argument in the Function type hierarchy

passed to a slot declared asAny orFunction, it pretends the slotwas declared asANY (the "don't specialize" hint). This

heuristic seems to be extremely effective in practice.

The next issue concerns the structure of method cache hash tables. Empirical studies show that the vast majority of

dynamically-dispatched calls involve oneor twoarguments. In turn,manyof these cases canbe resolvedby considering

only the first argument. (Aside: proponents of single dispatch would not be surprised by this at all. However, this argu-

ment means "multiple dispatch is easy to optimize in practice", and that we should therefore use it, not "we should use

single dispatch"!) So the method cache uses the type of the first argument as its primary key. Note, however, that this

corresponds to the second element of the tuple type for a function call (the first element being the type of the function

itself). Typically, type variation in head position is extremely low – indeed, themajority of functions belong to singleton

types with no parameters. However, this is not the case for constructors, where a single method table holds construc-

tors for every type. Therefore the Typemethod table is special-cased to use the first tuple type element instead of the

second.

The front end generates type declarations for all closures. Initially, this was implemented by generating normal type

declarations. However, this produced an extremely large number of constructors, all of whichwere trivial (simply pass-

ing all arguments through to new). Since methods are partially ordered, inserting all of these methods is O(n^2), plus

there are just too many of them to keep around. This was optimized by generating composite_type expressions di-

rectly (bypassing default constructor generation), and using new directly to create closure instances. Not the prettiest

thing ever, but you dowhat you gotta do.

The next problem was the @test macro, which generated a 0-argument closure for each test case. This is not really

necessary, since each test case is simply run once in place. Therefore I modified @test to expand to a try-catch block

that records the test result (true, false, or exception raised) and calls the test suite handler on it.

However this caused a new problem. Whenmany tests are grouped together in a single function, e.g. a single top level

expression, or some other test grouping function, that function could have a very large number of exception handlers.

This triggered a kind of dataflow analysis worst case, where type inference spun around for minutes enumerating pos-

sible paths through the forest of handlers. This was fixed by simply bailing out of type inference when it encounters

more than some number of handlers (currently 25). Presumably no performance-critical function will have more than

25 exception handlers. If one ever does, I'mwilling to raise the limit to 26.

A minor issue occurs during the bootstrap process due to storing all constructors in a single method table. In the sec-

ond bootstrap step, where inference.ji is compiled using inference0.ji, constructors for inference0's types

remain in the table, so there are still references to the old inferencemodule and inference.ji is 2x the size it should

be. This was fixed in dump.c by filtering definitions from "replaced modules" out of method tables and caches before

saving a system image. A "replaced module" is one that satisfies the condition m != jl_get_global(m->parent,

m->name) – in other words, some newermodule has taken its name and place.

Another type inference worst case was triggered by the following code from the QuadGK.jl package, formerly part of

Base:

https://github.com/JuliaMath/QuadGK.jl

70.9. BASE.CARTESIAN 929

function do_quadgk(f, s, n, ::Type{Tw}, abstol, reltol, maxevals, nrm) where Tw

if eltype(s) <: Real # check for infinite or semi-infinite intervals

s1 = s[1]; s2 = s[end]; inf1 = isinf(s1); inf2 = isinf(s2)

if inf1 || inf2

if inf1 && inf2 # x = t/(1-t^2) coordinate transformation

return do_quadgk(t -> begin t2 = t*t; den = 1 / (1 - t2);

f(t*den) * (1+t2)*den*den; end,

map(x -> isinf(x) ? copysign(one(x), x) : 2x / (1+hypot(1,2x)),

s),↪→

n, Tw, abstol, reltol, maxevals, nrm)

end

s0,si = inf1 ? (s2,s1) : (s1,s2)

if si < 0 # x = s0 - t/(1-t)

return do_quadgk(t -> begin den = 1 / (1 - t);

f(s0 - t*den) * den*den; end,

reverse!(map(x -> 1 / (1 + 1 / (s0 - x)), s)),

n, Tw, abstol, reltol, maxevals, nrm)

else # x = s0 + t/(1-t)

return do_quadgk(t -> begin den = 1 / (1 - t);

f(s0 + t*den) * den*den; end,

map(x -> 1 / (1 + 1 / (x - s0)), s),

n, Tw, abstol, reltol, maxevals, nrm)

end

end

end

This code has a 3-way tail recursion, where each call wraps the current function argument f in a different new closure.

Inferencemust consider 3^n (where n is the call depth) possible signatures. This blows upway too quickly, so logic was

added to typeinf_uncached to immediately widen any argument that is a subtype of Function and that grows in

depth down the stack.

70.9 Base.Cartesian

The (non-exported) Cartesian module provides macros that facilitate writing multidimensional algorithms. It is hoped

that Cartesian will not, in the long term, be necessary; however, at present it is one of the few ways to write compact

and performantmultidimensional code.

Principles of usage

A simple example of usage is:

@nloops 3 i A begin

s += @nref 3 A i

end

which generates the following code:

for i_3 = 1:size(A,3)

for i_2 = 1:size(A,2)

for i_1 = 1:size(A,1)

s += A[i_1,i_2,i_3]

end

end

end

930 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

In general, Cartesian allows you to write generic code that contains repetitive elements, like the nested loops in this

example. Other applications include repeated expressions (e.g., loop unwinding) or creating function callswith variable

numbers of arguments without using the "splat" construct (i...).

Basic syntax

The (basic) syntax of @nloops is as follows:

• The first argumentmust be an integer (not a variable) specifying the number of loops.

• The second argument is the symbol-prefix used for the iterator variable. Here we used i, and variables i_1,

i_2, i_3were generated.

• The third argument specifies the range for each iterator variable. If you use a variable (symbol) here, it's taken

as 1:size(A,dim). More flexibly, you can use the anonymous-function expression syntax described below.

• The last argument is the body of the loop. Here, that's what appears between the begin...end.

There are some additional features of @nloops described in the reference section.

@nref followsa similar pattern, generatingA[i_1,i_2,i_3] from@nref 3 A i. Thegeneral practice is to read from

left to right,which iswhy@nloops is@nloops 3 i A expr (as infor i_2 = 1:size(A,2), wherei_2 is to the left

and the range is to the right) whereas @nref is @nref 3 A i (as in A[i_1,i_2,i_3], where the array comes first).

If you're developing codewith Cartesian, youmay find that debugging is easier when you examine the generated code,

using macroexpand:

julia> macroexpand(:(@nref 2 A i))

:(A[i_1, i_2])

Supplying the number of expressions

Thefirst argument tobothof thesemacros is thenumberof expressions,whichmust bean integer. Whenyou'rewriting

a function that you intend to work in multiple dimensions, this may not be something you want to hard-code. If you're

writingcodethatyouneedtoworkwitholderJuliaversions, currentlyyoushoulduse the@ngeneratemacrodescribed

in an older version of this documentation.

Starting in Julia 0.4-pre, the recommended approach is to use a @generated function. Here's an example:

@generated function mysum(A::Array{T,N}) where {T,N}

quote

s = zero(T)

@nloops $N i A begin

s += @nref $N A i

end

s

end

end

Naturally, you can also prepare expressions or perform calculations before the quote block.

https://docs.julialang.org/en/release-0.3/devdocs/cartesian/#supplying-the-number-of-expressions

70.9. BASE.CARTESIAN 931

Anonymous-function expressions asmacro arguments

Perhaps the single most powerful feature in Cartesian is the ability to supply anonymous-function expressions that

get evaluated at parsing time. Let's consider a simple example:

@nexprs 2 j->(i_j = 1)

@nexprs generates n expressions that follow a pattern. This codewould generate the following statements:

i_1 = 1

i_2 = 1

In each generated statement, an "isolated" j (the variable of the anonymous function) gets replaced by values in the

range1:2. Generally speaking,CartesianemploysaLaTeX-like syntax. This allowsyou todomathon the indexj. Here's

an example computing the strides of an array:

s_1 = 1

@nexprs 3 j->(s_{j+1} = s_j * size(A, j))

would generate expressions

s_1 = 1

s_2 = s_1 * size(A, 1)

s_3 = s_2 * size(A, 2)

s_4 = s_3 * size(A, 3)

Anonymous-function expressions havemany uses in practice.

Macro reference Base.Cartesian.@nloops –Macro.

@nloops N itersym rangeexpr bodyexpr

@nloops N itersym rangeexpr preexpr bodyexpr

@nloops N itersym rangeexpr preexpr postexpr bodyexpr

GenerateNnested loops, usingitersymas theprefix for the iterationvariables. rangeexprmaybeananonymous-

function expression, or a simple symbol var in which case the range is indices(var, d) for dimension d.

Optionally, youcanprovide "pre" and "post" expressions. Thesegetexecutedfirst and last, respectively, in thebody

of each loop. For example:

@nloops 2 i A d -> j_d = min(i_d, 5) begin

s += @nref 2 A j

end

would generate:

for i_2 = indices(A, 2)

j_2 = min(i_2, 5)

for i_1 = indices(A, 1)

j_1 = min(i_1, 5)

s += A[j_1, j_2]

end

end

932 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

If youwant just a post-expression, supplynothing for the pre-expression. Using parentheses and semicolons, you

can supply multi-statement expressions.

source

Base.Cartesian.@nref –Macro.

@nref N A indexexpr

Generateexpressions likeA[i_1, i_2, ...]. indexexprcaneitherbean iteration-symbolprefix, orananonymous-

function expression.

julia> @macroexpand Base.Cartesian.@nref 3 A i

:(A[i_1, i_2, i_3])

source

Base.Cartesian.@nextract –Macro.

@nextract N esym isym

Generate N variables esym_1, esym_2, ..., esym_N to extract values from isym. isym can be either a Symbol or

anonymous-function expression.

@nextract 2 x ywould generate

x_1 = y[1]

x_2 = y[2]

while @nextract 3 x d->y[2d-1] yields

x_1 = y[1]

x_2 = y[3]

x_3 = y[5]

source

Base.Cartesian.@nexprs –Macro.

@nexprs N expr

Generate N expressions. expr should be an anonymous-function expression.

julia> @macroexpand Base.Cartesian.@nexprs 4 i -> y[i] = A[i+j]

quote

y[1] = A[1 + j]

y[2] = A[2 + j]

y[3] = A[3 + j]

y[4] = A[4 + j]

end

source

Base.Cartesian.@ncall –Macro.

@ncall N f sym...

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/cartesian.jl#L9-L37
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/cartesian.jl#L72-L82
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/cartesian.jl#L142-L159
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/cartesian.jl#L118-L132

70.9. BASE.CARTESIAN 933

Generate a function call expression. sym represents any number of function arguments, the last of which may be

an anonymous-function expression and is expanded into N arguments.

For example @ncall 3 func a generates

func(a_1, a_2, a_3)

while @ncall 2 func a b i->c[i] yields

func(a, b, c[1], c[2])

source

Base.Cartesian.@ntuple –Macro.

@ntuple N expr

GeneratesanN-tuple. @ntuple 2 iwouldgenerate(i_1, i_2), and@ntuple 2 k->k+1wouldgenerate(2,3).

source

Base.Cartesian.@nall –Macro.

@nall N expr

Checkwhether all of the expressions generated by the anonymous-function expression expr evaluate to true.

@nall 3 d->(i_d > 1) would generate the expression (i_1 > 1 && i_2 > 1 && i_3 > 1). This can be

convenient for bounds-checking.

source

Base.Cartesian.@nany –Macro.

@nany N expr

Checkwhether any of the expressions generated by the anonymous-function expression expr evaluate to true.

@nany 3 d->(i_d > 1)would generate the expression (i_1 > 1 || i_2 > 1 || i_3 > 1).

source

Base.Cartesian.@nif –Macro.

@nif N conditionexpr expr

@nif N conditionexpr expr elseexpr

Generates a sequence of if ... elseif ... else ... end statements. For example:

@nif 3 d->(i_d >= size(A,d)) d->(error("Dimension ", d, " too big")) d->println("All OK")

would generate:

if i_1 > size(A, 1)

error("Dimension ", 1, " too big")

elseif i_2 > size(A, 2)

error("Dimension ", 2, " too big")

else

println("All OK")

end

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/cartesian.jl#L92-L106
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/cartesian.jl#L215-L220
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/cartesian.jl#L174-L182
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/cartesian.jl#L195-L202
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/cartesian.jl#L230-L247

934 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

70.10 Talking to the compiler (the :metamechanism)

In some circumstances, onemightwish to provide hints or instructions that a givenblock of codehas special properties:

you might always want to inline it, or you might want to turn on special compiler optimization passes. Starting with

version 0.4, Julia has a convention that these instructions can be placed inside a :meta expression, which is typically

(but not necessarily) the first expression in the body of a function.

:meta expressions are created withmacros. As an example, consider the implementation of the @inlinemacro:

macro inline(ex)

esc(isa(ex, Expr) ? pushmeta!(ex, :inline) : ex)

end

Here, ex is expected to be an expression defining a function. A statement like this:

@inline function myfunction(x)

x*(x+3)

end

gets turned into an expression like this:

quote

function myfunction(x)

Expr(:meta, :inline)

x*(x+3)

end

end

Base.pushmeta!(ex, :symbol, args...) appends :symbol to the end of the :meta expression, creating a new

:meta expression if necessary. If args is specified, a nested expression containing :symbol and these arguments is

appended instead, which can be used to specify additional information.

Touse themetadata, youhave toparse these:meta expressions. If your implementation canbeperformedwithin Julia,

Base.popmeta! is veryhandy: Base.popmeta!(body, :symbol)will scana functionbody expression (onewithout

the function signature) for the first :meta expression containing :symbol, extract any arguments, and return a tuple

(found::Bool, args::Array{Any}). If themetadata did not have any arguments, or :symbolwas not found, the

args array will be empty.

Not yet provided is a convenient infrastructure for parsing :meta expressions fromC++.

70.11 SubArrays

Julia's SubArray type is a container encoding a "view" of a parent AbstractArray. This page documents some of the

design principles and implementation of SubArrays.

Indexing: cartesian vs. linear indexing

Broadly speaking, there are twomainways to accessdata in anarray. Thefirst, often called cartesian indexing, usesN in-

dexes for an N -dimensional AbstractArray. For example, amatrix A (2-dimensional) can be indexed in cartesian style

as A[i,j]. The second indexingmethod, referred to as linear indexing, uses a single index even for higher-dimensional

objects. For example, if A = reshape(1:12, 3, 4), then the expression A[5] returns the value 5. Julia allows you

tocombine these stylesof indexing: for example, a3darrayA3 canbe indexedasA3[i,j], inwhich casei is interpreted

as a cartesian index for the first dimension, and j is a linear index over dimensions 2 and 3.

70.11. SUBARRAYS 935

For Arrays, linear indexing appeals to the underlying storage format: an array is laid out as a contiguous block ofmem-

ory, and hence the linear index is just the offset (+1) of the corresponding entry relative to the beginning of the array.

However, this is not true for many other AbstractArray types: examples include SparseMatrixCSC, arrays that re-

quire somekindof computation (suchas interpolation), and the typeunderdiscussionhere,SubArray. For these types,

the underlying information is more naturally described in terms of cartesian indexes.

Youcanmanuallyconvert fromacartesian indextoa linear indexwithsub2ind, andviceversausingind2sub. getindex

and setindex! functions for AbstractArray typesmay include similar operations.

While converting from a cartesian index to a linear index is fast (it's just multiplication and addition), converting from a

linear index to a cartesian index is very slow: it relies on the div operation, which is one of the slowest low-level opera-

tions you can performwith a CPU. For this reason, any code that deals with AbstractArray types is best designed in

terms of cartesian, rather than linear, indexing.

Index replacement

Consider making 2d slices of a 3d array:

S1 = view(A, :, 5, 2:6)

S2 = view(A, 5, :, 2:6)

viewdrops"singleton"dimensions (ones thatarespecifiedbyanInt), sobothS1andS2aretwo-dimensionalSubArrays.

Consequently, the natural way to index these is with S1[i,j]. To extract the value from the parent array A, the natural

approach is to replace S1[i,j]with A[i,5,(2:6)[j]] and S2[i,j]with A[5,i,(2:6)[j]].

The key feature of the design of SubArrays is that this index replacement can be performedwithout any runtime over-

head.

SubArray design

Type parameters and fields

The strategy adopted is first and foremost expressed in the definition of the type:

struct SubArray{T,N,P,I,L} <: AbstractArray{T,N}

parent::P

indexes::I

offset1::Int # for linear indexing and pointer, only valid when L==true

stride1::Int # used only for linear indexing

...

end

SubArray has 5 type parameters. The first two are the standard element type and dimensionality. The next is the type

of the parent AbstractArray. The most heavily-used is the fourth parameter, a Tuple of the types of the indices for

each dimension. The final one, L, is only provided as a convenience for dispatch; it's a boolean that represents whether

the index types support fast linear indexing. More on that later.

If inourexampleaboveA is aArray{Float64, 3}, ourS1caseabovewouldbeaSubArray{Int64,2,Array{Int64,3},Tuple{Colon,Int64,UnitRange{Int64}},false}.

Note in particular the tuple parameter, which stores the types of the indices used to create S1. Likewise,

julia> S1.indexes

(Colon(),5,2:6)

Storing these values allows index replacement, and having the types encoded as parameters allows one to dispatch to

efficient algorithms.

936 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Index translation

Performing index translation requires that youdodifferent things for different concreteSubArray types. For example,

forS1, oneneeds toapply thei,j indices to thefirst and thirddimensionsof theparent array,whereas forS2oneneeds

to apply them to the second and third. The simplest approach to indexing would be to do the type-analysis at runtime:

parentindexes = Array{Any}(0)

for thisindex in S.indexes

...

if isa(thisindex, Int)

Don't consume one of the input indexes

push!(parentindexes, thisindex)

elseif isa(thisindex, AbstractVector)

Consume an input index

push!(parentindexes, thisindex[inputindex[j]])

j += 1

elseif isa(thisindex, AbstractMatrix)

Consume two input indices

push!(parentindexes, thisindex[inputindex[j], inputindex[j+1]])

j += 2

elseif ...

end

S.parent[parentindexes...]

Unfortunately, this would be disastrous in terms of performance: each element access would allocate memory, and

involves the running of a lot of poorly-typed code.

The better approach is to dispatch to specificmethods to handle each type of stored index. That's what reindex does:

it dispatches on the type of the first stored index and consumes the appropriate number of input indices, and then it

recurses on the remaining indices. In the case of S1, this expands to

Base.reindex(S1, S1.indexes, (i, j)) == (i, S1.indexes[2], S1.indexes[3][j])

for any pair of indices (i,j) (except CartesianIndexs and arrays thereof, see below).

This is the core of a SubArray; indexing methods depend upon reindex to do this index translation. Sometimes,

though, we can avoid the indirection andmake it even faster.

Linear indexing

Linear indexing can be implemented efficiently when the entire array has a single stride that separates successive el-

ements, starting from some offset. This means that we can pre-compute these values and represent linear indexing

simply as an addition andmultiplication, avoiding the indirection of reindex and (more importantly) the slow compu-

tation of the cartesian coordinates entirely.

For SubArray types, the availability of efficient linear indexing is based purely on the types of the indices, and does

not depend on values like the size of the parent array. You can ask whether a given set of indices supports fast linear

indexing with the internal Base.viewindexing function:

julia> Base.viewindexing(S1.indexes)

IndexCartesian()

julia> Base.viewindexing(S2.indexes)

IndexLinear()

70.11. SUBARRAYS 937

This is computedduringconstructionof theSubArrayandstored in theL typeparameterasaboolean thatencodes fast

linear indexingsupport. Whilenotstrictlynecessary, itmeansthatwecandefinedispatchdirectlyonSubArray{T,N,A,I,true}

without any intermediaries.

Since this computation doesn't depend on runtime values, it can miss some cases in which the stride happens to be

uniform:

julia> A = reshape(1:4*2, 4, 2)

4×2 Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}}:

1 5

2 6

3 7

4 8

julia> diff(A[2:2:4,:][:])

3-element Array{Int64,1}:

2

2

2

A view constructed as view(A, 2:2:4, :) happens to have uniform stride, and therefore linear indexing indeed

could be performed efficiently. However, success in this case depends on the size of the array: if the first dimension

insteadwere odd,

julia> A = reshape(1:5*2, 5, 2)

5×2 Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}}:

1 6

2 7

3 8

4 9

5 10

julia> diff(A[2:2:4,:][:])

3-element Array{Int64,1}:

2

3

2

thenA[2:2:4,:] doesnothaveuniformstride, sowecannot guaranteeefficient linear indexing. Sincewehave tobase

this decision based purely on types encoded in the parameters of the SubArray, S = view(A, 2:2:4, :) cannot

implement efficient linear indexing.

A few details

• Note that theBase.reindex function is agnostic to the types of the input indices; it simply determines howand

where the stored indices should be reindexed. It not only supports integer indices, but it supports non-scalar

indexing, too. This means that views of views don't need two levels of indirection; they can simply re-compute

the indices into the original parent array!

• Hopefully by now it's fairly clear that supporting slicesmeans that the dimensionality, given by the parameter N,

is not necessarily equal to the dimensionality of the parent array or the length of the indexes tuple. Neither do

user-supplied indices necessarily line up with entries in the indexes tuple (e.g., the second user-supplied index

might correspond to the third dimension of the parent array, and the third element in the indexes tuple).

938 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Whatmight be less obvious is that the dimensionality of the stored parent arraymust be equal to the number of

effective indices in the indexes tuple. Some examples:

A = reshape(1:35, 5, 7) # A 2d parent Array

S = view(A, 2:7) # A 1d view created by linear indexing

S = view(A, :, :, 1:1) # Appending extra indices is supported

Naively, you'd think you could just set S.parent = A and S.indexes = (:,:,1:1), but supporting this dra-

matically complicates the reindexing process, especially for views of views. Not only do you need to dispatch on

the types of the stored indices, but you need to examine whether a given index is the final one and "merge" any

remaining stored indices together. This is not an easy task, and even worse: it's slow since it implicitly depends

upon linear indexing.

Fortunately, this is precisely the computation that ReshapedArray performs, and it does so linearly if possi-

ble. Consequently, view ensures that the parent array is the appropriate dimensionality for the given indices by

reshaping it if needed. The inner SubArray constructor ensures that this invariant is satisfied.

• CartesianIndex and arrays thereof throw a nasty wrench into the reindex scheme. Recall that reindex

simplydispatchesonthe typeof thestored indices inorder todeterminehowmanypassed indices shouldbeused

andwhere they should go. ButwithCartesianIndex, there's no longer a one-to-one correspondencebetween

the number of passed arguments and the number of dimensions that they index into. If we return to the above

example ofBase.reindex(S1, S1.indexes, (i, j)), you can see that the expansion is incorrect fori, j

= CartesianIndex(), CartesianIndex(2,1). It should skip theCartesianIndex()entirely and return:

(CartesianIndex(2,1)[1], S1.indexes[2], S1.indexes[3][CartesianIndex(2,1)[2]])

Instead, though, we get:

(CartesianIndex(), S1.indexes[2], S1.indexes[3][CartesianIndex(2,1)])

Doing this correctly would require combined dispatch on both the stored and passed indices across all combina-

tionsofdimensionalities inan intractablemanner. Assuch,reindexmustneverbecalledwithCartesianIndex

indices. Fortunately, the scalar case is easily handledbyfirst flattening theCartesianIndex arguments toplain

integers. Arrays ofCartesianIndex, however, cannot be split apart into orthogonal pieces so easily. Before at-

tempting to use reindex, viewmust ensure that there are no arrays of CartesianIndex in the argument list.

If there are, it can simply "punt" by avoiding the reindex calculation entirely, constructing a nested SubArray

with two levels of indirection instead.

70.12 System Image Building

Building the Julia system image

Julia ships with a preparsed system image containing the contents of the Basemodule, named sys.ji. This file is also

precompiled into a shared library called sys.{so,dll,dylib} on as many platforms as possible, so as to give vastly

improved startup times. On systems that do not ship with a precompiled system image file, one can be generated from

the source files shipped in Julia's DATAROOTDIR/julia/base folder.

This operation is useful for multiple reasons. A user may:

• Build a precompiled shared library system image on a platform that did not ship with one, thereby improving

startup times.

• Modify Base, rebuild the system image and use the new Base next time Julia is started.

• Include a userimg.jl file that includes packages into the system image, thereby creating a system image that

has packages embedded into the startup environment.

70.13. WORKINGWITH LLVM 939

Julianowshipswitha script thatautomates the tasksofbuilding thesystem image,wittinglynamedbuild_sysimg.jl

that lives in DATAROOTDIR/julia/. That is, to include it into a current Julia session, type:

include(joinpath(JULIA_HOME, Base.DATAROOTDIR, "julia", "build_sysimg.jl"))

This will include a build_sysimg() function:

BuildSysImg.build_sysimg – Function.

build_sysimg(sysimg_path=default_sysimg_path(), cpu_target="native", userimg_path=nothing;

force=false)

Rebuild the system image. Store it in sysimg_path, which defaults to a file named sys.ji that sits in the same

folderaslibjulia.{so,dylib}, exceptonWindowswhere itdefaults toJULIA_HOME/../lib/julia/sys.ji.

Use the cpu instruction set given by cpu_target. Valid CPU targets are the same as for the -C option to julia,

or the -march option to gcc. Defaults to native, which means to use all CPU instructions available on the cur-

rent processor. Include theuser imagefile givenbyuserimg_path, which should contain directives suchasusing

MyPackage to include that package in the new system image. New system image will not replace an older image

unless force is set to true.

source

Note that this file can also be run as a script itself, with command line arguments taking the place of arguments passed

to thebuild_sysimg function. For example, to build a system image in/tmp/sys.{so,dll,dylib}, with thecore2

CPU instruction set, a user image of ~/userimg.jl and force set to true, one would execute:

julia build_sysimg.jl /tmp/sys core2 ~/userimg.jl --force

70.13 Workingwith LLVM

This is not a replacement for the LLVMdocumentation, but a collection of tips for working on LLVM for Julia.

Overview of Julia to LLVM Interface

Julia statically links in LLVMby default. Build with USE_LLVM_SHLIB=1 to link dynamically.

The code for lowering Julia AST to LLVM IR or interpreting it directly is in directory src/.

File Description

builtins.c Builtin functions

ccall.cpp Lowering ccall

cgutils.cpp Lowering utilities, notably for array and tuple accesses

codegen.cpp Top-level of code generation, pass list, lowering builtins

debuginfo.cpp Tracks debug information for JIT code

disasm.cpp Handles native object file and JIT code diassembly

gf.c Generic functions

intrinsics.cpp Lowering intrinsics

llvm-simdloop.cpp Custom LLVMpass for @simd

sys.c I/O and operating system utility functions

Some of the .cpp files form a group that compile to a single object.

The difference between an intrinsic and a builtin is that a builtin is a first class function that can be used like any other

Julia function. An intrinsic can operate only on unboxed data, and therefore its arguments must be statically typed.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/doc/../contrib/build_sysimg.jl#L15-L26

940 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Alias Analysis

Julia currently uses LLVM's TypeBasedAlias Analysis. To find the comments that document the inclusion relationships,

look for static MDNode* in src/codegen.cpp.

The -O option enables LLVM's Basic Alias Analysis.

Building Julia with a different version of LLVM

ThedefaultversionofLLVMisspecified indeps/Versions.make. Youcanoverride itbycreatingafilecalledMake.user

in the top-level directory and adding a line to it such as:

LLVM_VER = 3.5.0

Besides the LLVMreleasenumerals, you canalso useLLVM_VER = svn to bulid against the latest development version

of LLVM.

Passing options to LLVM

You can pass options to LLVM using debug builds of Julia. To create a debug build, run make debug. The resulting

executable is usr/bin/julia-debug. You can pass LLVM options to this executable via the environment variable

JULIA_LLVM_ARGS. Here are example settings using bash syntax:

• export JULIA_LLVM_ARGS = -print-after-all dumps IR after each pass.

• export JULIA_LLVM_ARGS = -debug-only=loop-vectorize dumps LLVM DEBUG(...) diagnostics for

loop vectorizer if you built Julia with LLVM_ASSERTIONS=1. Otherwise you will get warnings about "Unknown

command line argument". Counter-intuitively, building Julia with LLVM_DEBUG=1 is not enough to dump DEBUG

diagnostics from a pass.

Improving LLVMoptimizations for Julia

Improving LLVM code generation usually involves either changing Julia lowering to bemore friendly to LLVM's passes,

or improving a pass.

If you are planning to improve a pass, be sure to read the LLVM developer policy. The best strategy is to create a code

example in a formwhere you can use LLVM's opt tool to study it and the pass of interest in isolation.

1. Create an example Julia code of interest.

2. Use JULIA_LLVM_ARGS = -print-after-all to dump the IR.

3. Pick out the IR at the point just before the pass of interest runs.

4. Strip the debugmetadata and fix up the TBAAmetadata by hand.

The last step is labor intensive. Suggestions on a better waywould be appreciated.

70.14 printf() and stdio in the Julia runtime

Libuvwrappers for stdio

julia.h defines libuv wrappers for the stdio.h streams:

http://llvm.org/docs/LangRef.html#tbaa-metadata
http://llvm.org/docs/AliasAnalysis.html#the-basicaa-pass
http://llvm.org/docs/DeveloperPolicy.html
http://docs.libuv.org

70.14. PRINTF() AND STDIO IN THE JULIA RUNTIME 941

uv_stream_t *JL_STDIN;

uv_stream_t *JL_STDOUT;

uv_stream_t *JL_STDERR;

... and corresponding output functions:

int jl_printf(uv_stream_t *s, const char *format, ...);

int jl_vprintf(uv_stream_t *s, const char *format, va_list args);

These printf functions are used by the .c files in the src/ and ui/ directories wherever stdio is needed to ensure

that output buffering is handled in a unifiedway.

In special cases, like signal handlers, where the full libuv infrastructure is too heavy, jl_safe_printf() can be used

to write(2) directly to STDERR_FILENO:

void jl_safe_printf(const char *str, ...);

Interface between JL_STD* and Julia code

Base.STDIN, Base.STDOUT and Base.STDERR are bound to the JL_STD* libuv streams defined in the runtime.

Julia's __init__() function (in base/sysimg.jl) calls reinit_stdio() (in base/stream.jl) to create Julia ob-

jects for Base.STDIN, Base.STDOUT and Base.STDERR.

reinit_stdio() uses ccall to retrieve pointers to JL_STD* and calls jl_uv_handle_type() to inspect the type

of each stream. It then creates a Julia Base.IOStream, Base.TTY or Base.PipeEndpoint object to represent each

stream, e.g.:

$ julia -e 'println(typeof((STDIN, STDOUT, STDERR)))'

Tuple{Base.TTY,Base.TTY,Base.TTY}

$ julia -e 'println(typeof((STDIN, STDOUT, STDERR)))' < /dev/null 2>/dev/null

Tuple{IOStream,Base.TTY,IOStream}

$ echo hello | julia -e 'println(typeof((STDIN, STDOUT, STDERR)))' | cat

Tuple{Base.PipeEndpoint,Base.PipeEndpoint,Base.TTY}

The Base.read() and Base.write()methods for these streams use ccall to call libuv wrappers in src/jl_uv.c,

e.g.:

stream.jl: function write(s::IO, p::Ptr, nb::Integer)

-> ccall(:jl_uv_write, ...)

jl_uv.c: -> int jl_uv_write(uv_stream_t *stream, ...)

-> uv_write(uvw, stream, buf, ...)

printf() during initialization

The libuv streams relied upon by jl_printf() etc., are not available until midway through initialization of the run-

time (see init.c, init_stdio()). Error messages or warnings that need to be printed before this are routed to the

standard C library fwrite() function by the followingmechanism:

In sys.c, the JL_STD* stream pointers are statically initialized to integer constants: STD*_FILENO (0, 1 and 2).

In jl_uv.c the jl_uv_puts() function checks its uv_stream_t* stream argument and calls fwrite() if stream

is set to STDOUT_FILENO or STDERR_FILENO.

This allows for uniform use of jl_printf() throughout the runtime regardless of whether or not any particular piece

of code is reachable before initialization is complete.

942 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Legacy ios.c library

Thesrc/support/ios.c library is inherited fromfemtolisp. Itprovidescross-platformbufferedfile IOand in-memory

temporary buffers.

ios.c is still used by:

• src/flisp/*.c

• src/dump.c – for serialization file IO and for memory buffers.

• base/iostream.jl – for file IO (see base/fs.jl for libuv equivalent).

Use ofios.c in thesemodules ismostly self-contained and separated from the libuv I/O system. However, there is one

place where femtolisp calls through to jl_printf()with a legacy ios_t stream.

There is a hack in ios.h that makes the ios_t.bm field line up with the uv_stream_t.type and ensures that the

values used for ios_t.bm to not overlap with valid UV_HANDLE_TYPE values. This allows uv_stream_t pointers to

point to ios_t streams.

This isneededbecausejl_printf()callerjl_static_show() ispassedanios_tstreambyfemtolisp'sfl_print()

function. Julia's jl_uv_puts() function has special handling for this:

if (stream->type > UV_HANDLE_TYPE_MAX) {

return ios_write((ios_t*)stream, str, n);

}

70.15 Bounds checking

Like many modern programming languages, Julia uses bounds checking to ensure program safety when accessing ar-

rays. In tight inner loops or other performance critical situations, youmaywish to skip these bounds checks to improve

runtime performance. For instance, in order to emit vectorized (SIMD) instructions, your loop body cannot contain

branches, and thus cannot contain bounds checks. Consequently, Julia includes an @inbounds(...) macro to tell the

compiler to skip such bounds checks within the given block. For the built-in Array type, the magic happens inside the

arrayref and arrayset intrinsics. User-defined array types instead use the @boundscheck(...) macro to achieve

context-sensitive code selection.

Eliding bounds checks

The@boundscheck(...)macromarksblocksof code thatperformbounds checking. Whensuchblocks appear inside

of an@inbounds(...) block, the compiler removes these blocks. When the @boundscheck(...) is nested inside of

a calling function containing an@inbounds(...), the compilerwill remove the@boundscheck block only if it is inlined

into the calling function. For example, youmight write themethod sum as:

function sum(A::AbstractArray)

r = zero(eltype(A))

for i = 1:length(A)

@inbounds r += A[i]

end

return r

end

With a custom array-like type MyArray having:

https://github.com/JeffBezanson/femtolisp
https://github.com/JuliaLang/julia/blob/master/src/flisp/print.c#L654
https://github.com/JuliaLang/julia/blob/master/src/flisp/print.c#L654

70.15. BOUNDS CHECKING 943

@inline getindex(A::MyArray, i::Real) = (@boundscheck checkbounds(A,i); A.data[to_index(i)])

Thenwhengetindex is inlined intosum, the call tocheckbounds(A,i)will be elided. If your function containsmulti-

ple layers of inlining, only @boundscheck blocks at most one level of inlining deeper are eliminated. The rule prevents

unintended changes in program behavior from code further up the stack.

Propagating inbounds

Theremaybecertainscenarioswhere forcode-organizationreasonsyouwantmorethanone layerbetweenthe@inbounds

and@boundscheckdeclarations. For instance, thedefaultgetindexmethodshavethechaingetindex(A::AbstractArray,

i::Real) calls getindex(IndexStyle(A), A, i) calls _getindex(::IndexLinear, A, i).

To override the "one layer of inlining" rule, a function may be marked with @propagate_inbounds to propagate an

inbounds context (or out of bounds context) through one additional layer of inlining.

The bounds checking call hierarchy

The overall hierarchy is:

• checkbounds(A, I...) which calls

– checkbounds(Bool, A, I...) which calls

* checkbounds_indices(Bool, indices(A), I)which recursively calls

· checkindex for each dimension

Here A is the array, and I contains the "requested" indices. indices(A) returns a tuple of "permitted" indices of A.

checkbounds(A, I...) throws an error if the indices are invalid, whereas checkbounds(Bool, A, I...) re-

turns false in that circumstance. checkbounds_indices discards any information about the array other than its

indices tuple, and performs a pure indices-vs-indices comparison: this allows relatively few compiled methods to

serve a huge variety of array types. Indices are specified as tuples, and are usually compared in a 1-1 fashion with indi-

vidual dimensions handled by calling another important function, checkindex: typically,

checkbounds_indices(Bool, (IA1, IA...), (I1, I...)) = checkindex(Bool, IA1, I1) &

checkbounds_indices(Bool, IA, I)

so checkindex checks a single dimension. All of these functions, including the unexported checkbounds_indices

have docstrings accessible with ? .

If you have to customize bounds checking for a specific array type, you should specialize checkbounds(Bool, A,

I...). However, in most cases you should be able to rely on checkbounds_indices as long as you supply useful

indices for your array type.

If you have novel index types, first consider specializing checkindex, which handles a single index for a particular di-

mension of an array. If you have a custom multidimensional index type (similar to CartesianIndex), then you may

have to consider specializing checkbounds_indices.

Note this hierarchy has been designed to reduce the likelihood of method ambiguities. We try to make checkbounds

theplace tospecializeonarray type, andtry toavoidspecializationson index types; conversely,checkindex is intended

to be specialized only on index type (especially, the last argument).

944 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

70.16 Propermaintenance and care of multi-threading locks

The following strategies are used to ensure that the code is dead-lock free (generally by addressing the 4th Coffman

condition: circular wait).

1. structure code such that only one lock will need to be acquired at a time

2. always acquire shared locks in the same order, as given by the table below

3. avoid constructs that expect to need unrestricted recursion

Locks

Below are all of the locks that exist in the system and themechanisms for using them that avoid the potential for dead-

locks (noOstrich algorithm allowed here):

The following are definitely leaf locks (level 1), andmust not try to acquire any other lock:

• safepoint

Note that this lock is acquired implicitly byJL_LOCKandJL_UNLOCK. use the_NOGCvari-

ants to avoid that for level 1 locks.

While holding this lock, the code must not do any allocation or hit any safepoints. Note

that therearesafepointswhendoingallocation, enabling /disablingGC,entering / restor-

ing exception frames, and taking / releasing locks.

• shared_map

• finalizers

• pagealloc

• gc_perm_lock

• flisp

flisp itself is already threadsafe, this lock only protects the jl_ast_context_list_t

pool

The following is a leaf lock (level 2), and only acquires level 1 locks (safepoint) internally:

• typecache

The following is a level 3 lock, which can only acquire level 1 or level 2 locks internally:

• Method->writelock

The following is a level 4 lock, which can only recurse to acquire level 1, 2, or 3 locks:

• MethodTable->writelock

No Julia codemay be called while holding a lock above this point.

The following is a level 6 lock, which can only recurse to acquire locks at lower levels:

• codegen

70.16. PROPERMAINTENANCE ANDCAREOFMULTI-THREADING LOCKS 945

The following is an almost root lock (level end-1), meaning only the root lookmay be held when trying to acquire it:

• typeinf

this one is perhaps one of themost tricky ones, since type-inference can be invoked from

many points

currently the lock is mergedwith the codegen lock, since they call each other recursively

The following is the root lock, meaning no other lock shall be held when trying to acquire it:

• toplevel

this should be held while attempting a top-level action (such as making a new type or

defining a new method): trying to obtain this lock inside a staged function will cause a

deadlock condition!

additionally, it's unclear if any code can safely run in parallel with an arbitrary toplevel

expression, so it may require all threads to get to a safepoint first

Broken Locks

The following locks are broken:

• toplevel

doesn't exist right now

fix: create it

Shared Global Data Structures

These data structures each need locks due to being sharedmutable global state. It is the inverse list for the above lock

priority list. This list does not include level 1 leaf resources due to their simplicity.

MethodTablemodifications (def, cache, kwsorter type) : MethodTable->writelock

Type declarations : toplevel lock

Type application : typecache lock

Module serializer : toplevel lock

JIT & type-inference : codegen lock

MethodInstance updates : codegen lock

• These fields are generally lazy initialized, using the test-and-test-and-set pattern.

• These are set at construction and immutable:

– specTypes

– sparam_vals

– def

• These are set by jl_type_infer (while holding codegen lock):

– rettype

– inferred

946 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

– thesecanalsobereset, seejl_set_lambda_rettype for that logicas itneeds tokeepfunctionObjectsDecls

in sync

• inInference flag:

– optimization to quickly avoid recurring into jl_type_inferwhile it is already running

– actual state (of setting inferred, then fptr) is protected by codegen lock

• Function pointers (jlcall_api and fptr, unspecialized_ducttape):

– these transition once, from NULL to a value, while the codegen lock is held

• Code-generator cache (the contents of functionObjectsDecls):

– these can transitionmultiple times, but only while the codegen lock is held

– it is valid to use old version of this, or block for newversions of this, so races are benign, as long

as the code is careful not to reference other data in the method instance (such as rettype)

and assume it is coordinated, unless also holding the codegen lock

• compile_traced flag:

– unknown

LLVMContext : codegen lock

Method : Method->writelock

• roots array (serializer and codegen)

• invoke / specializations / tfuncmodifications

70.17 Arrays with custom indices

Julia 0.5 adds experimental support for arrayswith arbitrary indices. Conventionally, Julia's arrays are indexed starting

at 1, whereas some other languages start numbering at 0, and yet others (e.g., Fortran) allow you to specify arbitrary

starting indices. While there is muchmerit in picking a standard (i.e., 1 for Julia), there are some algorithms which sim-

plify considerably if you can index outside the range 1:size(A,d) (and not just 0:size(A,d)-1, either). Such array

types are expected to be supplied through packages.

The purpose of this page is to address the question, "what do I have to do to support such arrays inmy own code?" First,

let's address the simplest case: if you know that your codewill never need to handle arrays with unconventional index-

ing, hopefully the answer is "nothing." Old code, on conventional arrays, should function essentially without alteration

as long as it was using the exported interfaces of Julia.

Generalizing existing code

As an overview, the steps are:

• replacemany uses of sizewith indices

• replace 1:length(A)with linearindices(A), and length(A)with length(linearindices(A))

• replace explicit allocations like Array{Int}(size(B))with similar(Array{Int}, indices(B))

These are described inmore detail below.

70.17. ARRAYSWITH CUSTOM INDICES 947

Background

Becauseunconventional indexingbreaks deeply-held assumptions throughout the Julia ecosystem, early adopters run-

ning code that has not been updated are likely to experience errors. The most frustrating bugs would be incorrect re-

sults or segfaults (total crashes of Julia). For example, consider the following function:

function mycopy!(dest::AbstractVector, src::AbstractVector)

length(dest) == length(src) || throw(DimensionMismatch("vectors must match"))

OK, now we're safe to use @inbounds, right? (not anymore!)

for i = 1:length(src)

@inbounds dest[i] = src[i]

end

dest

end

This code implicitly assumes that vectors are indexed from 1. Previously that was a safe assumption, so this code was

fine, but (depending on what types the user passes to this function) it may no longer be safe. If this code continued to

workwhen passed a vectorwith non-1 indices, it would either produce an incorrect answer or it would segfault. (If you

do get segfaults, to help locate the cause try running julia with the option --check-bounds=yes.)

To ensure that such errors are caught, in Julia 0.5 both length and sizeshould throw an error when passed an array

with non-1 indexing. This is designed to force users of such arrays to check the code, and inspect it forwhether it needs

to be generalized.

Using indices for bounds checks and loop iteration

indices(A) (reminiscent of size(A)) returns a tuple of AbstractUnitRange objects, specifying the range of valid

indices along each dimension of A. When A has unconventional indexing, the ranges may not start at 1. If you just want

the range for a particular dimension d, there is indices(A, d).

Base implements a custom range type, OneTo, where OneTo(n)means the same thing as 1:n but in a form that guar-

antees (via the type system) that the lower index is 1. For any new AbstractArray type, this is the default returned

by indices, and it indicates that this array type uses "conventional" 1-based indexing. Note that if you don't want to

be bothered supporting arrays with non-1 indexing, you can add the following line:

@assert all(x->isa(x, Base.OneTo), indices(A))

at the top of any function.

For bounds checking, note that there are dedicated functions checkbounds and checkindex which can sometimes

simplify such tests.

Linear indexing (linearindices)

Some algorithms are most conveniently (or efficiently) written in terms of a single linear index, A[i] even if A is multi-

dimensional. In "true" linear indexing, the indices always range from 1:length(A). However, this raises an ambiguity

for one-dimensional arrays (a.k.a., AbstractVector): does v[i]mean linear indexing, or Cartesian indexing with the

array's native indices?

For this reason, if you want to use linear indexing in an algorithm, your best option is to get the index range by calling

linearindices(A). Thiswill returnindices(A, 1) ifA is anAbstractVector, andtheequivalentof1:length(A)

otherwise.

In a sense, one can say that 1-dimensional arrays always use Cartesian indexing. To help enforce this, it's worth noting

that sub2ind(shape, i...) and ind2sub(shape, ind) will throw an error if shape indicates a 1-dimensional

948 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

array with unconventional indexing (i.e., is a Tuple{UnitRange} rather than a tuple of OneTo). For arrays with con-

ventional indexing, these functions continue to work the same as always.

Using indices and linearindices, here is one way you could rewrite mycopy!:

function mycopy!(dest::AbstractVector, src::AbstractVector)

indices(dest) == indices(src) || throw(DimensionMismatch("vectors must match"))

for i in linearindices(src)

@inbounds dest[i] = src[i]

end

dest

end

Allocating storage using generalizations of similar

Storage is often allocated with Array{Int}(dims) or similar(A, args...). When the result needs to match the

indicesof someotherarray, thismaynotalwayssuffice. Thegeneric replacement forsuchpatterns is tousesimilar(storagetype,

shape). storagetype indicates thekindofunderlying"conventional"behavioryou'd like, e.g.,Array{Int}orBitArray

or even dims->zeros(Float32, dims) (which would allocate an all-zeros array). shape is a tuple of Integer or

AbstractUnitRange values, specifying the indices that youwant the result to use.

Let's walk through a couple of explicit examples. First, if A has conventional indices, then similar(Array{Int},

indices(A))would end up calling Array{Int}(size(A)), and thus return an array. If A is an AbstractArray type

with unconventional indexing, then similar(Array{Int}, indices(A)) should return something that "behaves

like" an Array{Int} but with a shape (including indices) that matches A. (The most obvious implementation is to allo-

cate an Array{Int}(size(A)) and then "wrap" it in a type that shifts the indices.)

Notealso thatsimilar(Array{Int}, (indices(A, 2),))wouldallocateanAbstractVector{Int} (i.e., 1-dimensional

array) that matches the indices of the columns of A.

Deprecations

IngeneralizingJulia's codebase, at leastonedeprecationwasunavoidable: earlierversionsofJuliadefinedfirst(::Colon)

= 1, meaning that the first index along a dimension indexed by : is 1. This definition can no longer be justified, so it was

deprecated. There is no provided replacement, because the proper replacement depends on what you are doing and

might need to know more about the array. However, it appears that many uses of first(::Colon) are really about

computing an index offset; when that is the case, a candidate replacement is:

indexoffset(r::AbstractVector) = first(r) - 1

indexoffset(::Colon) = 0

In other words, while first(:) does not itself make sense, in general you can say that the offset associated with a

colon-index is zero.

Writing custom array types with non-1 indexing

Most of the methods you'll need to define are standard for any AbstractArray type, see Abstract Arrays. This page

focuses on the steps needed to define unconventional indexing.

Do not implement size or length

Perhaps themajority of pre-existing code that uses sizewill not work properly for arrays with non-1 indices. For that

reason, it is much better to avoid implementing these methods, and use the resulting MethodError to identify code

that needs to be audited and perhaps generalized.

70.17. ARRAYSWITH CUSTOM INDICES 949

Do not annotate bounds checks

Julia 0.5 includes @boundscheck to annotate code that can be removed for callers that exploit @inbounds. Initially, it

seems far preferable to runwithbounds checking alwaysenabled (i.e., omit the@boundscheckannotation so the check

always runs).

Custom AbstractUnitRange types

If you'rewriting a non-1 indexed array type, youwill want to specializeindices so it returns aUnitRange, or (perhaps

better) a custom AbstractUnitRange. The advantage of a custom type is that it "signals" the allocation type for func-

tions like similar. If we'rewriting an array type forwhich indexingwill start at 0, we likelywant to begin by creating a

new AbstractUnitRange, ZeroRange, where ZeroRange(n) is equivalent to 0:n-1.

In general, youshouldprobablynotexportZeroRange fromyourpackage: theremaybeotherpackages that implement

their own ZeroRange, and having multiple distinct ZeroRange types is (perhaps counterintuitively) an advantage:

ModuleA.ZeroRange indicates that similar should create a ModuleA.ZeroArray, whereas ModuleB.ZeroRange

indicates a ModuleB.ZeroArray type. This design allows peaceful coexistence among many different custom array

types.

Notethat theJuliapackageCustomUnitRanges.jl cansometimesbeusedtoavoid theneedtowriteyourownZeroRange

type.

Specializing indices

Once you have your AbstractUnitRange type, then specialize indices:

Base.indices(A::ZeroArray) = map(n->ZeroRange(n), A.size)

where here we imagine that ZeroArray has a field called size (there would be other ways to implement this).

In some cases, the fallback definition for indices(A, d):

indices(A::AbstractArray{T,N}, d) where {T,N} = d <= N ? indices(A)[d] : OneTo(1)

maynotbewhatyouwant: youmayneedtospecialize it toreturnsomethingother thanOneTo(1)whend > ndims(A).

Likewise, in Base there is a dedicated function indices1 which is equivalent to indices(A, 1) but which avoids

checking (at runtime) whether ndims(A) > 0. (This is purely a performance optimization.) It is defined as:

indices1(A::AbstractArray{T,0}) where {T} = OneTo(1)

indices1(A::AbstractArray) = indices(A)[1]

If the first of these (the zero-dimensional case) is problematic for your custom array type, be sure to specialize it appro-

priately.

Specializing similar

Given your custom ZeroRange type, then you should also add the following two specializations for similar:

function Base.similar(A::AbstractArray, T::Type, shape::Tuple{ZeroRange,Vararg{ZeroRange}})

body

end

function Base.similar(f::Union{Function,DataType}, shape::Tuple{ZeroRange,Vararg{ZeroRange}})

body

end

https://github.com/JuliaArrays/CustomUnitRanges.jl

950 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Both of these should allocate your custom array type.

Specializing reshape

Optionally, define amethod

Base.reshape(A::AbstractArray, shape::Tuple{ZeroRange,Vararg{ZeroRange}}) = ...

and you can reshape an array so that the result has custom indices.

Summary

Writing code that doesn'tmake assumptions about indexing requires a fewextra abstractions, but hopefully the neces-

sary changes are relatively straightforward.

As a reminder, this support is still experimental. While much of Julia's base code has been updated to support uncon-

ventional indexing, without a doubt there are many omissions that will be discovered only through usage. Moreover,

at the time of this writing, most packages do not support unconventional indexing. As a consequence, early adopters

should be prepared to identify and/or fix bugs. On the other hand, only through practical usage will it become clear

whether this experimental feature should be retained in future versions of Julia; consequently, interested parties are

encouraged to accept some ownership for putting it through its paces.

70.18 Base.LibGit2

The LibGit2 module provides bindings to libgit2, a portable C library that implements core functionality for the Git

version control system. These bindings are currently used to power Julia's package manager. It is expected that this

module will eventually bemoved into a separate package.

Functionality

Some of this documentation assumes some prior knowledge of the libgit2 API. For more information on some of the

objects andmethods referenced here, consult the upstream libgit2 API reference.

Base.LibGit2.AbstractCredentials – Type.

Abstract credentials payload

source

Base.LibGit2.Buffer – Type.

LibGit2.Buffer

A data buffer for exporting data from libgit2. Matches the git_buf struct.

When fetching data from LibGit2, a typical usage would look like:

buf_ref = Ref(Buffer())

@check ccall(..., (Ptr{Buffer},), buf_ref)

operation on buf_ref

free(buf_ref)

In particular, note that LibGit2.free should be called afterward on the Ref object.

source

Base.LibGit2.CachedCredentials – Type.

https://libgit2.github.com/
https://git-scm.com/
https://libgit2.github.com/libgit2/#v0.25.1
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L121
https://libgit2.github.com/libgit2/#HEAD/type/git_buf
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L95-L109

70.18. BASE.LIBGIT2 951

Credentials that support caching

source

Base.LibGit2.CheckoutOptions – Type.

LibGit2.CheckoutOptions

Matches the git_checkout_options struct.

source

Base.LibGit2.CloneOptions – Type.

LibGit2.CloneOptions

Matches the git_clone_options struct.

source

Base.LibGit2.DiffDelta – Type.

LibGit2.DiffDelta

Description of changes to one entry. Matches the git_diff_delta struct.

The fields represent:

• status: One of Consts.DELTA_STATUS, indicating whether the file has been added/modified/deleted.

• flags: Flags for thedeltaand theobjectsoneachside. Determineswhether to treat thefile(s) asbinary/text,

whether they exist on each side of the diff, and whether the object ids are known to be correct.

• similarity: Used to indicate if a file has been renamed or copied.

• nfiles: The number of files in the delta (for instance, if the delta was run on a submodule commit id, it may

contain more than one file).

• old_file: A DiffFile containing information about the file(s) before the changes.

• new_file: A DiffFile containing information about the file(s) after the changes.

source

Base.LibGit2.DiffFile – Type.

LibGit2.DiffFile

Description of one side of a delta. Matches the git_diff_file struct.

source

Base.LibGit2.DiffOptionsStruct – Type.

LibGit2.DiffOptionsStruct

Matches the git_diff_options struct.

source

Base.LibGit2.FetchHead – Type.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L719
https://libgit2.github.com/libgit2/#HEAD/type/git_checkout_options
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L806-L810
https://libgit2.github.com/libgit2/#HEAD/type/git_clone_options
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L806-L810
https://libgit2.github.com/libgit2/#HEAD/type/git_diff_delta
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L297-L313
https://libgit2.github.com/libgit2/#HEAD/type/git_diff_file
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L273-L278
https://libgit2.github.com/libgit2/#HEAD/type/git_diff_options
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L806-L810

952 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

LibGit2.FetchHead

Contains the information about HEADduring a fetch, including the name andURL of the branch fetched from, the

oid of the HEAD, andwhether the fetchedHEAD has beenmerged locally.

source

Base.LibGit2.FetchOptions – Type.

LibGit2.FetchOptions

Matches the git_fetch_options struct.

source

Base.LibGit2.GitBlob – Type.

GitBlob(repo::GitRepo, hash::AbstractGitHash)

GitBlob(repo::GitRepo, spec::AbstractString)

Return a GitBlob object from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

source

Base.LibGit2.GitCommit – Type.

GitCommit(repo::GitRepo, hash::AbstractGitHash)

GitCommit(repo::GitRepo, spec::AbstractString)

Return a GitCommit object from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

source

Base.LibGit2.GitHash – Type.

GitHash

A git object identifier, based on the sha-1 hash. It is a 20 byte string (40 hex digits) used to identify a GitObject in

a repository.

source

Base.LibGit2.GitObject – Type.

GitObject(repo::GitRepo, hash::AbstractGitHash)

GitObject(repo::GitRepo, spec::AbstractString)

Return the specified object (GitCommit, GitBlob, GitTree or GitTag) from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L468-L474
https://libgit2.github.com/libgit2/#HEAD/type/git_fetch_options
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L806-L810
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L102-L110
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L102-L110
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L12-L17
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions

70.18. BASE.LIBGIT2 953

source

Base.LibGit2.GitRemote – Type.

GitRemote(repo::GitRepo, rmt_name::AbstractString, rmt_url::AbstractString) -> GitRemote

Look up a remote git repository using its name and URL. Uses the default fetch refspec.

Example

repo = LibGit2.init(repo_path)

remote = LibGit2.GitRemote(repo, "upstream", repo_url)

source

GitRemote(repo::GitRepo, rmt_name::AbstractString, rmt_url::AbstractString, fetch_spec::

AbstractString) -> GitRemote

Lookupa remotegit repositoryusing the repository's nameandURL, aswell as specifications forhowto fetch from

the remote (e.g. which remote branch to fetch from).

Example

repo = LibGit2.init(repo_path)

refspec = "+refs/heads/mybranch:refs/remotes/origin/mybranch"

remote = LibGit2.GitRemote(repo, "upstream", repo_url, refspec)

source

Base.LibGit2.GitRemoteAnon – Function.

GitRemoteAnon(repo::GitRepo, url::AbstractString) -> GitRemote

Look up a remote git repository using only its URL, not its name.

Example

repo = LibGit2.init(repo_path)

remote = LibGit2.GitRemoteAnon(repo, repo_url)

source

Base.LibGit2.GitRepo – Type.

LibGit2.GitRepo(path::AbstractString)

Opens a git repository at path.

source

Base.LibGit2.GitRepoExt – Function.

LibGit2.GitRepoExt(path::AbstractString, flags::Cuint = Cuint(Consts.REPOSITORY_OPEN_DEFAULT)

)

Opens a git repository at path with extended controls (for instance, if the current user must be a member of a

special access group to read path).

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L91-L100
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/remote.jl#L3-L14
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/remote.jl#L23-L37
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/remote.jl#L46-L57
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L3-L7
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L15-L20

954 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Base.LibGit2.GitShortHash – Type.

GitShortHash

This is a shortened form of GitHash, which can be used to identify a git object when it is unique.

Internally it is stored as two fields: a full-size GitHash (hash) and a length (len). Only the initial len hex digits of

hash are used.

source

Base.LibGit2.GitSignature – Type.

LibGit2.GitSignature

This is a Julia wrapper around a pointer to a git_signature object.

source

Base.LibGit2.GitStatus – Type.

LibGit2.GitStatus(repo::GitRepo; status_opts=StatusOptions())

Collect information about the status of each file in the git repository repo (e.g. is the file modified, staged, etc.).

status_opts can be used to set various options, for instancewhether or not to look at untracked files orwhether

to include submodules or not.

source

Base.LibGit2.GitTag – Type.

GitTag(repo::GitRepo, hash::AbstractGitHash)

GitTag(repo::GitRepo, spec::AbstractString)

Return a GitTag object from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

source

Base.LibGit2.GitTree – Type.

GitTree(repo::GitRepo, hash::AbstractGitHash)

GitTree(repo::GitRepo, spec::AbstractString)

Return a GitTree object from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

source

Base.LibGit2.IndexEntry – Type.

LibGit2.IndexEntry

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L24-L32
https://libgit2.github.com/libgit2/#HEAD/type/git_signature
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L574-L579
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/status.jl#L3-L11
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L102-L110
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L102-L110

70.18. BASE.LIBGIT2 955

In-memory representation of a file entry in the index. Matches the git_index_entry struct.

source

Base.LibGit2.IndexTime – Type.

LibGit2.IndexTime

Matches the git_index_time struct.

source

Base.LibGit2.MergeOptions – Type.

LibGit2.MergeOptions

Matches the git_merge_options struct.

source

Base.LibGit2.ProxyOptions – Type.

LibGit2.ProxyOptions

Options for connecting through a proxy.

Matches the git_proxy_options struct.

source

Base.LibGit2.PushOptions – Type.

LibGit2.PushOptions

Matches the git_push_options struct.

source

Base.LibGit2.RebaseOperation – Type.

LibGit2.RebaseOperation

Describesasingle instruction/operationtobeperformedduring therebase. Matches thegit_rebase_operation

struct.

source

Base.LibGit2.RebaseOptions – Type.

LibGit2.RebaseOptions

Matches the git_rebase_options struct.

source

Base.LibGit2.RemoteCallbacks – Type.

LibGit2.RemoteCallbacks

Callback settings. Matches the git_remote_callbacks struct.

source

https://libgit2.github.com/libgit2/#HEAD/type/git_index_entry
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L379-L384
https://libgit2.github.com/libgit2/#HEAD/type/git_index_time
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L369-L373
https://libgit2.github.com/libgit2/#HEAD/type/git_merge_options
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L806-L810
https://libgit2.github.com/libgit2/#HEAD/type/git_proxy_options
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L806-L812
https://libgit2.github.com/libgit2/#HEAD/type/git_push_options
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L806-L810
https://libgit2.github.com/libgit2/#HEAD/type/git_rebase_operation_t
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L423-L428
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L806-L810
https://libgit2.github.com/libgit2/#HEAD/type/git_remote_callbacks
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L806-L811

956 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Base.LibGit2.SSHCredentials – Type.

SSH credentials type

source

Base.LibGit2.SignatureStruct – Type.

LibGit2.SignatureStruct

An action signature (e.g. for committers, taggers, etc). Matches the git_signature struct.

source

Base.LibGit2.StatusEntry – Type.

LibGit2.StatusEntry

Providing thedifferencesbetweenthefileas itexists inHEADandthe index, andproviding thedifferencesbetween

the index and the working directory. Matches the git_status_entry struct.

source

Base.LibGit2.StatusOptions – Type.

LibGit2.StatusOptions

Options to control how git_status_foreach_ext() will issue callbacks. Matches the git_status_opt_t

struct.

source

Base.LibGit2.StrArrayStruct – Type.

LibGit2.StrArrayStruct

A LibGit2 representation of an array of strings. Matches the git_strarray struct.

When fetching data from LibGit2, a typical usage would look like:

sa_ref = Ref(StrArrayStruct())

@check ccall(..., (Ptr{StrArrayStruct},), sa_ref)

res = convert(Vector{String}, sa_ref[])

free(sa_ref)

In particular, note that LibGit2.free should be called afterward on the Ref object.

Conversely, when passing a vector of strings to LibGit2, it is generally simplest to rely on implicit conversion:

strs = String[...]

@check ccall(..., (Ptr{StrArrayStruct},), strs)

Note that no call to free is required as the data is allocated by Julia.

source

Base.LibGit2.TimeStruct – Type.

LibGit2.TimeStruct

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L688
https://libgit2.github.com/libgit2/#HEAD/type/git_signature
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L50-L55
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L455-L461
https://libgit2.github.com/libgit2/#HEAD/type/git_status_opt_t
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L806-L811
https://libgit2.github.com/libgit2/#HEAD/type/git_strarray
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L62-L84

70.18. BASE.LIBGIT2 957

Time in a signature. Matches the git_time struct.

source

Base.LibGit2.UserPasswordCredentials – Type.

Credentials that support only user and password parameters

source

Base.LibGit2.add_fetch! – Function.

add_fetch!(repo::GitRepo, rmt::GitRemote, fetch_spec::String)

Add a fetch refspec for the specified rmt. This refspec will contain information about which branch(es) to fetch

from.

Example

julia> LibGit2.add_fetch!(repo, remote, "upstream");

julia> LibGit2.fetch_refspecs(remote)

String["+refs/heads/*:refs/remotes/upstream/*"]

source

Base.LibGit2.add_push! – Function.

add_push!(repo::GitRepo, rmt::GitRemote, push_spec::String)

Add a push refspec for the specified rmt. This refspec will contain information about which branch(es) to push to.

Example

julia> LibGit2.add_push!(repo, remote, "refs/heads/master");

julia> remote = LibGit2.get(LibGit2.GitRemote, repo, branch);

julia> LibGit2.push_refspecs(remote)

String["refs/heads/master"]

Note

You may need to close and reopen the GitRemote in question after updating its push refspecs in

order for the change to take effect and for calls to push to work.

source

Base.LibGit2.addblob! – Function.

LibGit2.addblob!(repo::GitRepo, path::AbstractString)

Reads the file at path and adds it to the object database of repo as a loose blob. Returns the GitHash of the

resulting blob.

Example

hash_str = hex(commit_oid)

blob_file = joinpath(repo_path, ".git", "objects", hash_str[1:2], hash_str[3:end])

id = LibGit2.addblob!(repo, blob_file)

https://libgit2.github.com/libgit2/#HEAD/type/git_time
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L39-L44
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L663
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/remote.jl#L165-L178
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/remote.jl#L185-L206

958 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

source

Base.LibGit2.authors – Function.

authors(repo::GitRepo) -> Vector{Signature}

Returns all authors of commits to the repo repository.

Example

repo = LibGit2.GitRepo(repo_path)

repo_file = open(joinpath(repo_path, test_file), "a")

println(repo_file, commit_msg)

flush(repo_file)

LibGit2.add!(repo, test_file)

sig = LibGit2.Signature("TEST", "TEST@TEST.COM", round(time(), 0), 0)

commit_oid1 = LibGit2.commit(repo, "commit1"; author=sig, committer=sig)

println(repo_file, randstring(10))

flush(repo_file)

LibGit2.add!(repo, test_file)

commit_oid2 = LibGit2.commit(repo, "commit2"; author=sig, committer=sig)

will be a Vector of [sig, sig]

auths = LibGit2.authors(repo)

source

Base.LibGit2.branch – Function.

branch(repo::GitRepo)

Equivalent to git branch. Create a new branch from the current HEAD.

source

Base.LibGit2.branch! – Function.

branch!(repo::GitRepo, branch_name::AbstractString, commit::AbstractString=""; kwargs...)

Checkout a newgit branch in therepo repository. commit is the GitHash, in string form,whichwill be the start of

the new branch. If commit is an empty string, the current HEADwill be used.

The keyword arguments are:

• track::AbstractString="": thenameof theremotebranchthisnewbranchshould track, if any. If empty

(the default), no remote branchwill be tracked.

• force::Bool=false: if true, branch creation will be forced.

• set_head::Bool=true: iftrue, after the branch creation finishes the branchheadwill be set as theHEAD

of repo.

Equivalent to git checkout [-b|-B] <branch_name> [<commit>] [--track <track>].

Example

repo = LibGit2.GitRepo(repo_path)

LibGit2.branch!(repo, "new_branch", set_head=false)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/blob.jl#L36-L49
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L796-L820
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L353-L358

70.18. BASE.LIBGIT2 959

source

Base.LibGit2.checkout! – Function.

checkout!(repo::GitRepo, commit::AbstractString=""; force::Bool=true)

Equivalent togit checkout [-f] --detach <commit>. Checkout thegit commitcommit (aGitHash in string

form) in repo. If force is true, force the checkout and discard any current changes. Note that this detaches the

current HEAD.

Example

repo = LibGit2.init(repo_path)

open(joinpath(LibGit2.path(repo), "file1"), "w") do f

write(f, "111

")

end

LibGit2.add!(repo, "file1")

commit_oid = LibGit2.commit(repo, "add file1")

open(joinpath(LibGit2.path(repo), "file1"), "w") do f

write(f, "112

")

end

would fail without the force=true

since there are modifications to the file

LibGit2.checkout!(repo, string(commit_oid), force=true)

source

Base.LibGit2.checkused! – Function.

Checks if credentials were used

source

Checks if credentials were used or failed authentication, see LibGit2.credentials_callback

source

Base.LibGit2.clone – Function.

clone(repo_url::AbstractString, repo_path::AbstractString; kwargs...)

Clone a remote repository located at repo_url to the local filesystem location repo_path.

The keyword arguments are:

• branch::AbstractString="": which branch of the remote to clone, if not the default repository branch

(usually master).

• isbare::Bool=false: if true, clone the remote as a bare repository, which will make repo_path itself

the git directory instead of repo_path/.git. This means that a working tree cannot be checked out. Plays

the role of the git CLI argument --bare.

• remote_cb::Ptr{Void}=C_NULL: a callbackwhichwill be used to create the remote before it is cloned. If

C_NULL (the default), no attempt will bemade to create the remote - it will be assumed to already exist.

• payload::Nullable{P<:AbstractCredentials}=Nullable{AbstractCredentials}(): provides

credentials if necessary, for instance if the remote is a private repository.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L368-L393
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L460-L486
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L124
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L726

960 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Equivalent to git clone [-b <branch>] [--bare] <repo_url> <repo_path>.

Examples

repo_url = "https://github.com/JuliaLang/Example.jl"

repo1 = LibGit2.clone(repo_url, "test_path")

repo2 = LibGit2.clone(repo_url, "test_path", isbare=true)

julia_url = "https://github.com/JuliaLang/julia"

julia_repo = LibGit2.clone(julia_url, "julia_path", branch="release-0.6")

source

Base.LibGit2.commit – Function.

Wrapper around git_commit_create

source

Commit changes to repository

source

LibGit2.commit(rb::GitRebase, sig::GitSignature)

Commits the current patch to the rebase rb, using sig as the committer. Is silent if the commit has already been

applied.

source

Base.LibGit2.create_branch – Function.

LibGit2.create_branch(repo::GitRepo, bname::AbstractString, commit_obj::GitCommit; force::

Bool=false)

Create a new branch in the repository repowith name bname, which points to commit commit_obj (which has to

be part of repo). If force is true, overwrite an existing branch named bname if it exists. If force is false and a

branch already exists named bname, this function will throw an error.

source

Base.LibGit2.credentials_callback – Function.

Credentials callback function

Functionprovidesdifferentcredential acquisition functionalityw.r.t. a connectionprotocol. If apayload isprovided

then payload_ptr should contain a LibGit2.AbstractCredentials object.

ForLibGit2.Consts.CREDTYPE_USERPASS_PLAINTEXT type, if the payload contains fields: user&pass, they

are used to create authentication credentials. Empty user name and password trigger an authentication error.

For LibGit2.Consts.CREDTYPE_SSH_KEY type, if the payload contains fields: user, prvkey, pubkey & pass,

they are used to create authentication credentials. Empty user name triggers an authentication error.

Credentials are checked in the following order (if supported):

• ssh key pair (ssh-agent if specified in payload's usesshagent field)

• plain text

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L516-L546
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/commit.jl#L31
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/commit.jl#L54
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/rebase.jl#L52-L57
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/reference.jl#L196-L204

70.18. BASE.LIBGIT2 961

Note: Due to the specifics of the libgit2 authentication procedure, when authentication fails, this function is

called again without any indication whether authentication was successful or not. To avoid an infinite loop from

repeatedlyusing the same faulty credentials, thecheckused! function canbecalled. This function returnstrue if

thecredentialswereused. Usingcredentials triggersauserprompt for (re)enteringrequired information. UserPasswordCredentials

and CachedCredentials are implemented using a call counting strategy that prevents repeated usage of faulty

credentials.

source

Base.LibGit2.credentials_cb – Function.

C function pointer for credentials_callback

source

Base.LibGit2.default_signature – Function.

Return signature object. Free it after use.

source

Base.LibGit2.delete_branch – Function.

LibGit2.delete_branch(branch::GitReference)

Delete the branch pointed to by branch.

source

Base.LibGit2.diff_files – Function.

diff_files(repo::GitRepo, branch1::AbstractString, branch2::AbstractString; kwarg...) ->

Vector{AbstractString}

Showwhich files have changed in the git repository repo between branches branch1 and branch2.

The keyword argument is:

• filter::Set{Consts.DELTA_STATUS}=Set([Consts.DELTA_ADDED, Consts.DELTA_MODIFIED, Consts.DELTA_DELETED])),

and it sets options for the diff. The default is to show files added, modified, or deleted.

Returns only the names of the files which have changed, not their contents.

Example

LibGit2.branch!(repo, "branch/a")

LibGit2.branch!(repo, "branch/b")

add a file to repo

open(joinpath(LibGit2.path(repo),"file"),"w") do f

write(f, "hello repo

")

end

LibGit2.add!(repo, "file")

LibGit2.commit(repo, "add file")

returns ["file"]

filt = Set([LibGit2.Consts.DELTA_ADDED])

files = LibGit2.diff_files(repo, "branch/a", "branch/b", filter=filt)

returns [] because existing files weren't modified

filt = Set([LibGit2.Consts.DELTA_MODIFIED])

files = LibGit2.diff_files(repo, "branch/a", "branch/b", filter=filt)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/callbacks.jl#L174-L200
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/callbacks.jl#L262
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/signature.jl#L45
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/reference.jl#L216-L220

962 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Equivalent to git diff --name-only --diff-filter=<filter> <branch1> <branch2>.

source

Base.LibGit2.fetch – Function.

fetch(rmt::GitRemote, refspecs; options::FetchOptions=FetchOptions(), msg="")

Fetch from the specified rmt remote git repository, using refspecs to determine which remote branch(es) to

fetch. The keyword arguments are:

• options: determines the options for the fetch, e.g. whether to prune afterwards.

• msg: a message to insert into the reflogs.

source

fetch(repo::GitRepo; kwargs...)

Fetches updates from an upstream of the repository repo.

The keyword arguments are:

• remote::AbstractString="origin": which remote, specified by name, of repo to fetch from. If this is

empty, the URLwill be used to construct an anonymous remote.

• remoteurl::AbstractString="": the URL of remote. If not specified, will be assumed based on the

given name of remote.

• refspecs=AbstractString[]: determines properties of the fetch.

• payload=Nullable{AbstractCredentials}(): providescredentials, ifnecessary, for instance ifremote

is a private repository.

Equivalent to git fetch [<remoteurl>|<repo>] [<refspecs>].

source

Base.LibGit2.fetch_refspecs – Function.

fetch_refspecs(rmt::GitRemote) -> Vector{String}

Get the fetch refspecs for the specified rmt. These refspecs contain information about which branch(es) to fetch

from.

source

Base.LibGit2.fetchhead_foreach_cb – Function.

C function pointer for fetchhead_foreach_callback

source

Base.LibGit2.ffmerge! – Function.

Fastforwardmerge changes into current head

source

Base.LibGit2.fullname – Function.

LibGit2.fullname(ref::GitReference)

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L158-L191
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/remote.jl#L213-L221
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L283-L299
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/remote.jl#L135-L140
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/callbacks.jl#L264
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/merge.jl#L48

70.18. BASE.LIBGIT2 963

Return the name of the reference pointed to by the symbolic reference ref. If ref is not a symbolic reference,

returns an empty string.

source

Base.LibGit2.get_creds! – Function.

Obtain the cached credentials for the given host+protocol (credid), or return and store the default if not found

source

Base.LibGit2.gitdir – Function.

LibGit2.gitdir(repo::GitRepo)

Returns the location of the "git" files of repo:

• for normal repositories, this is the location of the .git folder.

• for bare repositories, this is the location of the repository itself.

See also workdir, path.

source

Base.LibGit2.head – Function.

LibGit2.head(repo::GitRepo) -> GitReference

Returns a GitReference to the current HEAD of repo.

source

head(pkg::AbstractString) -> String

Return current HEAD GitHash of the pkg repo as a string.

source

Base.LibGit2.head! – Function.

LibGit2.head!(repo::GitRepo, ref::GitReference) -> GitReference

Set the HEAD of repo to the object pointed to by ref.

source

Base.LibGit2.head_oid – Function.

LibGit2.head_oid(repo::GitRepo) -> GitHash

Lookup the object id of the current HEAD of git repository repo.

source

Base.LibGit2.headname – Function.

LibGit2.headname(repo::GitRepo)

Lookup the name of the current HEAD of git repository repo. If repo is currently detached, returns the name of

the HEAD it's detached from.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/reference.jl#L82-L88
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L735
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L150-L159
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/reference.jl#L33-L37
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L45-L50
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/reference.jl#L225-L229
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L50-L55
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L65-L72

964 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Base.LibGit2.init – Function.

LibGit2.init(path::AbstractString, bare::Bool=false) -> GitRepo

Opens a new git repository at path. If bare is false, the working tree will be created in path/.git. If bare is

true, no working directory will be created.

source

Base.LibGit2.is_ancestor_of – Function.

is_ancestor_of(a::AbstractString, b::AbstractString, repo::GitRepo) -> Bool

Returns true if a, a GitHash in string form, is an ancestor of b, a GitHash in string form.

Example

julia> repo = LibGit2.GitRepo(repo_path);

julia> LibGit2.add!(repo, test_file1);

julia> commit_oid1 = LibGit2.commit(repo, "commit1");

julia> LibGit2.add!(repo, test_file2);

julia> commit_oid2 = LibGit2.commit(repo, "commit2");

julia> LibGit2.is_ancestor_of(string(commit_oid1), string(commit_oid2), repo)

true

source

Base.LibGit2.isbinary – Function.

Use a heuristic to guess if a file is binary: searching for NULL bytes and looking for a reasonable ratio of printable

to non-printable characters among the first 8000 bytes.

source

Base.LibGit2.iscommit – Function.

iscommit(id::AbstractString, repo::GitRepo) -> Bool

Checks if commit id (which is a GitHash in string form) is in the repository.

Example

julia> repo = LibGit2.GitRepo(repo_path);

julia> LibGit2.add!(repo, test_file);

julia> commit_oid = LibGit2.commit(repo, "add test_file");

julia> LibGit2.iscommit(string(commit_oid), repo)

true

source

Base.LibGit2.isdiff – Function.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L36-L42
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L215-L237
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/blob.jl#L26-L30
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L70-L88

70.18. BASE.LIBGIT2 965

LibGit2.isdiff(repo::GitRepo, treeish::AbstractString, pathspecs::AbstractString=""; cached::

Bool=false)

Checks if there are anydifferencesbetween the tree specifiedbytreeish and the trackedfiles in theworking tree

(if cached=false) or the index (if cached=true). pathspecs are the specifications for options for the diff.

Example

repo = LibGit2.GitRepo(repo_path)

LibGit2.isdiff(repo, "HEAD") # should be false

open(joinpath(repo_path, new_file), "a") do f

println(f, "here's my cool new file")

end

LibGit2.isdiff(repo, "HEAD") # now true

Equivalent to git diff-index <treeish> [-- <pathspecs>].

source

Base.LibGit2.isdirty – Function.

LibGit2.isdirty(repo::GitRepo, pathspecs::AbstractString=""; cached::Bool=false) -> Bool

Checks if there have been any changes to tracked files in the working tree (if cached=false) or the index (if

cached=true). pathspecs are the specifications for options for the diff.

Example

repo = LibGit2.GitRepo(repo_path)

LibGit2.isdirty(repo) # should be false

open(joinpath(repo_path, new_file), "a") do f

println(f, "here's my cool new file")

end

LibGit2.isdirty(repo) # now true

LibGit2.isdirty(repo, new_file) # now true

Equivalent to git diff-index HEAD [-- <pathspecs>].

source

Base.LibGit2.isorphan – Function.

LibGit2.isorphan(repo::GitRepo)

Checks if the current branch is an "orphan" branch, i.e. has no commits. The first commit to this branch will have

no parents.

source

Base.LibGit2.lookup_branch – Function.

lookup_branch(repo::GitRepo, branch_name::AbstractString, remote::Bool=false) -> Nullable{

GitReference}

Determine if the branch specified by branch_name exists in the repository repo. If remote is true, repo is as-

sumed to be a remote git repository. Otherwise, it is part of the local filesystem.

lookup_branch returns a Nullable, which will be null if the requested branch does not exist yet. If the branch

does exist, the Nullable contains a GitReference to the branch.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L127-L145
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L104-L123
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/reference.jl#L21-L26
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/reference.jl#L237-L247

966 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Base.LibGit2.mirror_callback – Function.

Mirror callback function

Function sets +refs/*:refs/* refspecs and mirror flag for remote reference.

source

Base.LibGit2.mirror_cb – Function.

C function pointer for mirror_callback

source

Base.LibGit2.name – Function.

LibGit2.name(ref::GitReference)

Return the full name of ref.

source

name(rmt::GitRemote)

Get the name of a remote repository, for instance "origin". If the remote is anonymous (see GitRemoteAnon)

the namewill be an empty string "".

Example

julia> repo_url = "https://github.com/JuliaLang/Example.jl";

julia> repo = LibGit2.clone(cache_repo, "test_directory");

julia> remote = LibGit2.GitRemote(repo, "origin", repo_url);

julia> name(remote)

"origin"

source

LibGit2.name(tag::GitTag)

The name of tag (e.g. "v0.5").

source

Base.LibGit2.need_update – Function.

need_update(repo::GitRepo)

Equivalent to git update-index. Returns true if repo needs updating.

source

Base.LibGit2.objtype – Function.

objtype(obj_type::Consts.OBJECT)

Returns the type corresponding to the enum value.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/callbacks.jl#L3-L7
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/callbacks.jl#L260
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/reference.jl#L97-L101
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/remote.jl#L109-L128
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/tag.jl#L54-L58
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L57-L62
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L640-L644

70.18. BASE.LIBGIT2 967

Base.LibGit2.path – Function.

LibGit2.path(repo::GitRepo)

The base file path of the repository repo.

• for normal repositories, this will typically be the parent directory of the ".git" directory (note: this may be

different than the working directory, see workdir for more details).

• for bare repositories, this is the location of the "git" files.

See also gitdir, workdir.

source

Base.LibGit2.peel – Function.

peel([T,] ref::GitReference)

Recursively peelref until an object of typeT is obtained. If noT is provided, thenrefwill be peeled until an object

other than a GitTag is obtained.

• A GitTagwill be peeled to the object it references.

• A GitCommitwill be peeled to a GitTree.

Note

Only annotated tags can be peeled to GitTag objects. Lightweight tags (the default) are references

under refs/tags/which point directly to GitCommit objects.

source

peel([T,] obj::GitObject)

Recursively peel obj until an object of type T is obtained. If no T is provided, then objwill be peeled until the type

changes.

• A GitTagwill be peeled to the object it references.

• A GitCommitwill be peeled to a GitTree.

source

Base.LibGit2.posixpath – Function.

LibGit2.posixpath(path)

Standardise the path string path to use POSIX separators.

source

Base.LibGit2.push – Function.

push(rmt::GitRemote, refspecs; force::Bool=false, options::PushOptions=PushOptions())

Push to the specifiedrmt remote git repository, usingrefspecs to determinewhich remote branch(es) to push to.

The keyword arguments are:

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L186-L197
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/reference.jl#L161-L173
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L211-L219
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/utils.jl#L57-L61

968 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

• force: if true, a force-push will occur, disregarding conflicts.

• options: determines the options for the push, e.g. which proxy headers to use.

Note

You can add information about the push refspecs in two other ways: by setting an option in the repos-

itory'sGitConfig (withpush.default as thekey) or by callingadd_push!. Otherwise youwill need

toexplicitly specifyapushrefspec in thecall topush for it tohaveanyeffect, likeso: LibGit2.push(repo,

refspecs=["refs/heads/master"]).

source

push(repo::GitRepo; kwargs...)

Pushes updates to an upstream of repo.

The keyword arguments are:

• remote::AbstractString="origin": the name of the upstream remote to push to.

• remoteurl::AbstractString="": the URL of remote.

• refspecs=AbstractString[]: determines properties of the push.

• force::Bool=false: determines if the pushwill be a force push, overwriting the remote branch.

• payload=Nullable{AbstractCredentials}(): providescredentials, ifnecessary, for instance ifremote

is a private repository.

Equivalent to git push [<remoteurl>|<repo>] [<refspecs>].

source

Base.LibGit2.push_refspecs – Function.

push_refspecs(rmt::GitRemote) -> Vector{String}

Get the push refspecs for the specifiedrmt. These refspecs contain information aboutwhich branch(es) to push to.

source

Base.LibGit2.read_tree! – Function.

LibGit2.read_tree!(idx::GitIndex, tree::GitTree)

LibGit2.read_tree!(idx::GitIndex, treehash::AbstractGitHash)

Read the tree tree (or the tree pointed to by treehash in the repository owned by idx) into the index idx. The

current index contents will be replaced.

source

Base.LibGit2.rebase! – Function.

LibGit2.rebase!(repo::GitRepo, upstream::AbstractString="", newbase::AbstractString="")

Attempt an automatic merge rebase of the current branch, from upstream if provided, or otherwise from the up-

stream tracking branch. newbase is the branch to rebase onto. By default this is upstream.

If anyconflictsarisewhichcannotbeautomatically resolved, the rebasewill abort, leaving the repositoryandwork-

ing tree in its original state, and the function will throw a GitError. This is roughly equivalent to the following

command line statement:

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/remote.jl#L231-L246
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L318-L333
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/remote.jl#L150-L155
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/index.jl#L35-L41

70.18. BASE.LIBGIT2 969

git rebase --merge [<upstream>]

if [-d ".git/rebase-merge"]; then

git rebase --abort

fi

source

Base.LibGit2.ref_list – Function.

LibGit2.ref_list(repo::GitRepo) -> Vector{String}

Get a list of all reference names in the repo repository.

source

Base.LibGit2.reftype – Function.

LibGit2.reftype(ref::GitReference) -> Cint

Returns a Cint corresponding to the type of ref:

• 0 if the reference is invalid

• 1 if the reference is an object id

• 2 if the reference is symbolic

source

Base.LibGit2.remotes – Function.

LibGit2.remotes(repo::GitRepo)

Returns a vector of the names of the remotes of repo.

source

Base.LibGit2.reset! – Function.

Resets credentials for another use

source

Updates some entries, determined by the pathspecs, in the index from the target commit tree.

source

Sets the current head to the specified commit oid and optionally resets the index andworking tree tomatch.

source

git reset [<committish>] [–] <pathspecs>...

source

reset!(repo::GitRepo, id::GitHash, mode::Cint = Consts.RESET_MIXED)

Reset the repository repo to its state at id, using one of threemodes set by mode:

1. Consts.RESET_SOFT - moveHEAD to id.

2. Consts.RESET_MIXED - default, move HEAD to id and reset the index to id.

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L730-L746
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/reference.jl#L182-L186
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/reference.jl#L70-L77
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L291-L295
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L127
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L253
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L263
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L565

970 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

3. Consts.RESET_HARD - moveHEAD to id, reset the index to id, and discard all working changes.

Equivalent to git reset [--soft | --mixed | --hard] <id>.

Example

repo = LibGit2.GitRepo(repo_path)

head_oid = LibGit2.head_oid(repo)

open(joinpath(repo_path, "file1"), "w") do f

write(f, "111

")

end

LibGit2.add!(repo, "file1")

mode = LibGit2.Consts.RESET_HARD

will discard the changes to file1

and unstage it

new_head = LibGit2.reset!(repo, head_oid, mode)

source

Base.LibGit2.restore – Function.

restore(s::State, repo::GitRepo)

Return a repository repo to a previous State s, for example theHEADof a branch before amerge attempt. s can

be generated using the snapshot function.

source

Base.LibGit2.revcount – Function.

LibGit2.revcount(repo::GitRepo, commit1::AbstractString, commit2::AbstractString)

List the number of revisions between commit1 and commit2 (committish OIDs in string form). Since commit1

and commit2may be on different branches, revcount performs a "left-right" revision list (and count), returning a

tuple of Ints - the number of left and right commits, respectively. A left (or right) commit refers to which side of a

symmetric difference in a tree the commit is reachable from.

Equivalent to git rev-list --left-right --count <commit1> <commit2>.

source

Base.LibGit2.set_remote_url – Function.

set_remote_url(repo::GitRepo, url::AbstractString; remote::AbstractString="origin")

Set the url for remote for the git repository repo. The default name of the remote is "origin".

Examples

repo_path = joinpath("test_directory", "Example")

repo = LibGit2.init(repo_path)

url1 = "https://github.com/JuliaLang/Example.jl"

LibGit2.set_remote_url(repo, url1, remote="upstream")

url2 = "https://github.com/JuliaLang/Example2.jl"

LibGit2.set_remote_url(repo_path, url2, remote="upstream2")

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L572-L598
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L859-L865
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L601-L611
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L243-L259

70.18. BASE.LIBGIT2 971

set_remote_url(path::AbstractString, url::AbstractString; remote::AbstractString="origin")

Set the url for remote for the git repository located at path. The default name of the remote is "origin".

source

Base.LibGit2.shortname – Function.

LibGit2.shortname(ref::GitReference)

Returns a shortened version of the name of ref that's "human-readable".

julia> repo = LibGit2.GitRepo(path_to_repo);

julia> branch_ref = LibGit2.head(repo);

julia> LibGit2.name(branch_ref)

"refs/heads/master"

julia> LibGit2.shortname(branch_ref)

"master"

source

Base.LibGit2.snapshot – Function.

snapshot(repo::GitRepo) -> State

Takea snapshot of the current stateof the repositoryrepo, storing the currentHEAD, index, andanyuncommitted

work. The output State can be used later during a call to restore to return the repository to the snapshotted

state.

source

Base.LibGit2.status – Function.

LibGit2.status(repo::GitRepo, path::String)

Lookup the status of the file at path in the git repository repo. For instance, this can be used to check if the file at

path has beenmodified and needs to be staged and committed.

source

Base.LibGit2.tag_create – Function.

LibGit2.tag_create(repo::GitRepo, tag::AbstractString, commit; kwargs...)

Create a new git tag tag (e.g. "v0.5") in the repository repo, at the commit commit.

The keyword arguments are:

• msg::AbstractString="": themessage for the tag.

• force::Bool=false: if true, existing references will be overwritten.

• sig::Signature=Signature(repo): the tagger's signature.

source

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L267-L272
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/reference.jl#L45-L62
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/libgit2.jl#L830-L837
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/status.jl#L35-L42
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/tag.jl#L27-L37

972 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

Base.LibGit2.tag_delete – Function.

LibGit2.tag_delete(repo::GitRepo, tag::AbstractString)

Remove the git tag tag from the repository repo.

source

Base.LibGit2.tag_list – Function.

LibGit2.tag_list(repo::GitRepo) -> Vector{String}

Get a list of all tags in the git repository repo.

source

Base.LibGit2.target – Function.

LibGit2.target(tag::GitTag)

The GitHash of the target object of tag.

source

Base.LibGit2.treewalk – Function.

Traverse the entries in a tree and its subtrees in post or pre order.

Function parameter should have following signature:

(Cstring, Ptr{Void}, Ptr{Void}) -> Cint

source

Base.LibGit2.upstream – Function.

upstream(ref::GitReference) -> Nullable{GitReference}

Determine if the branch containing ref has a specified upstream branch.

upstream returns a Nullable, whichwill be null if the requested branch does not have an upstream counterpart.

If the upstream branch does exist, the Nullable contains a GitReference to the upstream branch.

source

Base.LibGit2.url – Function.

url(rmt::GitRemote)

Get the fetch URL of a remote git repository.

Example

julia> repo_url = "https://github.com/JuliaLang/Example.jl";

julia> repo = LibGit2.init(mktempdir());

julia> remote = LibGit2.GitRemote(repo, "origin", repo_url);

julia> LibGit2.url(remote)

"https://github.com/JuliaLang/Example.jl"

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/tag.jl#L17-L21
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/tag.jl#L3-L7
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/tag.jl#L66-L70
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/tree.jl#L3-L9
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/reference.jl#L268-L276

70.19. MODULE LOADING 973

source

Base.LibGit2.with – Function.

Resourcemanagement helper function

source

Base.LibGit2.workdir – Function.

LibGit2.workdir(repo::GitRepo)

The location of the working directory of repo. This will throw an error for bare repositories.

Note

This will typically be the parent directory of gitdir(repo), but can be different in some cases: e.g.

if either the core.worktree configuration variable or the GIT_WORK_TREE environment variable is

set.

See also gitdir, path.

source

70.19 Module loading

Base.require[@ref] is responsible for loadingmodules and it alsomanages the precompilation cache. It is the imple-

mentation of the import statement.

Experimental features

The features below are experimental and not part of the stable Julia API. Before building upon them inform yourself

about the current thinking andwhether theymight change soon.

Module loading callbacks

It is possible to listen to themodules loaded by Base.require, by registering a callback.

loaded_packages = Channel{Symbol}()

callback = (mod::Symbol) -> put!(loaded_packages, mod)

push!(Base.package_callbacks, callback)

Please note that the symbol given to the callback is a non-unique identifier and it is the responsibility of the callback

provider to walk themodule chain to determine the fully qualified name of the loaded binding.

The callback below is an example of how to do that:

Get the fully-qualified name of a module.

function module_fqn(name::Symbol)

fqn = Symbol[name]

mod = getfield(Main, name)

parent = Base.module_parent(mod)

while parent !== Main

push!(fqn, Base.module_name(parent))

parent = Base.module_parent(parent)

end

https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/remote.jl#L74-L91
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/types.jl#L604-L606
https://github.com/JuliaLang/julia/tree/6736f45eb1b270642ed12e0f6ec1b71f491b59d5/base/libgit2/repository.jl#L165-L178

974 CHAPTER 70. DOCUMENTATIONOF JULIA’S INTERNALS

fqn = reverse!(fqn)

return join(fqn, '.')

end

Chapter 71

Developing/debugging Julia’s C code

71.1 Reporting and analyzing crashes (segfaults)

So you managed to break Julia. Congratulations! Collected here are some general procedures you can undergo for

common symptoms encountered when something goes awry. Including the information from these debugging steps

can greatly help themaintainerswhen tracking down a segfault or trying to figure outwhy your script is running slower

than expected.

If you've been directed to this page, find the symptom that best matches what you're experiencing and follow the in-

structions to generate the debugging information requested. Table of symptoms:

• Segfaults during bootstrap (sysimg.jl)

• Segfaults when running a script

• Errors during Julia startup

Version/Environment info

No matter the error, we will always need to know what version of Julia you are running. When Julia first starts up, a

header is printed out with a version number and date. If your version is 0.2.0 or higher, please include the output of

versioninfo() in any report you create:

julia> versioninfo()

Julia Version 0.6.2-pre.47

Commit 6736f45 (2017-11-27 17:49 UTC)

Platform Info:

OS: Linux (x86_64-unknown-linux-gnu)

CPU: Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz

WORD_SIZE: 64

BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell)

LAPACK: libopenblas64_

LIBM: libopenlibm

LLVM: libLLVM-3.9.1 (ORCJIT, haswell)

Segfaults during bootstrap (sysimg.jl)

Segfaults toward the end of the make process of building Julia are a common symptomof something goingwrongwhile

Julia is preparsing the corpus of code in the base/ folder. Many factors can contribute toward this process dying un-

expectedly, however it is as often as not due to an error in the C-code portion of Julia, and as such must typically be

debuggedwith a debug build inside of gdb. Explicitly:

975

976 CHAPTER 71. DEVELOPING/DEBUGGING JULIA’S C CODE

Create a debug build of Julia:

$ cd <julia_root>

$ make debug

Note that this process will likely fail with the same error as a normal make incantation, however this will create a de-

bug executable that will offer gdb the debugging symbols needed to get accurate backtraces. Next, manually run the

bootstrap process inside of gdb:

$ cd base/

$ gdb -x ../contrib/debug_bootstrap.gdb

This will start gdb, attempt to run the bootstrap process using the debug build of Julia, and print out a backtrace if

(when) it segfaults. Youmay need to hit <enter> a few times to get the full backtrace. Create a gist with the backtrace,

the version info, and any other pertinent information you can think of and open a new issue onGithubwith a link to the

gist.

Segfaults when running a script

The procedure is very similar to Segfaults during bootstrap (sysimg.jl). Create a debug build of Julia, and run your

script inside of a debugged Julia process:

$ cd <julia_root>

$ make debug

$ gdb --args usr/bin/julia-debug <path_to_your_script>

Note that gdbwill sit there, waiting for instructions. Type r to run the process, and bt to generate a backtrace once it

segfaults:

(gdb) r

Starting program: /home/sabae/src/julia/usr/bin/julia-debug ./test.jl

...

(gdb) bt

Create a gist with the backtrace, the version info, and any other pertinent information you can think of and open a new

issue on Githubwith a link to the gist.

Errors during Julia startup

Occasionally errors occur during Julia's startupprocess (especiallywhenusing binary distributions, as opposed to com-

piling from source) such as the following:

$ julia

exec: error -5

These errors typically indicate something is not getting loaded properly very early on in the bootup phase, and our best

bet in determining what's going wrong is to use external tools to audit the disk activity of the julia process:

• On Linux, use strace:

$ strace julia

• OnOSX, use dtruss:

$ dtruss -f julia

Create a gist with the strace/ dtruss ouput, the version info, and any other pertinent information and open a new

issue on Githubwith a link to the gist.

https://gist.github.com
https://github.com/JuliaLang/julia/issues?q=is%3Aopen
https://gist.github.com
https://github.com/JuliaLang/julia/issues?q=is%3Aopen
https://gist.github.com
https://github.com/JuliaLang/julia/issues?q=is%3Aopen

71.2. GDBDEBUGGING TIPS 977

Glossary

A few terms have been used as shorthand in this guide:

• <julia_root> refers to the root directory of the Julia source tree; e.g. it should contain folders such as base,

deps, src, test, etc.....

71.2 gdb debugging tips

Displaying Julia variables

Within gdb, any jl_value_t* object obj can be displayed using

(gdb) call jl_(obj)

The object will be displayed in the julia session, not in the gdb session. This is a useful way to discover the types and

values of objects beingmanipulated by Julia's C code.

Similarly, if you're debugging some of Julia's internals (e.g., inference.jl), you can print obj using

ccall(:jl_, Void, (Any,), obj)

This is a goodway to circumvent problems that arise from the order in which julia's output streams are initialized.

Julia's flisp interpreter uses value_t objects; these can be displayedwith call fl_print(fl_ctx, ios_stdout,

obj).

Useful Julia variables for Inspecting

While the addresses of many variables, like singletons, can be be useful to print for many failures, there are a number

of additional variables (see julia.h for a complete list) that are evenmore useful.

• (when in jl_apply_generic) mfunc and jl_uncompress_ast(mfunc->def, mfunc->code) :: for figur-

ing out a bit about the call-stack

• jl_lineno andjl_filename :: for figuring outwhat line in a test to go start debugging from (or figure out how

far into a file has been parsed)

• $1 :: not really a variable, but still a useful shorthand for referring to the result of the last gdb command (such as

print)

• jl_options :: sometimes useful, since it lists all of the command line options that were successfully parsed

• jl_uv_stderr :: because who doesn't like to be able to interact with stdio

Useful Julia functions for Inspecting those variables

• jl_gdblookup($rip) :: For looking up the current function and line. (use $eip on i686 platforms)

• jlbacktrace() :: FordumpingthecurrentJuliabacktracestacktostderr. Onlyusableafterrecord_backtrace()

has been called.

• jl_dump_llvm_value(Value*) :: For invoking Value->dump() in gdb, where it doesn't work natively. For

example,f->linfo->functionObject,f->linfo->specFunctionObject, andto_function(f->linfo).

978 CHAPTER 71. DEVELOPING/DEBUGGING JULIA’S C CODE

• Type->dump() :: only works in lldb. Note: add something like ;1 to prevent lldb from printing its prompt over

the output

• jl_eval_string("expr") :: for invoking side-effects tomodify the current state or to lookup symbols

• jl_typeof(jl_value_t*) :: forextracting thetypetagofaJuliavalue (ingdb, callmacro define jl_typeof

jl_typeof first, or pick something short like ty for the first arg to define a shorthand)

Inserting breakpoints for inspection from gdb

In your gdb session, set a breakpoint in jl_breakpoint like so:

(gdb) break jl_breakpoint

Thenwithin your Julia code, insert a call to jl_breakpoint by adding

ccall(:jl_breakpoint, Void, (Any,), obj)

where obj can be any variable or tuple youwant to be accessible in the breakpoint.

It's particularlyhelpful tobackup to thejl_apply frame, fromwhichyoucandisplay thearguments toa functionusing,

e.g.,

(gdb) call jl_(args[0])

Anotheruseful frame isto_function(jl_method_instance_t *li, bool cstyle). Thejl_method_instance_t*

argument is a struct with a reference to the final AST sent into the compiler. However, the AST at this point will usually

be compressed; to view the AST, call jl_uncompress_ast and then pass the result to jl_:

#2 0x00007ffff7928bf7 in to_function (li=0x2812060, cstyle=false) at codegen.cpp:584

584 abort();

(gdb) p jl_(jl_uncompress_ast(li, li->ast))

Inserting breakpoints upon certain conditions

Loading a particular file

Let's say the file is sysimg.jl:

(gdb) break jl_load if strcmp(fname, "sysimg.jl")==0

Calling a particular method

(gdb) break jl_apply_generic if strcmp((char*)(jl_symbol_name)(jl_gf_mtable(F)->name), "

method_to_break")==0

Since this function is used for every call, you will make everything 1000x slower if you do this.

Dealing with signals

Julia requires a few signal to function property. The profiler uses SIGUSR2 for sampling and the garbage collector uses

SIGSEGV for threads synchronization. If you are debugging some code that uses the profiler or multiple threads, you

maywant to let the debugger ignore these signals since they can be triggered very often during normal operations. The

command to do this in GDB is (replace SIGSEGVwith SIGUSRS or other signals youwant to ignore):

(gdb) handle SIGSEGV noprint nostop pass

71.2. GDBDEBUGGING TIPS 979

The corresponding LLDB command is (after the process is started):

(lldb) pro hand -p true -s false -n false SIGSEGV

If youaredebuggingasegfaultwith threadedcode, youcansetabreakpointonjl_critical_error (sigdie_handler

should alsoworkonLinuxandBSD) inorder toonly catch theactual segfault rather than theGCsynchronizationpoints.

Debugging during Julia's build process (bootstrap)

Errors that occur during make need special handling. Julia is built in two stages, constructing sys0 and sys.ji. To see

what commands are running at the time of failure, use make VERBOSE=1.

At the time of this writing, you can debug build errors during the sys0 phase from the base directory using:

julia/base$ gdb --args ../usr/bin/julia-debug -C native --build ../usr/lib/julia/sys0 sysimg.jl

Youmight need to delete all the files in usr/lib/julia/ to get this to work.

You can debug the sys.ji phase using:

julia/base$ gdb --args ../usr/bin/julia-debug -C native --build ../usr/lib/julia/sys -J ../usr/

lib/julia/sys0.ji sysimg.jl

Bydefault, anyerrorswill causeJulia toexit, evenundergdb. Tocatchanerror "in theact", set abreakpoint injl_error

(there are several other useful spots, for specific kinds of failures, including: jl_too_few_args,jl_too_many_args,

and jl_throw).

Once an error is caught, a useful technique is to walk up the stack and examine the function by inspecting the related

call to jl_apply. To take a real-world example:

Breakpoint 1, jl_throw (e=0x7ffdf42de400) at task.c:802

802 {

(gdb) p jl_(e)

ErrorException("auto_unbox: unable to determine argument type")

$2 = void

(gdb) bt 10

#0 jl_throw (e=0x7ffdf42de400) at task.c:802

#1 0x00007ffff65412fe in jl_error (str=0x7ffde56be000 <_j_str267> "auto_unbox:

unable to determine argument type")

at builtins.c:39

#2 0x00007ffde56bd01a in julia_convert_16886 ()

#3 0x00007ffff6541154 in jl_apply (f=0x7ffdf367f630, args=0x7fffffffc2b0, nargs=2) at julia.h

:1281

...

Themost recentjl_apply is at frame#3, sowecangobackthereand lookat theASTfor the functionjulia_convert_16886.

This is the uniquedname for somemethodofconvert. f in this frame is ajl_function_t*, sowe can look at the type

signature, if any, from the specTypes field:

(gdb) f 3

#3 0x00007ffff6541154 in jl_apply (f=0x7ffdf367f630, args=0x7fffffffc2b0, nargs=2) at julia.h

:1281

1281 return f->fptr((jl_value_t*)f, args, nargs);

(gdb) p f->linfo->specTypes

$4 = (jl_tupletype_t *) 0x7ffdf39b1030

(gdb) p jl_(f->linfo->specTypes)

Tuple{Type{Float32}, Float64} # <-- type signature for julia_convert_16886

Then, we can look at the AST for this function:

980 CHAPTER 71. DEVELOPING/DEBUGGING JULIA’S C CODE

(gdb) p jl_(jl_uncompress_ast(f->linfo, f->linfo->ast))

Expr(:lambda, Array{Any, 1}[:#s29, :x], Array{Any, 1}[Array{Any, 1}[], Array{Any, 1}[Array{Any,

1}[:#s29, :Any, 0], Array{Any, 1}[:x, :Any, 0]], Array{Any, 1}[], 0], Expr(:body,

Expr(:line, 90, :float.jl)::Any,

Expr(:return, Expr(:call, :box, :Float32, Expr(:call, :fptrunc, :Float32, :x)::Any)::Any)::Any)::

Any)::Any

Finally, and perhaps most usefully, we can force the function to be recompiled in order to step through the codegen

process. To do this, clear the cached functionObject from the jl_lamdbda_info_t*:

(gdb) p f->linfo->functionObject

$8 = (void *) 0x1289d070

(gdb) set f->linfo->functionObject = NULL

Then, set a breakpoint somewhere useful (e.g. emit_function, emit_expr, emit_call, etc.), and run codegen:

(gdb) p jl_compile(f)

... # your breakpoint here

Debugging precompilation errors

Module precompilation spawns a separate Julia process to precompile each module. Setting a breakpoint or catching

failures inaprecompileworker requiresattachingadebugger to theworker. Theeasiest approach is to set thedebugger

watch for new process launchesmatching a given name. For example:

(gdb) attach -w -n julia-debug

or:

(lldb) process attach -w -n julia-debug

Then run a script/command to start precompilation. As described earlier, use conditional breakpoints in the parent

process to catch specific file-loading events and narrow the debugging window. (some operating systems may require

alternative approaches, such as following each fork from the parent process)

Mozilla's Record and Replay Framework (rr)

Julia nowworks out of the boxwith rr, the lightweight recording and deterministic debugging framework fromMozilla.

This allows you to replay the trace of an execution deterministically. The replayed execution's address spaces, register

contents, syscall data etc are exactly the same in every run.

A recent version of rr (3.1.0 or higher) is required.

71.3 Using Valgrindwith Julia

Valgrind is a tool for memory debugging, memory leak detection, and profiling. This section describes things to keep in

mindwhen using Valgrind to debugmemory issues with Julia.

General considerations

By default, Valgrind assumes that there is no self modifying code in the programs it runs. This assumption works fine

in most instances but fails miserably for a just-in-time compiler like julia. For this reason it is crucial to pass --smc-

check=all-non-file to valgrind, else codemay crash or behave unexpectedly (often in subtle ways).

In some cases, to better detectmemory errors usingValgrind it can help to compilejuliawithmemory pools disabled.

The compile-time flag MEMDEBUG disablesmemory pools in Julia, and MEMDEBUG2 disablesmemory pools in FemtoLisp.

To build juliawith both flags, add the following line to Make.user:

http://rr-project.org/
http://valgrind.org/

71.4. SANITIZER SUPPORT 981

CFLAGS = -DMEMDEBUG -DMEMDEBUG2

Another thing to note: if your program uses multiple workers processes, it is likely that you want all such worker pro-

cesses to run under Valgrind, not just the parent process. To do this, pass --trace-children=yes to valgrind.

Suppressions

Valgrindwill typically display spuriouswarnings as it runs. To reduce the number of suchwarnings, it helps to provide a

suppressionsfile toValgrind. Asamplesuppressionsfile is included in theJulia sourcedistributionatcontrib/valgrind-julia.supp.

The suppressions file can be used from the julia/ source directory as follows:

$ valgrind --smc-check=all-non-file --suppressions=contrib/valgrind-julia.supp ./julia progname.

jl

Anymemoryerrors thataredisplayedshouldeitherbereportedasbugsorcontributedasadditional suppressions. Note

that some versions of Valgrind are shippedwith insufficient default suppressions, so that may be one thing to consider

before submitting any bugs.

Running the Julia test suite under Valgrind

It is possible to run the entire Julia test suite under Valgrind, but it does take quite some time (typically several hours).

To do so, run the following command from the julia/test/ directory:

valgrind --smc-check=all-non-file --trace-children=yes --suppressions=$PWD/../contrib/valgrind-

julia.supp ../julia runtests.jl all

If youwould like toseeareportof "definite"memory leaks, pass theflags--leak-check=full --show-leak-kinds=definite

to valgrind as well.

Caveats

Valgrind currently does not support multiple rounding modes, so code that adjusts the rounding mode will behave dif-

ferently when run under Valgrind.

In general, if after setting --smc-check=all-non-file you find that your program behaves differently when run

under Valgrind, it may help to pass --tool=none to valgrind as you investigate further. This will enable theminimal

Valgrindmachinery but will also runmuch faster thanwhen the full memory checker is enabled.

71.4 Sanitizer support

General considerations

Using Clang's sanitizers obviously require you to use Clang (USECLANG=1), but there's another catch: most sanitizers

require a run-time library, provided by the host compiler, while the instrumented code generated by Julia's JIT relies

on functionality from that library. This implies that the LLVM version of your host compiler matches that of the LLVM

library usedwithin Julia.

Aneasysolution is tohaveandedicatedbuild folder forprovidingamatchingtoolchain, bybuildingwithBUILD_LLVM_CLANG=1

and overriding LLVM_USE_CMAKE=1 (Autotool-based builds are incompatible with ASAN). You can then refer to this

toolchain from another build folder by specifying USECLANG=1while overriding the CC and CXX variables.

http://valgrind.org/docs/manual/manual-core.html#manual-core.suppress
https://github.com/JuliaLang/julia/issues/8314#issuecomment-55766210
https://bugs.kde.org/show_bug.cgi?id=136779

982 CHAPTER 71. DEVELOPING/DEBUGGING JULIA’S C CODE

Address Sanitizer (ASAN)

Fordetectingordebuggingmemorybugs, youcanuseClang's address sanitizer (ASAN).BycompilingwithSANITIZE=1

you enable ASAN for the Julia compiler and its generated code. In addition, you can specify LLVM_SANITIZE=1 to

sanitize the LLVM library as well. Note that these options incur a high performance and memory cost. For example,

using ASAN for Julia and LLVMmakes testall1 takes 8-10 times as long while using 20 times as much memory (this

can be reduced to respectively a factor of 3 and 4 by using the options described below).

Bydefault, Julia sets theallow_user_segv_handler=1ASANflag,which is required for signal delivery toworkprop-

erly. Youcandefineotheroptionsusing theASAN_OPTIONSenvironmentflag, inwhichcaseyou'll need to repeat thede-

faultoptionmentionedbefore. Forexample,memoryusagecanbereducedbyspecifyingfast_unwind_on_malloc=0

and malloc_context_size=2, at the cost of backtrace accuracy. For now, Julia also sets detect_leaks=0, but this

should be removed in the future.

Memory Sanitizer (MSAN)

Fordetectinguseofuninitializedmemory, youcanuseClang'smemorysanitizer (MSAN)bycompilingwithSANITIZE_MEMORY=1.

http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/docs/MemorySanitizer.html

	Contents
	Home
	Julia Documentation
	Manual
	Standard Library
	Developer Documentation

	Manual
	Introduction
	Getting Started
	Resources

	Variables
	Allowed Variable Names
	Stylistic Conventions

	Integers and Floating-Point Numbers
	Integers
	Overflow behavior
	Division errors

	Floating-Point Numbers
	Floating-point zero
	Special floating-point values
	Machine epsilon
	Rounding modes
	Background and References

	Arbitrary Precision Arithmetic
	Numeric Literal Coefficients
	Syntax Conflicts

	Literal zero and one

	Mathematical Operations and Elementary Functions
	Arithmetic Operators
	Bitwise Operators
	Updating operators
	Vectorized "dot" operators
	Numeric Comparisons
	Chaining comparisons
	Elementary Functions

	Operator Precedence
	Numerical Conversions
	Rounding functions
	Division functions
	Sign and absolute value functions
	Powers, logs and roots
	Trigonometric and hyperbolic functions
	Special functions

	Complex and Rational Numbers
	Complex Numbers
	Rational Numbers

	Strings
	Characters
	String Basics
	Unicode and UTF-8
	Concatenation
	Interpolation
	Triple-Quoted String Literals
	Common Operations
	Non-Standard String Literals
	Regular Expressions
	Byte Array Literals
	Version Number Literals
	Raw String Literals

	Functions
	Argument Passing Behavior
	The return Keyword
	Operators Are Functions
	Operators With Special Names
	Anonymous Functions
	Multiple Return Values
	Varargs Functions
	Optional Arguments
	Keyword Arguments
	Evaluation Scope of Default Values
	Do-Block Syntax for Function Arguments
	Dot Syntax for Vectorizing Functions
	Further Reading

	Control Flow
	Compound Expressions
	Conditional Evaluation
	Short-Circuit Evaluation
	Repeated Evaluation: Loops
	Exception Handling
	Built-in Exceptions
	The throw() function
	Errors
	Warnings and informational messages
	The try/catch statement
	finally Clauses

	Tasks (aka Coroutines)
	Core task operations
	Tasks and events
	Task states

	Scope of Variables
	Global Scope
	Local Scope
	Soft Local Scope
	Hard Local Scope
	Hard vs. Soft Local Scope
	Let Blocks
	For Loops and Comprehensions

	Constants

	Types
	Type Declarations
	Abstract Types
	Primitive Types
	Composite Types
	Mutable Composite Types
	Declared Types
	Type Unions
	Parametric Types
	Parametric Composite Types
	Parametric Abstract Types
	Tuple Types
	Vararg Tuple Types
	Parametric Primitive Types

	UnionAll Types
	Type Aliases
	Operations on Types
	Custom pretty-printing
	"Value types"
	Nullable Types: Representing Missing Values
	Constructing Nullable objects
	Checking if a Nullable object has a value
	Safely accessing the value of a Nullable object
	Performing operations on Nullable objects

	Methods
	Defining Methods
	Method Ambiguities
	Parametric Methods
	Redefining Methods
	Parametrically-constrained Varargs methods
	Note on Optional and keyword Arguments
	Function-like objects
	Empty generic functions
	Method design and the avoidance of ambiguities
	Tuple and NTuple arguments
	Orthogonalize your design
	Dispatch on one argument at a time
	Abstract containers and element types
	Complex method "cascades" with default arguments

	Constructors
	Outer Constructor Methods
	Inner Constructor Methods
	Incomplete Initialization
	Parametric Constructors
	Case Study: Rational
	Constructors and Conversion
	Outer-only constructors

	Conversion and Promotion
	Conversion
	Defining New Conversions
	Case Study: Rational Conversions

	Promotion
	Defining Promotion Rules
	Case Study: Rational Promotions

	Interfaces
	Iteration
	Indexing
	Abstract Arrays

	Modules
	Summary of module usage
	Modules and files
	Standard modules
	Default top-level definitions and bare modules
	Relative and absolute module paths
	Module file paths
	Namespace miscellanea
	Module initialization and precompilation

	Documentation
	Accessing Documentation
	Functions & Methods
	Advanced Usage
	Dynamic documentation

	Syntax Guide
	Functions and Methods
	Macros
	Types
	Modules
	Global Variables
	Multiple Objects
	Macro-generated code

	Markdown syntax
	Inline elements
	Toplevel elements

	Markdown Syntax Extensions

	Metaprogramming
	Program representation
	Symbols

	Expressions and evaluation
	Quoting
	Interpolation
	eval() and effects
	Functions on Expressions

	Macros
	Basics
	Hold up: why macros?
	Macro invocation
	Building an advanced macro
	Hygiene

	Code Generation
	Non-Standard String Literals
	Generated functions
	An advanced example

	Multi-dimensional Arrays
	Arrays
	Basic Functions
	Construction and Initialization
	Concatenation
	Typed array initializers
	Comprehensions
	Generator Expressions
	Indexing
	Assignment
	Supported index types
	Iteration
	Array traits
	Array and Vectorized Operators and Functions
	Broadcasting
	Implementation

	Sparse Vectors and Matrices
	Compressed Sparse Column (CSC) Sparse Matrix Storage
	Sparse Vector Storage
	Sparse Vector and Matrix Constructors
	Sparse matrix operations
	Correspondence of dense and sparse methods

	Linear algebra
	Special matrices
	Elementary operations
	Matrix factorizations
	The uniform scaling operator

	Matrix factorizations

	Networking and Streams
	Basic Stream I/O
	Text I/O
	IO Output Contextual Properties
	Working with Files
	A simple TCP example
	Resolving IP Addresses

	Parallel Computing
	Code Availability and Loading Packages
	Data Movement

	Global variables
	Parallel Map and Loops
	Synchronization With Remote References
	Scheduling
	Channels
	Remote References and AbstractChannels
	Channels and RemoteChannels
	Remote References and Distributed Garbage Collection
	Shared Arrays
	Shared Arrays and Distributed Garbage Collection
	ClusterManagers
	Cluster Managers with Custom Transports
	Network Requirements for LocalManager and SSHManager
	Cluster Cookie
	Specifying Network Topology (Experimental)
	Multi-Threading (Experimental)
	Setup
	The @threads Macro

	@threadcall (Experimental)

	Date and DateTime
	Constructors
	Durations/Comparisons
	Accessor Functions
	Query Functions
	TimeType-Period Arithmetic
	Adjuster Functions
	Period Types
	Rounding
	Rounding Epoch

	Interacting With Julia
	The different prompt modes
	The Julian mode
	Help mode
	Shell mode
	Search modes

	Key bindings
	Customizing keybindings

	Tab completion
	Customizing Colors

	Running External Programs
	Interpolation
	Quoting
	Pipelines
	Avoiding Deadlock in Pipelines
	Complex Example

	Calling C and Fortran Code
	Creating C-Compatible Julia Function Pointers
	Mapping C Types to Julia
	Auto-conversion:
	Type Correspondences:
	Bits Types:
	Struct Type correspondences
	Type Parameters
	SIMD Values
	Memory Ownership
	When to use T, Ptr{T} and Ref{T}

	Mapping C Functions to Julia
	ccall/cfunction argument translation guide
	ccall/cfunction return type translation guide
	Passing Pointers for Modifying Inputs
	Special Reference Syntax for ccall (deprecated):

	Some Examples of C Wrappers
	Garbage Collection Safety
	Non-constant Function Specifications
	Indirect Calls
	Calling Convention
	Accessing Global Variables
	Accessing Data through a Pointer
	Thread-safety
	More About Callbacks
	C++

	Handling Operating System Variation
	Environment Variables
	File locations
	JULIA_HOME
	JULIA_LOAD_PATH
	JULIA_PKGDIR
	JULIA_HISTORY
	JULIA_PKGRESOLVE_ACCURACY

	External applications
	JULIA_SHELL
	JULIA_EDITOR

	Parallelization
	JULIA_CPU_CORES
	JULIA_WORKER_TIMEOUT
	JULIA_NUM_THREADS
	JULIA_THREAD_SLEEP_THRESHOLD
	JULIA_EXCLUSIVE

	REPL formatting
	JULIA_ERROR_COLOR
	JULIA_WARN_COLOR
	JULIA_INFO_COLOR
	JULIA_INPUT_COLOR
	JULIA_ANSWER_COLOR
	JULIA_STACKFRAME_LINEINFO_COLOR
	JULIA_STACKFRAME_FUNCTION_COLOR

	Debugging and profiling
	JULIA_GC_ALLOC_POOL, JULIA_GC_ALLOC_OTHER, JULIA_GC_ALLOC_PRINT
	JULIA_GC_NO_GENERATIONAL
	JULIA_GC_WAIT_FOR_DEBUGGER
	ENABLE_JITPROFILING
	JULIA_LLVM_ARGS
	JULIA_DEBUG_LOADING

	Embedding Julia
	High-Level Embedding
	Using julia-config to automatically determine build parameters

	Converting Types
	Calling Julia Functions
	Memory Management
	Manipulating the Garbage Collector

	Working with Arrays
	Accessing Returned Arrays
	Multidimensional Arrays

	Exceptions
	Throwing Julia Exceptions

	Packages
	Package Status
	Adding and Removing Packages
	Offline Installation of Packages
	Installing Unregistered Packages
	Updating Packages
	Checkout, Pin and Free
	Custom METADATA Repository

	Package Development
	Initial Setup
	Making changes to an existing package
	Documentation changes
	Code changes
	Dirty packages
	Making a branch post hoc
	Squashing and rebasing

	Creating a new Package
	REQUIRE speaks for itself
	Guidelines for naming a package
	Generating the package
	Loading Static Non-Julia Files
	Making Your Package Available
	Tagging and Publishing Your Package

	Fixing Package Requirements
	Requirements Specification

	Profiling
	Basic usage
	Accumulation and clearing
	Options for controlling the display of profile results
	Configuration

	Memory allocation analysis
	Stack Traces
	Viewing a stack trace
	Extracting useful information
	Error handling
	Comparison with backtrace()

	Performance Tips
	Avoid global variables
	Measure performance with @time and pay attention to memory allocation
	Tools
	Avoid containers with abstract type parameters
	Type declarations
	Avoid fields with abstract type
	Avoid fields with abstract containers
	Annotate values taken from untyped locations
	Declare types of keyword arguments

	Break functions into multiple definitions
	Write "type-stable" functions
	Avoid changing the type of a variable
	Separate kernel functions (aka, function barriers)
	Types with values-as-parameters
	The dangers of abusing multiple dispatch (aka, more on types with values-as-parameters)
	Access arrays in memory order, along columns
	Pre-allocating outputs
	More dots: Fuse vectorized operations
	Consider using views for slices
	Avoid string interpolation for I/O
	Optimize network I/O during parallel execution
	Fix deprecation warnings
	Tweaks
	Performance Annotations
	Treat Subnormal Numbers as Zeros
	@code_warntype

	Workflow Tips
	REPL-based workflow
	A basic editor/REPL workflow
	Simplify initialization

	Browser-based workflow

	Style Guide
	Write functions, not just scripts
	Avoid writing overly-specific types
	Handle excess argument diversity in the caller
	Append ! to names of functions that modify their arguments
	Avoid strange type Unions
	Avoid type Unions in fields
	Avoid elaborate container types
	Use naming conventions consistent with Julia's base/
	Don't overuse try-catch
	Don't parenthesize conditions
	Don't overuse ...
	Don't use unnecessary static parameters
	Avoid confusion about whether something is an instance or a type
	Don't overuse macros
	Don't expose unsafe operations at the interface level
	Don't overload methods of base container types
	Avoid type piracy
	Be careful with type equality
	Do not write x->f(x)
	Avoid using floats for numeric literals in generic code when possible

	Frequently Asked Questions
	Sessions and the REPL
	How do I delete an object in memory?
	How can I modify the declaration of a type in my session?

	Functions
	I passed an argument x to a function, modified it inside that function, but on the outside,
	Can I use using or import inside a function?
	What does the ... operator do?
	The two uses of the ... operator: slurping and splatting
	... combines many arguments into one argument in function definitions
	... splits one argument into many different arguments in function calls

	Types, type declarations, and constructors
	What does "type-stable" mean?
	Why does Julia give a DomainError for certain seemingly-sensible operations?
	Why does Julia use native machine integer arithmetic?
	What are the possible causes of an UndefVarError during remote execution?

	Packages and Modules
	What is the difference between "using" and "importall"?

	Nothingness and missing values
	How does "null" or "nothingness" work in Julia?

	Memory
	Why does x += y allocate memory when x and y are arrays?

	Asynchronous IO and concurrent synchronous writes
	Why do concurrent writes to the same stream result in inter-mixed output?

	Julia Releases
	Do I want to use a release, beta, or nightly version of Julia?
	When are deprecated functions removed?

	Noteworthy Differences from other Languages
	Noteworthy differences from MATLAB
	Noteworthy differences from R
	Noteworthy differences from Python
	Noteworthy differences from C/C++

	Unicode Input

	Standard Library
	Essentials
	Introduction
	Getting Around
	All Objects
	Types
	Generic Functions
	Syntax
	Nullables
	System
	Errors
	Events
	Reflection
	Internals

	Collections and Data Structures
	Iteration
	General Collections
	Iterable Collections
	Indexable Collections
	Associative Collections
	Set-Like Collections
	Dequeues

	Mathematics
	Mathematical Operators
	Mathematical Functions
	Statistics
	Signal Processing

	Numbers
	Standard Numeric Types
	Abstract number types
	Concrete number types

	Data Formats
	General Number Functions and Constants
	Integers

	BigFloats
	Random Numbers

	Strings
	Arrays
	Constructors and Types
	Basic functions
	Broadcast and vectorization
	Indexing and assignment
	Views (SubArrays and other view types)
	Concatenation and permutation
	Array functions
	Combinatorics
	BitArrays
	Sparse Vectors and Matrices

	Tasks and Parallel Computing
	Tasks
	General Parallel Computing Support
	Shared Arrays
	Multi-Threading
	ccall using a threadpool (Experimental)
	Synchronization Primitives
	Cluster Manager Interface

	Linear Algebra
	Standard Functions
	Low-level matrix operations
	BLAS Functions
	BLAS Character Arguments

	LAPACK Functions

	Constants
	Filesystem
	I/O and Network
	General I/O
	Text I/O
	Multimedia I/O
	Memory-mapped I/O
	Network I/O

	Punctuation
	Sorting and Related Functions
	Sorting Functions
	Order-Related Functions
	Sorting Algorithms

	Package Manager Functions
	Dates and Time
	Dates and Time Types
	Dates Functions
	Accessor Functions
	Query Functions
	Adjuster Functions
	Periods
	Rounding Functions
	Conversion Functions
	Constants

	Iteration utilities
	Unit Testing
	Testing Base Julia
	Basic Unit Tests
	Working with Test Sets
	Other Test Macros
	Broken Tests
	Creating Custom AbstractTestSet Types

	C Interface
	LLVM Interface
	C Standard Library
	Dynamic Linker
	Profiling
	StackTraces
	SIMD Support

	Developer Documentation
	Reflection and introspection
	Module bindings
	DataType fields
	Subtypes
	DataType layout
	Function methods
	Expansion and lowering
	Intermediate and compiled representations

	Documentation of Julia's Internals
	Initialization of the Julia runtime
	main()
	julia_init()
	true_main()
	Base._start
	Base.eval
	jl_atexit_hook()
	julia_save()

	Julia ASTs
	Lowered form
	Surface syntax AST

	More about types
	Types and sets (and Any and Union{}/Bottom)
	UnionAll types
	Free variables
	TypeNames
	Tuple types
	Diagonal types
	Subtyping diagonal variables
	Introduction to the internal machinery
	Subtyping and method sorting

	Memory layout of Julia Objects
	Object layout (jl_value_t)
	Garbage collector mark bits
	Object allocation

	Eval of Julia code
	Julia Execution
	Parsing
	Macro Expansion
	Type Inference
	JIT Code Generation
	System Image

	Calling Conventions
	Julia Native Calling Convention
	JL Call Convention
	C ABI

	High-level Overview of the Native-Code Generation Process
	Representation of Pointers
	Representation of Intermediate Values
	Union representation
	Specialized Calling Convention Signature Representation

	Julia Functions
	Method Tables
	Function calls
	Adding methods
	Creating generic functions
	Closures
	Constructors
	Builtins
	Keyword arguments
	Compiler efficiency issues

	Base.Cartesian
	Principles of usage
	Basic syntax

	Talking to the compiler (the :meta mechanism)
	SubArrays
	Indexing: cartesian vs. linear indexing
	Index replacement
	SubArray design

	System Image Building
	Building the Julia system image

	Working with LLVM
	Overview of Julia to LLVM Interface
	Building Julia with a different version of LLVM
	Passing options to LLVM
	Improving LLVM optimizations for Julia

	printf() and stdio in the Julia runtime
	Libuv wrappers for stdio
	Interface between JL_STD* and Julia code
	printf() during initialization
	Legacy ios.c library

	Bounds checking
	Eliding bounds checks
	Propagating inbounds
	The bounds checking call hierarchy

	Proper maintenance and care of multi-threading locks
	Locks
	Broken Locks
	Shared Global Data Structures

	Arrays with custom indices
	Generalizing existing code
	Writing custom array types with non-1 indexing
	Summary

	Base.LibGit2
	Module loading
	Experimental features

	Developing/debugging Julia's C code
	Reporting and analyzing crashes (segfaults)
	Version/Environment info
	Segfaults during bootstrap (sysimg.jl)
	Segfaults when running a script
	Errors during Julia startup
	Glossary

	gdb debugging tips
	Displaying Julia variables
	Useful Julia variables for Inspecting
	Useful Julia functions for Inspecting those variables
	Inserting breakpoints for inspection from gdb
	Inserting breakpoints upon certain conditions
	Dealing with signals
	Debugging during Julia's build process (bootstrap)
	Debugging precompilation errors
	Mozilla's Record and Replay Framework (rr)

	Using Valgrind with Julia
	General considerations
	Suppressions
	Running the Julia test suite under Valgrind
	Caveats

	Sanitizer support
	General considerations
	Address Sanitizer (ASAN)
	Memory Sanitizer (MSAN)

